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Abstract 

The last decade has seen widespread adoption of Ma-

chine Learning (ML) components in software systems. 

This has occurred in nearly every domain, from natural 

language processing to computer vision. These ML 

components range from relatively simple neural net-

works to complex and resource-intensive large lan-

guage models. However, despite this widespread adop-

tion, little is known about the supply chain relationships 

that produce these models, which can have implications 

for compliance and security. In this work*, we conduct 

an extensive analysis of 760,460 models and 175,000 

datasets mined from the popular model-sharing site 

Hugging Face. First, we evaluate the current state of 

documentation in the Hugging Face supply chain, re-

port real-world examples of shortcomings, and offer ac-

tionable suggestions for improvement. Next, we ana-

lyze the underlying structure of the extant supply chain. 

Finally, we explore the current licensing landscape 

against what was reported in prior work and discuss the 

unique challenges posed in this domain. Our results 

motivate multiple research avenues, including the need 

for better license management for ML models/datasets, 

better support for model documentation, and automated 

inconsistency checking and validation. We make our re-

search infrastructure and dataset available to facilitate 

future research. 

Introduction 

The use of machine learning (ML) models in software 

applications has increased dramatically over the last 

decade, including in recommendation systems, com-

puter vision, chatbots, image generation, automated 

software engineering, and more. As creating and train-

ing new models has become increasingly more expen-

sive28, developers have turned to fine-tuning pre-exist-

ing models. This approach may save time and effort, 

but it also introduces the complexity of a new ML sup-

ply chain, complete with novel challenges. While sup-

ply chains for conventional software typically consist of 

software components, libraries, configuration files, and 

processes11,31, for ML-intensive systems, the supply 

 

* The content of this report is supported by research 
that is available as a preprint on arxiv39.  

chain is even more complex. Creating a modern ML 

system involves the integration of ML models and tra-

ditional software components. Additionally, one must 

account for dependencies between models and between 

models and their training datasets. Further, the training 

of ML models can rely on multiple datasets or dataset 

aggregates, and datasets, in turn, each have their own 

supply chain20. 

Adaptation or reuse of existing models can also intro-

duce degrees of complexity. Models can be fine-tuned36 

or quantized12 from existing models. Different ML 

models can even be combined to form a single architec-

ture that can, in turn, be reused or adapted1. Finally, the 

outputs from one model can be used to train another 

model, such as through synthetic data21 or the use of a 

teacher-student approach15. 

ML supply chains, particularly those involving genera-

tive models20, are not necessarily linear, progressing 

cleanly from one dependency or stage to the next. In-

stead, as outlined by Lee et al.20, there can be branches 

and even cycles in the supply chain. For example, da-

tasets can be used not only in the initial training of 

models but also for the fine-tuning of pre-existing base 

models, sometimes in multiple instances and by differ-

ent developers. Additionally, some stages of the supply 

chain can back feed into others, making relationships 

increasingly complex, if not recursive. For example, the 

outputs of a generative model can be added to pre-exist-

ing datasets and used for training future versions. The 

sheer volume of content from generative models makes 

this situation increasingly likely, if not inevitable. 

Understanding all these dependency relationships is 

critical not only for license compliance, which requires 

a full understanding of the components used in a project 

and their associated licenses, but also for detecting, mit-

igating, and managing security threats involved with 

model reuse, such as weight poisoning attacks19, data 

poisoning13, and even malware hidden in model weights 

and assembled at runtime34. 
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While previous work has considered the documenta-

tion29, evolution17, and environmental impact4 of ML 

models, the complexity and challenges of the ML sup-

ply chain as a whole have not yet been fully explored. 

The supply chain relationships between models and de-

pendent GitHub repositories have been explored by 

Pepe et al.29 and Jiang et al.18, but the relationships be-

tween ML models remain understudied. 

To contribute to bridging this gap, we aim to investigate 

the emerging ML model supply chain on Hugging Face 

(HF) (hereafter referred to as the ‘ML supply chain’), 

specifically the documentation practices of model own-

ers, the structure and complexity of the supply chain it-

self, and the existence and prevalence of potential com-

pliance issues. We note that proper documentation and 

documentation practices are foundational to mapping 

and thus managing the ML supply chain. Launched in 

2016, HF is, as of January 2025, the largest repository 

of ML models and datasets. HF provides a central hub 

for model developers and data scientists to explore, 

share, and experiment with ML models. While other 

model forges—such as TensorFlow Hub and PyTorch 

Hub—exist, the HF platform has the widest reach, host-

ing more than 750K models and 175K datasets across 

many different use cases. HF therefore represents a ro-

bust opportunity to understand ML supply chains and 

analyze how developers interact with them. 

