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Abstract—Triple-negative breast cancer (TNBC)
requires detailed cellular mapping given its aggres-
sive nature, immense tumor heterogeneity and ge-
netic diversity. We integrated 156,794 cells from six
scRNA-seq datasets—including tumors, metastases,
and cell lines—to build a TNBC scRNA cell atlas,
focusing on batch effect mitigation while maintain-
ing biological and molecular details. Preprocessing
filters noise, normalizes data, and leverages PCA
for integration readiness. We utilized scANVI, a
semi-supervised tool, to align datasets, preserving
TNBC’s complex tumor heterogeneity via marker
annotations [1]. UMAPs demonstrate biological clus-
tering in integrated data, contrasted with dataset-
driven unintegrated patterns. Assessments verifying
effective batch correction. This method aligns with
NASA’s GeneLab supported multi-omics studies un-
der space stressors. Our progress advances person-
alized TNBC medicine by revealing cellular insights
and charts a path toward a comprehensive, multi-
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modal TNBC cell atlas, promising broad impact in
oncology and NASA health research.

Index Terms—RNA sequencing, Breast cancer,
Machine learning, Data integration, Bioinformatics,
Biomarkers, Data preprocessing, Computational bi-
ology

I. INTRODUCTION

Triple-negative breast cancer (TNBC) is
a highly aggressive molecular subtype of
breast cancer defined by the absence of es-
trogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor
receptor 2 (HER2) expression, representing
∼ 15% of all breast cancer cases. This sub-
type disproportionately affects young women
and Black women, who experience higher in-
cidence rates and poorer survival outcomes
compared to other racial groups [2]. Lack-
ing targeted therapeutic options, TNBC relies



heavily on chemotherapy and/or chemo + pem-
brolizumab, yet 20–30% of patients face early
relapse and metastatic progression, underscor-
ing the urgent need for novel approaches to
improve prognosis [3].

The molecular heterogeneity of TNBC com-
plicates its management, with six distinct
subtypes identified, each exhibiting unique
sensitivities to therapeutic agents [4]. Tra-
ditional bulk RNA sequencing, which aver-
ages gene expression across cell populations,
fails to capture the cellular and genetic di-
versity of TNBC, limiting insights into its
complex biology [5]. Alternatively, single-cell
RNA sequencing (scRNA-seq) provides un-
precedented high resolution, profiling tran-
scriptional states of individual cells to re-
veal tumor heterogeneity and tumor/tumor mi-
croenvironment (TME) interactions [6]. This
capability makes scRNA-seq a powerful trans-
formative tool for advancing TNBC research
at a single cell resolution.

A single-cell atlas for TNBC, mapping cell
types and states, offers a robust framework
to address these clinical challenges. By in-
tegrating scRNA-seq data to build a TNBC
atlas, we may be able to identify subet-specific
rare biomarkers and novel therapeutic tar-
gets, enabling personalized treatment strate-
gies tailored to individual patients [3]. It also
holds promise for unraveling subtype-specific
variability and addressing racial disparities in
TNBC outcomes, as evidenced by studies link-
ing gene expression heterogeneity to aggres-
sive disease states [2], [7]. If successful, this
study may help to build an interactive TNBC
atlas as a critical step toward personalized
oncology therapeutics.

However, constructing a robust TNBC at-
las requires overcoming significant hurdles
in data integration. Heterogeneous scRNA-seq
datasets, sourced from public repositories like
NCBI GEO, vary in experimental protocols,
sequencing platforms, and sample conditions,
introducing batch effects, technical variations
that may mask true biological signals [8],

[9]. Existing atlases, often built from one or
two datasets, fail to capture the full spectrum
of TNBC diversity due to these scalability
limitations [3]. Effective batch correction and
automated data integration methods are thus
essential to unify these diverse TNBC datasets
while preserving biological fidelity.

