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Abstract

This paper reviews recent results related to robust model-based inertial position tracking for small
air vehicles. The control law discussed is formulated in an energy-based modeling framework and the
closed-loop system is robust with respect to disturbances. Specific formal guarantees are stated. The main
contribution of this paper is a discussion regarding the use of the formal guarantees for control tuning.
Simulations are used to demonstrate the tuning approach and the robust behavior.

1 Introduction

Right now, the aerospace industry, the FAA, and
NASA are working together to build a future they
call Advanced Air Mobility (AAM). NASA’s vision
is to make aviation accessible everywhere and to in-
tegrate it into transportation and shipping systems
at the national, regional, and local levels [1]. A cen-
tral theme of this work is ensuring safety. As AAM
matures, unmanned aircraft systems (UAS) will need
to operate with control systems that are robust to
disturbances and model uncertainty. One approach
that may fill this gap is to require flight controllers
that provide formal guarantees.

To achieve the level of safety needed for widespread
integration of UAS into the nation’s infrastructure,
UAS must operate in a manner that is certifiably
safe even in uncertain environments. This includes
inclement weather and the kind of heavy turbulence
and strong wind fields that may be found in urban
canyons. Traditional modeling of aircraft is largely
limited to linear models. These models are only valid
locally and there is no formal method for specify-
ing the region in which the linear approximation is
valid. To evaluate the safety of UAS operating in un-
certain environments, sophisticated nonlinear meth-
ods are needed. Real aircraft are nonlinear, so well-
developed nonlinear models are typically valid over a
much larger envelope than their linear counterparts.
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Recently, the authors have proposed a robust non-
linear model-based energy-inspired inertial position
tracking controller that applies to a large class of
air systems. This controller is outfitted with formal
guarantees that can be used to certify safety. The for-
mal guarantees bound the difference between the air-
craft’s intended position and its actual position. The
bound is stated in terms of disturbances affecting the
system. These disturbances capture both exogenous
effects like gusts and other sources of uncertainty such
as modeling error.

The main contributions of the present work are
twofold. Some of the most common AAM platforms
are multirotors. Accordingly, the first contribution of
this work is to summarize the results of [2] and spec-
ify them to the case of a multirotor aircraft. Next, an
enduring challenge faced by nonlinear control meth-
ods is that they can be difficult to understand and
challenging to tune. The second contribution of this
work is to detail a principled approach to tuning the
proposed nonlinear controller that draws on the in-
tuitive notion of energy.

The paper is organized as follows. Section 2 de-
tails the aircraft model considered in this work. Sec-
tion 3 discusses the recently proposed inertial position
tracking controller. Section 4 proposes a principled
approach to tuning that leverages the controller’s for-
mal guarantees. Section 5 reviews a simulation that
demonstrates the tuned performance. Finally, sec-
tion 6 offers conclusions.

2 Aircraft Model

Consider a rigid multirotor aircraft that pro-
duces thrust along an axis fixed in the body. Let
{i1, i2, i3} denote an inertial North-East-Down refer-
ence frame, Fi, fixed to the surface of the Earth and
let {b1,b2,b3} denote a body-fixed reference frame,
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Fb, located at the vehicle’s center of mass. Let b1

point along the longitudinal axis of the aircraft, b2

along the lateral axis, and b3 along the directional
axis. Suppose that the vehicle produces propulsive
force along bT = −b3. The reference frames are il-
lustrated in Figure 1.

i1
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i3

b1

b2

b3

p

q

r

bT

bT
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Figure 1: Selected reference frames.

Let the position of the vehicle’s center of mass with
respect to Fi be denoted r = [ x y z ]T. Let the atti-
tude of the vehicle be represented by the unit quater-
nion q = [ q0 q̄T ]T ∈ S3. The proper rotation matrix
that corresponds to q and maps free vectors in Fb to
those in Fi is

R(q) = (q20 − ∥q̄∥2)III+ 2q̄q̄T + 2q0 ˆ̄q (1)

where (̂·), sometimes denoted (·)∧, is the cross prod-
uct equivalent matrix operator defined by the identity
âb = a × b for all a, b ∈ R3. Note that â ∈ R3×3 is
skew symmetric: (â)T = −â.
Let v = [u v w ]T denote the velocity of the body

with respect to Fi, expressed in Fb. Let ω = [ p q r ]T

denote the angular velocity of Fb with respect to Fi,
expressed in Fb.