Background 

The ML supply chain has emerged as a complex struc-

ture with many steps and components, each of which 

can affect the final output of a given model. Lee et al. 

identify eight stages in the generative AI supply chain, 

but most apply more broadly: 1) the creation of expres-

sive works that will eventually be used to train a model, 

2) the conversion of these expressive works into digital 

data, 3) the compilation of these data points into train-

ing datasets, 4) the creation of an ML model by select-

ing an architecture, training datasets, and a training al-

gorithm, 5) the fine-tuning of existing “base” models, 

6) the deployment of the trained/fine-tuned model as a 

service, 7) the use of the model to generate output, and 

finally 8) applying additional alignment to further im-

prove the model or meet user needs20. Modern ML 

models are also becoming increasingly complex with 

respect to their architectures. For example, Mixture of 

Expert (MoE) models and ensemble models comprise 

multiple specialized models trained by dividing the 

problem space into homogeneous regions22,32. 

Sharing information about models has become critically 

important. ML components do not, however, always 

disclose data sources, making it difficult to comply with 

or even keep track of licensing obligations associated 

with the data14. This creates conditions that could lead 

to legal disputes over the use of copyrighted material in 

training ML components33. Model cards26 have become 

the standard method for sharing information about ML 

models hosted on HF, including intended uses, limita-

tions, and datasets used in training. Although tools are 

in development to streamline the process10, model card 

creation on HF is primarily a manual process in which a 

user enters documentation about a model into a prede-

fined markdown template9. This template is robust, in-

cluding spaces for model description, uses, bias, limita-

tions, testing, etc., as well as optional fields for citation, 

technical specifications, and environmental impact. The 

manual nature of documentation, however, introduces 

significant potential for human error, ambiguity, and in-

completeness16,18. Indeed, the quality and adoption of 

model cards remains low3, despite user studies and 

other efforts by HF7 to ameliorate the situation, and de-

spite researchers proposing tools such as DocML3 to 

create and evolve model cards. 

While this study has been informed by prior work, our 

investigation focuses on the structure and characteris-

tics of the ML supply chain itself and the challenges en-

countered in managing it. While previous work exam-

ined deficiencies in documentation and licensing at the 

level of individual models, we investigate the ML sup-

ply chain at a higher level by examining how it is struc-

tured and how models relate to each other. 

Study Design 

This study’s goal was to evaluate the state of documen-

tation, structure, and licensing of the ML supply chain. 

We aim to address the following research questions: 

RQ0: What documentation deficiencies exist on HF that 

potentially complicate mapping the ML supply chain?  

RQ1: What is the structure of the ML supply chain? 

RQ2: What is the licensing landscape for models and 

datasets and what are potential compliance challenges? 

Next, we describe our methodology depicted in Fig. 1. 
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Data Collection 

We used the HF API to extract a list of all models pub-

licly hosted on the platform. An initial list of 500,000 

models was pulled on July 9, 2024, and a full list of all 

available models was obtained on July 11, 2024. Using 

the same APIs, we mined data (model cards and 

metadata) for each model on this list. For models that 

were unavailable through the API, we employed a web-

scraping technique relying on a combination of Py-

thon’s request module and the BeautifulSoup HTML 

parser. Mining took place between July 9 and July 12, 

2024, yielding 760,460 mined models. We also used the 

HF API to gather the list of all datasets publicly hosted 

on the platform and available through the API as of July 

9, 2024. We make all the raw data acquired from min-

ing available in our replication package37. 

Data Normalization and Cleaning 

Once the data for models and datasets was downloaded, 

it needed to be cleaned, standardized, and stored in a 

more usable form. This process involved standardizing 

the names of declared base models and datasets and 

mapping to unique identifiers where possible. For ex-

ample, xlm-roberta-base is a shorthand for Face-

bookAI/xlm-roberta-base, which has the unique internal 

ID 621ffdc036468d709f174364. We relied on HF’s in-

ternal mechanisms to resolve these differences where 

possible. For example, attempting to load the model 

page for xlm-roberta-base on HF redirects to the page 

for FacebookAI/xlm-roberta-base. Additionally, we re-

solved inconsistencies in field inputs. For example, [], 

“”, and None were all being used to denote no declared 

licenses. We standardized these variations to the empty 

list to make later computation simpler. We further elab-

orate on documentation challenges that required special 

attention and resolution in our discussion of RQ0. 