Construction of a comprehensive single-cell
atlas for triple-negative breast cancer (TNBC)
represents the overarching goal of this project,
aiming to integrate multimodal datasets span-
ning genomics, transcriptomics, epigenomics,
proteomics and multi-omics approaches into
a unified resource for delineating and un-
derstanding TNBC’s tumor heterogeneity and
cellular complexity [10].

At this milestone, the focus narrows to a
critical aspect of this vision, mitigating batch
effects across diverse scRNA-seq datasets
while preserving biological features essen-
tial for TNBC characterization. We propose
a scalable framework for Six publicly avail-
able scRNA TNBC datasets to undergo pre-
processing, filtering noise and normalizing
mRNA expression, followed by integration and
batch-effect correction using scANVI, a semi-
supervised variational autoencoder that lever-
ages cell type annotations to align datasets [1].
This alignment enhances biomarker discovery
and patient-specific treatment mapping by en-
suring data quality and integrity, addressing
clinical and scientific gaps in TNBC under-
standing.

Beyond clinical oncology, this work carries
broader significance. Batch correction and in-
tegration strategies mirror NASA’s GeneLab
efforts to harmonize multi-omics data, pro-
viding insights into cellular responses under
space stressors like microgravity and radiation
[11]. By refining these methods, the research
supports NASA’s mission to protect astronaut
health during long-duration spaceflight, while
laying groundwork for the full Human Cancer
Atlas’s future multimodal expansion.
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II. LITERATURE REVIEW

Single-cell RNA sequencing (scRNA-seq)
has transformed cancer research by enabling
high-resolution profiling of cellular hetero-
geneity, overcoming the limitations of bulk
RNA-seq, which averages gene expression
across multiple tumor subpopulations [5]. In
breast cancer, Chung et al. utilized scRNA-seq
to characterize tumor and immune cell diver-
sity in primary tumors, revealing immunosup-
pressive TMEs [6]. For triple-negative breast
cancer (TNBC), Karaayvaz et al. applied
scRNA-seq to uncover subclonal heterogeneity
and identify useful gene expression signatures
linked to treatment resistance and metastasis
[7]. These studies underscore scRNA-seq’s
power to dissect the immense complexity un-
derlining tumor relapse, chemo-resistance, and
poor survival.

Integrating diverse and variable scRNA-seq
datasets poses significant technical challenges
due to their different clinicopathological clas-
sification, diverse treatment responses, a mul-
titude of tumor characteristics and dynamic
tumor landscape and changing tumor/TME
interactions and constant micro-evolutions.
Data sparsity, technical noise, and batch ef-
fects arising from differences in sequencing
platforms, laboratory-to-laboratory variations,
scRNA data capturing under different exper-
imental conditions complicate joint analysis
[12]. Luecken et al. note that these technical
variations are known to obscure and mask
biological signals, particularly in atlas-scale
large dataset and multiomics projects spanning
multiple data sources [8]. Uncorrected batch
effects hinder the construction of comprehen-
sive cell atlases, necessitating robust integra-
tion methods [9].

A. Anchor-Based Integration

Anchor-based methods align datasets by
identifying mutual nearest neighbors (MNN)
across batches. Haghverdi et al. pioneered
MNN correction, later refined in Seurat for
scalable integration [9], [10]. These ap-

proaches excel when cell types overlap, pre-
serving biological variation, but scale poorly
with large datasets and falter without sufficient
shared populations.

B. Variance Decomposition

Variance decomposition methods model and
remove technical effects statistically. ComBat-
seq adjusts RNA-seq counts using a negative
binomial model, while Harmony iteratively
corrects batch effects with clustering [13],
[14]. Harmony’s speed and sensitivity make it
widely used, though both methods risk over-
correction when cell frequencies differ signif-
icantly across different batches of data.