The vehicle experiences four forces: gravitational
force, mgR(q)Te3; aerodynamic force, af ; propulsive
force uTeT ; and disturbance force wf . For control
design purposes, we use the aerodynamic model

af (v) = −1

2
ρSCD ∥v∥v (2)

where ρ is the local air density, S is a reference area,
and CD is the vehicle’s (constant) coefficient of drag.
The propulsive force uTeT is the product of the thrust
intensity uT and the unit vector along which thrust
acts, which is eT = −e3 when resolved in the co-
ordinates of the body frame. The disturbance force
wf captures the difference between the forces experi-
enced by the real vehicle and those that are otherwise

modeled. For example, the aerodynamic force model
used in the control design process and the model used
in the simulations of Section 5 are different. There-
fore, for the purpose of the formal guarantees, the
difference of these two models is lumped into wf .

In this work, we suppose that an inner-loop con-
troller controls the angular velocity of the vehicle. We
therefore model the angular velocity as ω = uω +wω

where uω is the angular velocity command to the
inner-loop controller andwω is the difference between
the vehicle’s angular velocity and the commanded
angular velocity that arises from imperfect tracking.
For the sake of the following analysis, uω is regarded
as a control input and wω is regarded as a distur-
bance.

With the established definitions, the differential
equations governing the aircraft system are

ṙ = R(q)v
v̇ = v × (uω +wω) + gR(q)Te3

+ 1
maf (v) +

1
muTeT + 1

mwf

q̇ = E(q)(uω +wω)

(3)

where E(q) = 1
2

[
−q̄ q0III− ˆ̄q

]T
and m is the mass

of the aircraft. The input to this system is u =
[uT uT

ω ]T and the disturbance is w = [wT

f wT
ω ]T.

3 Position Tracking Controller

In [2], the authors developed a nonlinear position
tracking flight control law with stability guarantees.
Due to page limits, it is not practical to present the
complete derivation of the controller. Instead, the
control law, with specialization to the aerodynamic
model (2), is detailed in the appendix.

The controller is an output tracking controller that
drives the vehicle to follow a user specified path r⋆ :
[t0,∞) → R3 while pointing its longitudinal axis in a
user specified direction η : [t0,∞) → R3. In [2], the
output tracking problem is defined in terms of the
state of the vehicle x = [ rT vT qT ]T, a target state
x⋆ = [ r⋆T v⋆T q⋆T ]T ∈ R3 × R3 × S3, and an error
vector ξ = [ ξT

1 ξT
2 ξT

3 ]
T ∈ R3 ×R3 × B̄3. These three

quantities are defined such that

ξ1 = 0 ⇔ r = r⋆

ξ2 = 0 ⇔ v = v⋆

ξ3 = 0 ⇔ R(q) = R(q⋆)
(4)

Therefore, the vehicle is perfectly tracking the pre-
scribed position history when ξ = 0. In particular,
the error vectors are defined as

ξ1 = r− r⋆ (5)

ξ2 = 1
mP−1

22 R(q)(v − v⋆) (6)

ξ3 = 2E(q)Tq⋆ (7)
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The formulation of the controller described in the
appendix involves a number of tuning parameters.
These are the scalars θ ∈ (0, 1) and P33, β, µf , µω ∈ R
and the matrices P11,P22,K11,K22,K33 ∈ R3×3.
Note, these five matrices are all symmetric.
Consider the positive definite function V : R3 ×

R3 × B̄3 → R defined by

V (ξ) = 1
2ξ

T
1P11ξ1 +

1
2ξ

T
2P11ξ2

+ P33(1−
√

1− ∥ξ3∥2)
(8)

In [2] this function represents a notion of error energy
for the closed-loop system. Each term is the error
energy associated with the corresponding error vec-
tor. The position error energy, V1(ξ1) = 1

2ξ
T
1P11ξ1

and the velocity error energy V2(ξ2) = 1
2ξ

T
2P22ξ2

are quadratic. The attitude error energy V3(ξ3) =

P33(1−
√
1− ∥ξ3∥2) is not quadratic because ξ3 lives

in B̄3, not R3. Unlike V1(ξ1) and V2(ξ2), the error en-
ergy function V3(ξ3) is bounded on its domain. This
property is practical in the following sense. While it
is implausible that a physical disturbance would drive
either position or velocity to infinity in finite time, it
is plausible that a disturbance might drive a vehicle
to 180◦ of attitude error in finite time. Therefore, we
do not want this most extreme attitude error to be
penalized as much as infinite position or velocity er-
ror. Accordingly, 180◦ of attitude error corresponds
to a finite amount of error energy.
For the following analysis, we prescribe K11 =