Extracting Licensing Information 

We extracted licensing information from the tags pre-

sent in model metadata. While licenses can also be de-

clared in the CardData attribute of the model metadata, 

we found through an analysis of our dataset that the 

tags were more complete in every instance than the 

CardData attribute. In nearly all instances, licensing in-

formation was in both locations (99.9%). However, for 

0.1% of models, the licensing information was exclu-

sively in the tags, and there were no instances that re-

lied only on the CardData attribute. We also looked for 

discrepancies in those cases where both locations were 

utilized. We identified only 134 such discrepancies, and 

in all cases, an additional license was declared in the 

tags that was not declared in the CardData. There were 

no irreconcilable differences (i.e., MIT vs GPL). From 

this, we concluded that the model tags are the most 

complete machine-readable source for licensing infor-

mation. 

Data Analysis 

To address RQ0, we quantitatively and qualitatively an-

alyzed and discussed the different types of documenta-

tion issues that we observed in our attempt to under-

stand the ML supply chain on HF. 

Once the dataset had been cleaned, to address RQ1, we 

used the networkx Python library to create a directed 

graph representing the observable ML supply chain. 

Each node in the graph represents a distinct model, and 

an edge represents a dependency relationship. For ex-

ample, if model 𝐴 listed model 𝐵 as a base model, there 

would be an edge from 𝐵 to 𝐴. We would describe 

model 𝐵 as the parent of model 𝐴 and model 𝐴 as the 

child of model 𝐵. Due to the inherent issues and incom-

pleteness of model documentation, this graph, by its na-

ture, only represents a subset of the total ML supply 

chain on HF. 

For the sake of analysis, we flatten the individual model 

supply chains by extracting all longest paths (e.g., line-

age chains) from the graph that go from source nodes to 

sinks. Each of these paths goes from a root base model 

to a model at the end of the ML supply chain (i.e., a leaf 

node with no dependents or outgoing connections). 

Using the paths resulting from RQ1, we addressed RQ2 

by analyzing the state of licensing in the ML supply 

chain, developing scripts and heuristics to look for par-

ent/child license differences, and potential license com-

pliance problems related to model/dataset dependen-

cies. We define a parent/child license difference to refer 

to the difference between the license(s) of a parent and 

Figure 1: Methodology Overview 



4 
Stalnaker 

a child model/dataset. Assume, for example, that model 

𝐵 is the child of model 𝐴. If model 𝐵 was licensed un-

der MIT and model 𝐴 under Apache-2.0, we would say 

there is a parent/child license difference between 𝐴 and 

𝐵. We avoid stronger terms such as “inconsistencies” 

and “incompatibilities”, since some of these differences 

may in fact be consistent and compliant with licensing 

terms. Two authors reviewed all distinct licenses in our 

dataset and grouped them into six categories, which can 

provide the basis for future research into license com-

patibility and licensing trends in the ML supply chain. 

All scripts used for mining, data clean-up, and analysis 

can be found in our replication package37 and can be 

used to foster further research in this area. 

Study Results 

RQ1: Documentation Challenges on Hugging Face 

    Inability to Access Meta Data 

Not all model metadata was accessible through the HF 

API. There were 7,258 model cards (0.95%) that had to 

be scraped using a combination of Python’s requests 

and BeautifulSoup libraries. The most frequent chal-

lenge (i.e., found in 99.4% of cases) resulted from gat-

ing based on the acceptance of terms and conditions. 

This was particularly the case for models owned by or 

relying on models created by larger entities such as 

Google or Meta. Twenty-two models and their metadata 

were gated behind age restrictions imposed by the 

model owner, requiring a HF account to access. Access-

ing the full repository, and thus metadata, required log-

ging in with a HF account and then, in most cases, 

providing an email address. This hurdle to even access 

the metadata for a model could potentially complicate 

the creation of fully automated analyzers and ML/AI-

BOM (Machine Learning/Artificial Intelligence Bill of 

Materials) generators for an ML supply chain 

    Incomplete Metadata 

We observed that the documentation provided by model 

owners on HF is often incomplete. This is a trend not 

just for smaller, infrequently used projects but also for 

large projects with tens of thousands of downloads. For 

example, OpenAI’s clip-vit-large-patch14-336 model, 

with 5,827,027 downloads, has a model card that is al-

most entirely incomplete, save for basic hyper-parame-

ter and framework version information27. Only 37.8% 

of models and 27.6% of datasets declared any kind of 

licensing information in a machine-readable way. 