C. Deep Learning Approaches

Deep learning leverages neural networks to
capture non-linear batch effects. scVI uses
variational autoencoders for unsupervised in-
tegration, while scANVI incorporates cell type
labels for improved accuracy [1], [15]. scGPT,
a generative transformer, scales to millions of
cells, offering a foundation model to capture
multiomics datasets [16]. These methods excel
in complexity but require careful hyperparam-
eter tuning.

D. Graph-Based Integration

Graph-based methods construct cell simi-
larity networks for data alignment, compari-
son, and integration. BBKNN balances batch
effects efficiently, and Scanorama combines
MNN with graph techniques for scalability
[17], [18]. While fast and flexible, they often
prioritize batch removal over conserving subtle
biological differences and preserving the mi-
nor molecular signatures.

Advanced batch correction methods push in-
tegration further. CLAIRE employs contrastive
learning to balance batch mixing and hetero-
geneity [19], while BERMUDA uses transfer
learning to reveal hidden molecular signature
and cellular subtypes [20]. BERMAD’s multi-
layer autoencoder addresses under- and over-
correction [21], and adversarial approaches
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like ABC and scDREAMER optimize biolog-
ical retention [22], [23]. These innovations
highlight ongoing efforts to refine integration.

Existing cancer atlases provide context for
TNBC efforts. Dave et al.’s Breast Cancer
Single-Cell Atlas maps cell lines and tumors
but relies on limited datasets [3]. Chen et al.
offer a TNBC genomic-transcriptomic dataset,
yet lack broad integration and general appli-
cation [24]. Most tumor/cancer atlases fail to
scale to multimodal, multi-source data [8].

Integration success is gauged by metrics
balancing batch removal and biological con-
servation. kBET and silhouette scores assess
batch mixing [25], [26], while cell type ASW
and label transfer accuracy measure biological
fidelity [8]. Trajectory preservation, per Trap-
nell et al. and Saelens et al., evaluates dynamic
processes [27], [28].

Despite progress, gaps remain in scalabil-
ity, multimodal data integration accuracy, data
generation, data extrapolation, and TNBC-
specific preclinical and clinical applications
[8]. This work advances the field with a scal-
able, AI-driven pipeline for a TNBC atlas,
building on Harmony and targeting compre-
hensive dataset integration [14].

III. METHODOLOGY

Six publicly available scRNA-seq datasets
underpin the construction of a single-cell
TNBC atlas, integrated through a pipeline of
preprocessing, batch correction, cell type an-
notation, and evaluation. Computational tools
address batch effects and enable biomarker
discovery across diverse TNBC profiles.

A. Data Collection

Publicly accessible datasets from the Na-
tional Center for Biotechnology Information
Gene Expression Omnibus (GEO) and Se-
quence Read Archive (SRA) repositories pro-
vide a diverse mix of 156,794 tumor cells to
build a TNBC atlas, primarily from single-
cell RNA sequencing (scRNA-seq). Table I
breaks it down. GSE75688 contributes 549

cells from primary breast cancer and metas-
tases across 11 patients, including TNBC cases
[6]. GSE176078 presents 100,078 cells from
26 primary tumors, with 10 TNBC samples
showing subtype variety [29]. GSE182694
adds over 30,000 cells from breast cancer cell
lines, capturing 49 subclusters [3]. SRP157974
includes 15,633 cells come from 401 TNBC
patients and 23 white blood cell samples at
Fudan University, but uses whole-exome se-
quencing (WES) data rather than scRNA-seq,
offering broader genomic insights at a coarser
resolution [24]. GSE118390 includes 1,534
cells from six fresh TNBC tumors, paired
with WES data for added investigative depth
[7]. SRP114962 adds 9,000 cells from 20
TNBC patients under neoadjuvant chemother-
apy. [30].

This mix including primary tissue from un-
treated tumors and cell line data creates a rich
but tricky dataset. Batch effects arise due to
differences in sequencing platforms (e.g., 10x
Genomics vs. SMART-seq) and sample types
(fresh tumors vs. cultured tumor cells).