1
2k1P

−1
11 , K22 = 1

2k2P
−1
22 , and K33 = k3P

−1
33 III. Then,

analysis presented in [2] shows that the rate of change
of V along trajectories of the closed-loop system is
bounded by

V̇ (t, ξ,w) ≤ −k1V1(ξ1)− k2V2(ξ2)− k3V3(ξ3)

+ β
(

1
2

∥∥∥wf

µf

∥∥∥2 + 1
2

∥∥∥wω

µω

∥∥∥2)
(9)

In the next section, we discuss and study how (8)
and (9) can be used for control tuning. Before dis-
cussing tuning, however, we note the formal guaran-
tee that results from (8) and (9).
Take κ = min{k1, k2, k3} and b = min{ β

2µ2
f
, β
2µ2

ω
}.

Then (9) implies that

V̇ (t, ξ,w) ≤ −κV (ξ) + b ∥w∥2∞ (10)

Hence, applying the Comparison Lemma [3] results
in

V (ξ(t)) ≤ e−κ(t−t0)V (ξ(t0))+
b

κ
(1−e−κ(t−t0)) ∥w∥2∞

(11)
This inequality is a formal guarantee describing how
error evolves in the system. V (ξ) describes the

amount of error present in the system. Hence, (11)
states that the error energy decays exponentially to
the ultimate bound b

κ ∥w∥2∞. Consequently, the er-
ror vector ξ decays asymptotically to its own ultimate
bound. This formal guarantee is a tool that designers
can use to ensure safe and predictable flight.

4 Controller Tuning

This section details physics-inspired insights that
can be used for tuning the proposed controller.

Consider equation (8) and the parameters P11,
P22, and P33. The function V is error energy that
the closed-loop system will dissipate. The param-
eters P11, P22, and P33 govern the relative weight
attributed to position, velocity, and attitude error.
These weights can be tailored to control the manner
in which the system dissipates error. For example,
if P11 is selected to be much larger than both P22

and P33, then the closed-loop system is permitted to
decrease overall error by converting position error ξ1
into velocity error ξ2 and attitude error ξ3. Con-
versely, if P33 is selected to be much larger than P11

and P22, then the closed-loop system will only per-
mit small amounts of attitude error ξ3 as it decreases
overall error V .

In the view of the authors, the best practice for
tuning P11, P22, and P33 is similar to an approach
commonly used to tune linear quadratic regulators.
In particular, the approach is to identify soft maxi-
mum tolerable position, velocity, and attitude errors
∆rmax, ∆vmax, and ∆Φmax and to prescribe P11, P22,
and P33 so that each of these conditions correspond
to equivalent error energies. The following discussion
elaborates on this idea.

To discuss the notion of a maximum tolerable an-
gular offset ∆Φmax, recall the Euler axis-angle for-
malism for rotations. The Euler axis a ∈ S2, Euler
angle Φ ∈ [0, π], and corresponding rotation matrix
R are related by by

R = eΦâ, Φ = cos−1
(
trR−1

2

)
, â = R−RT

2 sinΦ (12)

This formalism views the rotation R as a rotation
by the angle Φ about the axis defined by the unit
vector a. Consider the angle ∆Φ between the vehicle
attitude q and the target attitude q⋆. It can be shown
that

cos(∆Φ) =
tr
(
R(q)TR(q⋆)

)
−1

2 = 1− 2 ∥ξ3∥2 (13)

where the first equality is the definition of the Euler
angle ∆Φ and the second results from algebraic ma-
nipulations. It follows from (13) that ∆Φ = ∆Φmax

if and only if

∥ξ3∥2 = 1
2 (1− cos(∆Φmax)) (14)
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Next, we select P11, P22, and P33 so that all of the
soft maximums correspond to the same error energies

∥r− r⋆∥ = ∆rmax ⇔ V1(ξ1) = 1
∥v − v⋆∥ = ∆vmax ⇔ V2(ξ2) = 1

∆Φ = ∆Φmax ⇔ V3(ξ3) = 1
(15)

This objective is achieved by the prescriptions

P11 = 2(∆rmax)
−2III (16)

P22 = 2(∆vmax/m)2III (17)

P33 =
(
1−

√
1
2

(
1− cos(∆Φmax)

))−1

(18)