Some models may provide information on training data 

and architecture by linking to scientific papers that in-

clude these details, but such a practice introduces an ad-

ditional hurdle in easily and programmatically obtain-

ing that data. Ultimately, the reason why many models 

do not even mention the datasets used would require 

further investigation, including interviewing/surveying 

developers, which is out of the scope of this work. 

During the manual analysis of 100 model cards we ob-

served two examples where the HF team wrote docu-

mentation on behalf of model owners. The first instance 

was an image-to-text model uploaded by Microsoft 

with the disclaimer: “The team releasing TrOCR did not 

write a model card for this model so this model card has 

been written by the HF team”24. The second was a 

larger version of the same model, also owned by Mi-

crosoft25. In both cases, the models were described by a 

research paper and released on GitHub. Understanding 

the criteria that the HF team uses to determine when 

and how to intervene with model cards requires further 

investigation, but we do note that according to a blog 

written by members of the HF team, they created/up-

dated model cards in some instances to inform design 

decisions surrounding a new model card template6. 

    The Unknown License 

The HF platform’s documentation provides a list of rec-

ognized licenses each with a unique, standardized short-

hand identifier that can be utilized by users when creat-

ing their model/data cards8. This list includes common 

Open-Source Software (OSS), Creative Commons 

(CC), and ML-specific licenses as well as an “Other” 

catch-all category which encompasses less common, 

custom, or modified licenses not included in the prede-

fined license list. An “unknown” licensing option is 

also provided, but there is no guidance provided as to 

when this option should be selected. Future work will 

need to explore when and why model owners select this 

option, particularly given that acknowledging that the 

license is “unknown” suggests, at best, a lack of due 

diligence or understanding on the part of the owner or, 

at worst, that the model/dataset raises copyright in-

fringement issues. We observed 4,419 (1.5%) models 

and 2,194 (4.5%) datasets that used this “unknown” li-

cense tag, which inherently raises compliance chal-

lenges for dependent models. 

     Naming Problems 

HF users primarily use human-readable names, not 

unique identifiers, when supplying the metadata infor-

mation for their base models/datasets. Unique 
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identifiers do exist for all models and datasets on HF, 

but we did not observe any instances where this infor-

mation was being used by model/dataset owners when 

referring to models or datasets they depended on. In-

stead, these references typically, but not always, fol-

lowed the “owner/model” naming convention. For ex-

ample, a model owner would refer to a base model as 

“FacebookAI/xlm-roberta-base” and not by its unique 

HF ID: 621ffdc036468d709f174364. This could be 

problematic because these model references are not au-

tomatically updated when name changes occur. A 

change to the model, dataset, or owner name results in a 

new human-readable identifier that no longer matches 

the previous references to the model/dataset. As a re-

sult, documentation can easily become outdated, un-

helpful, and potentially confusing. 

We observed 596 models that had their human-readable 

identifiers changed. Instances such as 222gate/Blurdus-

7b-v0.1 → gate369/Blurdus-7b-v0.1 involve a change 

to the name of the model owner. Other instances, such 

as aaditya/openbiollm-llama3-70b → aaditya/Llama3- 

OpenBioLLM-70B involve a change to the model name 

itself. In both cases, manual effort is required to track 

down and map the original references to the new 

names, which can make dependency management tasks 

increasingly difficult. Often the only way to determine 

the correct mapping is by relying on HF to redirect the 

page associated with a former name to the one associ-

ated with the most current name. This suggests that HF 

maintains some internal mapping, but it is unclear how 

long this mapping persists or what might happen in the 

event of a name collision. 

Model names, without the additional owner infor-

mation, are not guaranteed to be unique. Similar to how 

repository forks have the same name (but different 

owners) on GitHub, fine-tuned or forked models may 

also have the same name yet different owners on HF. 

For this reason, developers often specify models using 

the “owner/model” naming convention described previ-

ously. If this happens consistently, ambiguities can be 

avoided. However, we observed 16,477 cases where de-

velopers referred to base models only by the model 

name, excluding owner information. For example, a de-

veloper might use “roberta-base” to refer to “Face-

bookAI/roberta-base.” While it could be reasonable to 

assume that this shorthand refers to the popular model, 

this may not be the case: in our dataset, there were 39 

other models also named “roberta-base,” all with differ-

ent owners. If one of these models were referred to by 

name only, it would be nearly impossible to determine 

which model was being referenced. For example, more 

than 5,600 models share the model name “ppo-Lu-

narLander-v2.” This further stresses the need for wide-

spread adoption of unique model identifiers. 

    Missing or Nonsensical References 

There were 34,159 instances where we were unable to 

map a declared dataset to a dataset found publicly on 

HF. These consisted of 4,755 unique declarations. It is 

impossible to know with certainty, but such declarations 

likely consist of datasets that have been removed or 

made private, are from external sources, are actually da-

taset descriptors, contain typos, or, in some cases, are 

HF usernames. 

We were also unable to map 2,501 base model declara-

tions to known IDs, representing a possible 1,371 

unique missing models in total. As with the datasets, 

these models may have been removed, made private, re-

named in a way difficult to trace, or may reference a 

model outside the ecosystem. It is also possible that de-

veloper typos result in the inability to identify the mod-

els. 

In other cases, some of the references were nonsensical: 

in our analysis of the graph of all collected components 

in the ML supply chain, we detected 684 cycles in total, 

including 675 (98.7%) trivial cycles in which a model 

declares itself as a base model, despite the fact that a 

model should not be able to be its own ancestor. All of 

this further motivates the need to use unique and stand-

ardized identifiers when referring to models and da-

tasets, as well as a need for validating reference infor-

mation. 

    Models as Datasets 

We observed 1,416 instances in which a model was 

listed as a dataset in the datasets field. In other words, a 

model reference was included in the metadata field spe-

cific to training datasets. Without more information, it 

is impossible to know whether this indicates a mistake 

on the part of the model owner or that the output of the 

declared model was somehow used for training. 

    Shortcomings of Hugging Face 

While base models are declared by some model owners, 

in many cases, the precise relationship between a de-

rived model and its base model is left ambiguous, at 

least in the available metadata. HF does provide a sepa-

rate field for architecture relationships, but there is no 

standardized way to specify situations involving fine-

tuning, quantization, or using outputs for training. This 

ambiguity can have significant consequences since, 
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particularly in the licensing context, the nature of the 

relationship is important in determining how licensing 

terms should be applied. For example, it is permissible 

to use a model licensed under the llama3 license for 

fine-tuning but impermissible to use its outputs to train 

a competing model23. Additional fields specifying the 

nature of relationships between models would be use-

ful, but their inclusion would also introduce additional 

overhead for model owners. 

While uncommon and not a direct shortcoming of HF, 

we also observed examples where model owners would 

declare the same dataset or base model multiple times 

(i.e., the same model/dataset had multiple entries in the 

respective metadata field). Specifically, 178 models de-

clared a dataset at least twice, and 310 models declared 

a base model at least twice. One model, with otherwise 

robust documentation, declared the same base model 64 

times. Again, while there are few instances of this du-

plication, they still serve as something of a canary in 

the coal mine, indicating a lack of validation on behalf 

of HF. 

RQ2: Structure of the ML Supply Chain 

    Lengths of model supply chains 

We define a lineage chain as a path from some root base 

model (i.e., one with no model dependencies) to a final 

sink node model (i.e., one without any model depend-

ents). We examine 53,151 lineage chains for models 

that declare at least one base model, including cases 

where multiple chains lead to the same model. Of these, 

the average chain length to reach that model is 6.2 mod-

els. The most frequent chain length is of three models 

(12,480 chains). The longest chain, beginning with co-

hereforai/c4ai-command-r-v01 and ending with Cita-

man/command-r-1-layer, contains 40 models. Exclud-

ing the first model, all models in this chain are owned 

by Citaman and incrementally count down from 39. 

That is, the models in the chain range from Cita-

man/command-r-39-layer down to Citaman/command-

r-1-layer, suggesting that each model may represent an 

incremental improvement or an updated version. 

    Model ownership 

We also observe that developers using HF often build 

off each other’s work rather than off their own models. 