With the parameters P11, P22, and P33 prescribed,
we now turn to tuning µf , µω, k1, k2, k3, and β based
on (9).
In (9), the parameters µf and µω play roles anal-

ogous to those of P11, P22, and P33 in (8). To nor-
malize the effects of the disturbances wf and wω, we
select µf and µω to be equal to the soft maximum
amplitudes of disturbances that we expect the sys-
tem to experience. Identifying these soft maximums
as wf ,max and wω,max, we prescribe

µf = wf ,max and µω = wω,max (19)

Furthermore, we define the function L by

L(w) =
1

2

∥∥∥∥ wf

wf ,max

∥∥∥∥2 + 1

2

∥∥∥∥ wω

wω,max

∥∥∥∥2 (20)

With these prescriptions and definitions, (9) is now

V̇ (t, ξ,w) ≤ −k1V1(ξ1)− k2V2(ξ2)
− k3V3(ξ3) + βL(w)

(21)

The right hand side of this equation is a linear com-
bination of terms whose value is nominally zero and
whose value is equal to one when the system is at the
corresponding soft maximum.
The inequality (21) can be further simplified by

taking k1, k2, k3 = k for some k > 0. In this case, (21)
becomes

V̇ (t, ξ,w) ≤ −kV (ξ) + βL(w) (22)

This resembles a standard first order linear time-
invariant differential equation, so the roles played by
k and β can be readily interpreted. The term k de-
fines the responsiveness of the system. When k is
large, the system will settle to equilibrium quickly.
When k is small, the system will settle slowly. Larger
values of k typically correspond to larger control ef-
forts and likewise for smaller values. The term β

governs the sensitivity of the equilibrium error condi-
tion to disturbances. When the ratio β/k is large, the
equilibrium error is highly sensitive to disturbances.
When the ratio β/k is small, the equilibrium error is
insensitive. Larger values of β/k correspond to lower
levels of control effort—the system permits more er-
ror and so is using less control effort to counteract
error. Smaller values of β/k correspond to higher
levels of control effort—the system permits less er-
ror and so the controller must use substantial control
effort to counteract error.

While the prescription k1, k2, k3 = k does simplify
the guarantee (21), retaining distinct values for k1,
k2, and k3 is beneficial. Using distinct values for
these terms enables the designer to tailor the rate at
which each type of error is dissipated from the sys-
tem. In particular, choosing k3 > k2 > k1 sets up a
hierarchy of time scales so that the aircraft eliminates
attitude error first, then velocity error, then position
error. This order resembles how a human pilot might
fly and therefore makes the control law behave more
predictably.

5 Simulation

To demonstrate the controller with the discussed
tuning strategy, a simulated flight of a multirotor air-
craft is presented. The position history of the aircraft
is illustrated in Figure 2. The time histories of the
disturbances wf and wω are pictured in Figure 3 and
Figure 4, respectively. The input history resulting
from the controller is shown in Figure 5. Finally, the
path that vehicle takes through 3-dimensional space
is illustrated in Figure 6.

The control law is tuned according to the method
described in Section 4. The selected values of the
tuning parameters are noted in Table 1.

Table 1: Controller parameters.

∆rmax 1 m k1 2 Hz
∆vmax 1 m/s k2 4 Hz
∆Φmax π/9 rad k3 20 Hz
µf 1 N β 1
µω 1 rad/s θ 0.1

In the simulation, the aerodynamics of the vehi-
cle are governed by the model presented in [4], which
uses data from the wind tunnel tests discussed in [5].
The aerodynamic model used for control design, how-
ever, is that of (2). Accordingly, the difference in the
aerodynamic force of these two models is, from the
perspective of the control law, the disturbance force
wf .
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Figure 2: Vehicle position history
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6 Conclusions

This paper has detailed a robust position-tracking
flight controller and discussed its application to mul-
tirotor aircraft. A special case of the controller for-
mulation for a quadratic drag model was identified.
The controller’s formal guarantees were identified and
discussed. A principled approach to tuning the con-
troller that leveraged the formal guarantees was dis-
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cussed in detail and specific recommendations were
made. The proposed approach to tuning was demon-
strated in simulation.
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Appendix: Control Law Specification

This appendix presents the equations that com-
prise the control law discussed in Section 3. This
controller was developed in [2] and is restated here for
completeness. Due to page limits, this appendix con-
tains no discussion and simply states relevant equa-
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tions. For a complete discussion, see [2].
The controller is

uT = (1− 2 ∥ε̄∥2)∥T ⋆∥
uω = (III−Ψω)