The owners of nodes at the end of a chain appeared 

within that node’s chain only 1.4 times on average, 

showing that base models are frequently sourced from 

the community and supporting the idea that a common 

approach to training a model involves building off of 

previous work. Another interpretation could be that 

model trainers do not fill in base model information 

when building on their own work, at least some of the 

time. 

In 82.9% of chains (43,507), the owner of the final 

model in the chain owned no other model in that chain. 

In the maximum case, the chain contained 39 models 

from the final model’s owner. Illustrating this further, 

the first quartile, median, and third quartile are all a sin-

gle occurrence of the final model’s owner in a given 

chain: only the final model itself. 

Based on our observations, a given owner publishes rel-

atively few models to HF, owning, on average, 4 mod-

els in our dataset, though the data is skewed heavily to-

ward relatively few highly prolific owners. Of 190,136 

distinct model owners in our dataset, 61.5% owned just 

one public model (117,016), while the most prolific ac-

count owned 4,610 models. The first quartile and me-

dian are both just 1 owned model, and the third quartile 

is 2 models. Notably, the large players mentioned 

above, including Meta and OpenAI, are not present in 

the top 10 most prolific model owners: those spots in-

stead go to smaller stakeholders in the AI market. 

RQ3: Licensing of Models/Datasets on Hugging Face 

The majority of models (62.2%) and datasets (72.4%) 

did not declare licensing information in a machine-

readable way. To better illustrate how models and da-

tasets are licensed, we organize the licenses that we ob-

served into six categories. The categories are intended 

to be indicative of the origin or purpose of the licenses 

(whether the licenses were designed for open-source 

software, for ML components specifically, or other pur-

poses) and are not intended to convey any legal charac-

teristics, particularly given the uncertainty involved in 

applying these licenses in the ML context. We define 

the following categories: 

• OSS: open-source software  

• CC: Creative Commons licenses 

• ML: ML-specific licenses (e.g. open-rail) 

• Data: licenses to protect data (e.g. ODBL) 

• Other: the “other” license category on HF 

• Unknown: the “unknown” category on HF 

Most common licenses 

There were 71 unique declared licenses for models and 

70 for datasets. Tables 1 and 2 provide an overview of 

the most frequently observed licenses. 
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Table 1: Top 10 licenses for models 

 
Table 2: Top 10 licenses for datasets 

 
Table 3: Prevalence of license classes 

We classify licenses by the classes defined above. A 

breakdown of the prevalence of these classes can be 

found in Table 3. Both models (62.5%) and datasets 

(58%) are most likely to be licensed under approved 

OSS licenses. This is particularly interesting for da-

tasets, where we would suspect to see mostly CC or 

Data licenses, as datasets are not “software” in a strict 

sense of the word. This may reflect that HF developers 

view models and datasets more similarly to programs 

than to data or that developers rely on OSS licenses be-

cause they are already familiar with their terms. How-

ever, the relationships between these preexisting li-

censes and these new types of components in the ML 

supply chain, as well as the implications of licensing 

such components with such licenses, are currently un-

known. 

Both models and datasets are distributed with (i) OSS 

licenses specific to software (both restrictive and 

permissive), (ii) Creative Commons (CC) licenses, that 

are not software-specific yet are being used for software 

(e.g., Stack Overflow’s adoption of CC licenses), and 

ML-specific licenses. For models, our findings are con-

sistent with those of Pepe et al.29, showing that permis-

sive OSS licenses such as Apache-2.0 and MIT are pop-

ular in this space. This is not surprising, as such li-

censes are also among the most popular for open-source 

projects38 and allow commercial/closed-source exploita-

tion. We note that, in general, the top licenses adopted 

on HF are traditionally understood to be more permis-

sive, even if their exact application in this novel context 

is not fully understood. 

We also note the adoption (for models, but especially 

for datasets) of different variants of the CC license, in-

cluding a permissive one (CC-BY), restrictive ones 

(CC-BY-SA and CC-BY-NC-SA), and licenses limiting 

non-commercial use only (CC-BY-NC). 

Besides OSS licenses, we see a large proportion of dif-

ferent kinds of ML-specific licenses. These include 

both licenses originating from open-source initiatives 

(openrail, creativeml-openrail-m), and licenses originat-

ing from companies (e.g., Meta’s llama2 and llama3 li-

censes). Such licenses tend to differ from typical redis-

tribution terms established by software licenses by, for 

example, introducing “behavioral” constraints; requir-

ing responsible model usage; and prohibiting adoption 

for harmful or unethical uses or uses that do not take 

models’ limitations into account. Likewise, the llama2 

and llama3 licenses impose limitations related to com-

mercial use, use in products or services having more 

than 700 million monthly active users, and use to train 

other models, unless such models are redistributed, un-

der the same licenses, as derivative works of llama 

models.  

Finally, we note the increased prevalence of HF’s 

“Other” license which was ranked 7th in Pepe et al.29 

but has moved to the 5th spot since. In fact, 3.8% of da-

tasets and 5.7% of models are licensed with some 

“Other” license. Prior work has found that such license 

proliferation can make license compliance tasks more 

time-consuming and difficult, since compliance teams 

are no longer dealing with known quantities35. 

    Parent/child license differences 

Our dataset contains 274,104 distinct parent/child rela-

tionships. We observed 66,460 instances (24%) where 

the licensing of a child model (i.e., derivative model) 

was different from that of its parent (i.e., base model). 

In nearly a third of cases, child models specified no 
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licensing information despite information being availa-

ble for their parent(s), leading to a potential compliance 

violation. We also observe that once license information 

has been dropped, it is unlikely to be restored by later 

links in the chain, with license restoration behavior ob-

served in only 15.9% of instances. A complete shift in 

licensing between parent and child was seen in 54.8% 

of cases (i.e., no licenses were shared between the two). 

Of these shifts, 18.5% involved the “unknown” or 

“other” license category. Table 4 shows the top ten such 

shifts, and Figure 2 provides more information on how 

licensing decisions shifted across class boundaries be-

tween parents and their children. While ML-specific li-

censes seem a good fit for models, model owners may 

be opting for licenses they are more familiar with (OSS 

for software developers and CC for data scientists). We 

observe that most shifts occur across the OSS and CC 

boundary (68.3%), perhaps suggesting some tension be-

tween the licensing preferences of those with data sci-

ence and software development backgrounds. Addition-

ally, depending on the specifics of the situation and the 

licenses involved, these shifts can also potentially intro-

duce license incompatibilities, such as dropping non-

commercial requirements or failing to apply the re-

quirements of a copyleft license. 

 
Table 4: Most Common parent/child license differences 

    Dataset license and model license combinations 

The licenses of datasets that are used during training 

can have an impact on the licensing decisions for the fi-

nal ML model. Here we consider the pairings of dataset 

licenses and the resultant model licenses. There are 623 

distinct model/dataset license combinations within our 

dataset across 43,455 such pairings. (The top ten most 

frequent can be found in Table 5.) However, since we 

(and HF) aggregated all “other” licenses and treated 

them as one quantity, these numbers likely overestimate 

the consistency in the space. In 41 of the 623 combina-

tions, the license of the model exactly matches the li-

cense of at least one dataset it was trained on. The most 

common combination is a model licensed under the 

apache-2.0 license and a dataset under a custom or 

“other” license. In total, 11,731 (27%) pairs involve a 

dataset under a custom or “other” license. This can 

make using these datasets and models problematic since 

retrieving and evaluating the licensing terms can be dif-

ficult and time-consuming. 

 
Figure 2: Parent/child license differences across classes 

 
Table 5: Model license and dataset license pairs 

    Other findings 

Multi-licensing. A few models (188) and datasets (104) 

were released under more than one license. Multi-li-

censing is an existing phenomenon in the world of 

open-source software but is made more complex in the 

ML model context by the presence of novel license 

combinations that are not yet well understood. Exam-

ples include the 48 models we observed multi-licensed 

under apache-2.0 and cc-by-nc-4.0 as well as models 

under both OSS and ML licenses, such as MIT and 

OpenRAIL. We also observed datasets that were re-

leased under as many as six distinct licenses. The HF 

metadata provides no way of determining the relation-

ship among these licenses, which could be either an 

AND or an OR. This distinction is critical to determin-

ing compliance. For example, if a user who uploaded a 

llama2 derivative model chose to make it available with 

an OR relationship between the apache-2.0 and llama2 

licenses, this would contradict the exclusive llama2 li-

censing of its base model, resulting in a violation that 

could propagate to models further down the chain. 

While we observed only a few instances of multi-
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licensing, such activity motivates the need to under-

stand the interplay between the various license classes 

and for HF to supply a standardized way to specify the 

intended relationship between licenses. 