−1 (ω⋆
0 + ωJ + ωR)

(23)

Before defining all of the terms in (23), note that Ψω

simplifies dramatically for the selected control-design
aerodynamic model (2). Ψω is defined as

Ψω =
1

∥T ⋆∥

(
σTλ

∥σ × λ∥
eTe

T
2 + êT

)
·R(ε)T

(
âf (v)−

∂af (v)

∂v
v̂

) (24)

For the aerodynamic model (2), the last factor on the
right hand side of (24) simplifies to

âf (v)−
∂af (v)

∂v
v̂

= −1

2
ρSCD ∥v∥ v̂ +

1

2
ρSCD

(
∥v∥ III+ vvT

∥v∥

)
v̂

= −1

2
ρSCD

(
∥v∥ v̂ − ∥v∥ v̂

)
= 0

and, hence, Ψω = 0. The controller is, therefore,

uT = (1− 2 ∥ε̄∥2)∥T ⋆∥
uω = ω⋆

0 + ωJ + ωR
(25)

The terms appearing in (25) are defined as follows.
The feedforward angular velocity ω⋆

0 is

ω⋆
0 = −kηeT (σ × λ)Tη (26)

+
1

∥T ⋆∥

(
σTλ

∥σ × λ∥
eT (χ× λ)T + êTR(q⋆)T

)
Ṫ ⋆
0

The interconnection angular velocity ωJ is

ωJ = −4∥T ⋆∥
mP33

sgn (ε0) ((e
T

T ε̄)III+ ε0êT )R(q)Tξ2

(27)
The dissipation angular velocity ωR is

ωR = 2 sgn (ε0)R̃33P33ε̄ (28)

The dissipation matrix R̃33 is

R̃33 =

(
K33 +

(1
8

µ2
f

θβ

)
ΨfΨ

T

f +
(1
8

µ2
ω

β

)
III

)
(29)

where Ψf is defined by

Ψf = 1
∥T ⋆∥

(
σTλ

∥σ×λ∥eT (χ× λ)T

+êTR(q⋆)T
)(

− 1
mR(q)

∂af (v)
∂v

−(K11P11 + P22R22)R(q)
) (30)

The disturbance free rate of the target thrust is

Ṫ ⋆
0 = −R(q)

∂af (v)
∂v

(
gR(q)Te3 +

1
maf (v) +

1
meTuT

)
+m

(
(K11P11)

2 − P22P11

)
(−K11P11ξ1 + P22ξ2)

− (K11P11 + P22R22) (mge3 +R(q)af (v)
+R(q)eTuT −mr̈⋆ +mK11P11(−K11P11ξ1
+P22ξ2)) +m ˙̈r⋆

(31)
The dissipation matrix R22 is

R22 = K22 +
(1
2

1

m2

µ2
f

(1− θ)β

)
P−2

22 (32)

The attitude error unit quaternion ε = [ ε0 ε̄T ]T is

ε =

[
ε0
ε̄

]
=

[
q0 q̄T

−q̄ q0III− ˆ̄q

]
q⋆ =

[
qTq⋆

2E(q)Tq⋆

]
(33)

The target attitude q⋆ is one of the two antipodal
unit quaternions corresponding to

R(q⋆) = [λ χ× λ χ][−e3 e2 e1]
T (34)

The value of q⋆ is selected so that it varies continu-
ously in time. The target pointing direction is

χ =
(III− λλT)σ

∥(III− λλT)σ∥
(35)

The dynamic pointing direction is a state of the closed
loop system and its evolution is described by the dif-
ferential equation

σ̇ = kη(σ × λ)(σ × λ)Tη

−kλ(III− σσT)λ

(
σTλ

∥σ × λ∥

)
(36)

The commanded pointing direction, η, is a user-
supplied time history. The target thrust direction
is

λ = T ⋆/ ∥T ⋆∥ (37)

The target thrust is

T ⋆ = mr̈⋆ −mge3 −R(q)af (v)
+m

(
(K11P11)

2 − P22P11

)
ξ1

−m (K11P11P22 + P22R22P22) ξ2

(38)

The third error vector is

ξ3 = ε̄ (39)

The second error vector is

ξ2 = 1
mP−1

22 R(q)
(
v −R(q)T(ṙ⋆ −K11P11ξ1)︸ ︷︷ ︸

=v⋆

)
(40)

The first error vector is

ξ1 = r− r⋆ (41)

The target position, r⋆, is a user-supplied time his-
tory.
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