Naming requirements. Some licenses, like Llama3, im-

pose a generational limitation that specifies naming re-

quirements for derivative works. According to the li-

cense, models that are built on a model under this li-

cense must have names prefixed with “llama3”23. In our 

dataset, there are 3,335 models licensed under llama3. 

However, of these, only 473 (14.2%) models correctly 

have names beginning with “llama3” as required by the 

license. Only 768 (23%) models even contain the term 

“llama3” in their name. Just 2,421 (72.6%) models con-

tain the term “llama” at all, and 384 (11.5%) only con-

tain the string “l3.” The problem is likely even worse in 

practice, as these statistics only include models that 

documented that they were under the llama3 license. 

Attribution. As was observed during the manual model 

card analysis, attribution appears to be important to 

model owners regardless of licensing status: rather than 

requesting or requiring attribution through a license, 

even models without a license often asked for some 

form of attribution (29/84), typically in the form of cita-

tions. In fact, 83,628 models (11.1%) mined using the 

HF API included a link to a paper on arxiv3 in their 

tags. In our manual analysis of model cards, we ob-

served that the model owner was typically also affili-

ated with (e.g., an author on) the linked research paper. 

This desire for recognition is reflected by the top li-

censes in the space, namely MIT and Apache-2.0, each 

of which specifies attribution requirements. Given the 

research community’s adoption of HF, it may be worth-

while to add dedicated metadata fields to facilitate the 

standardization of citation information. 

Discussion 

Differences between ML and software supply chains 

Our findings highlight a notable difference between the 

ML supply chain and the traditional software supply 

chain. In many software ecosystems with dependency 

management, dependency information for components 

in the software supply chain is organized in manifest 

files such as requirements.txt, package.json, or 

pom.xml. These files can then be used to generate other 

dependency tracking documents like SBOMs and have 

also been used by forges like GitHub to build depend-

ency graphs. Notably, however, these manifest files 

have utility beyond dependency tracking. They are nec-

essary for setting up a fresh installation of the software 

– that is, the list of dependencies must be downloaded 

in order for the software to function properly. This is 

not the case with the information supplied by develop-

ers in model cards. Because erroneous mappings to da-

tasets and base models do not leave the model in ques-

tion unusable as a practical matter, it is therefore easier 

for typos and other mistakes to go unnoticed, and thus 

uncorrected. This disconnect between correctness and 

functionality necessitates tooling that has similar func-

tionality and richness to dependency management tools 

for traditional software, as it leaves ample opportunity 

for errors without comparable means of checking for 

and correcting them. 

Potential difficulties in using model cards as MLBOM 

Amidst the growing push for better transparency and 

security in software through Software Bills of Materials 

(SBOMs), calls have been made for similar BOMs for 

ML components30. These documents serve as invento-

ries of all components within a piece of software and 

can document a variety of the software’s traits, includ-

ing dependencies, licensing, and security. Distinct 

ML/AI Bills of Materials (ML/AIBOMs) may be neces-

sary to address such components’ different inputs, secu-

rity concerns (such as model poisoning), and ethical 

considerations. The SPDX Working Group, operating 

under the auspices of the Linux Foundation, is develop-

ing guidelines and a proposed standard for such an 

ML/AIBOM2 that will complement the SPDX ISO 

Standard ISO/IEC 5962:2021, which describes the use 

of SBOMs to document the components used in creat-

ing a software system. CycloneDX is also working on 

support for ML/AIBOMs5. 

Prior work has also suggested that model and data cards 

could serve as an ML/AIBOM30, or the information 

they provide can assist with their creation29, but our 

work suggests that these tools are not yet robust enough 

to serve this purpose. As highlighted previously, the in-

formation provided by model cards is often missing key 

elements, including datasets that the models were 

trained on. This immediately obviates many of the ben-

efits of ML/AIBOMs, including understanding licens-

ing obligations that might be associated with that da-

taset, being aware of potential model poisoning attacks, 

and providing the ability to select models trained on 

ethically sourced data. Additionally, the cases where 

model cards were locked behind Terms of Service 

agreements or other restrictions could further limit their 

usefulness as ML/AIBOMs to consumers. Our work 

provides additional evidence that, in practice, model 
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cards contain little actionable information, making them 

difficult to use as ML/AIBOMs3. 
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