TABLE I
TNBC DATASETS USED IN ATLAS CONSTRUCTION

Accession Sample Size Description Source
GSE75688 549 cells Primary and

metastatic
cells from
11 patients,
includes
TNBC

GEO

GSE176078 100,078 cells
(26 tumors)

10 TNBC
cases, subtype
heterogeneity

GEO

GSE182694 30,000+ cells Breast cancer
cell lines, 49
subclusters

GEO

SRP157974 15,633 cells
(401 patients
+ 23 WBC)

Mostly WES,
some genomic
TNBC data

SRA

GSE118390 1,534 cells 6 fresh TNBC
tumors, paired
with WES
data

GEO

SRP114962 9,000 cells
(20 patients)

scRNA-
seq from
neoadjuvant
chemotherapy

SRA
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B. Preprocessing

Quality control eliminates low-quality cells
and genes from the six TNBC scRNA-seq
datasets to minimize technical noise. Cells
expressing fewer than 200 genes or exceeding
10% mitochondrial gene content are filtered
out, as high mitochondrial fractions often in-
dicate cellular stress or cell death [12]. Genes
detected in fewer than three cells are simi-
larly removed, ensuring focus on biologically
relevant, detectable, and dominant features.
Scanpy implements these filters efficiently,
leveraging sparse matrix representations to
handle the scale of the data, such as the
30,000+ cells in GSE182694 alone [5].

Normalization adjusts raw counts to account
for sequencing depth variations across differ-
ent tumor cells/subtypes. Counts scale to a
target sum of 10,000 per cell, followed by log-
transformation (log1p) to stabilize variance
and mitigate the impact of highly expressed
genes [12]. Highly variable genes, identified
using a dispersion-based method, capture bi-
ological variation while reducing dimension-
ality from tens of thousands of genes to ap-
proximately 2,000, aligning with practices for
atlas-scale analysis [10].

Principal component analysis (PCA) further
reduces dimensionality to 50 components, re-
taining principal sources of variance for data
integration. This step, executed via Scanpy,
balances computational efficiency with bio-
logical information preservation, preparing the
data for batch correction, automatic integration
and data clustering. [5].

C. Cell Type Annotation

Cell identities emerge from the scANVI-
integrated latent space through marker gene
scoring and clustering, mapping TNBC’s di-
verse cellular landscape. Marker genes, cu-
rated from literature, include CD3D, CD3E,
and CD3G for T cells, CD19, CD79A, and
MS4A1 for B cells, CD68 and CD14 for
macrophages, and epithelial markers KRT5
and KRT14 (basal) versus KRT8 and KRT18

(luminal) to distinguish TNBC-relevant sub-
types [6], [7]. Scanpy computes scores for each
cell type by averaging the expression of valid
markers present in the dataset, normalizing
against a random gene set to reduce noise [10].

Preliminary annotations assign the highest-
scoring cell type per cell, leveraging scANVI’s
semi-supervised labels for atlas refinement [1].
The Leiden algorithm clusters cells in the inte-
grated space, optimizing resolution (e.g., 0.5-
1.0) via silhouette analysis to balance gran-
ularity and coherence [26]. Epithelial clus-
ters undergo subtyping: basal (KRT5, KRT14,
TP63) and luminal (KRT8, KRT18) scores dif-
ferentiate TNBC’s malignant populations, val-
idated against known profiles from GSE75688
and GSE118390 [6]. Unassigned cells, where
scores fall below a threshold (e.g., 0.1), receive
an “Unknown” label, addressing sparsity in
datasets like SRP157974.

Annotations align with literature bench-
marks, ensuring accuracy across immune, stro-
mal, and tumor cells in TNBC [7]. This pro-
cess, visualized in Figure 1, reveals TNBC’s
cellular diversity, supporting biomarker identi-
fication.

D. Data Integration
Batch effects across the six TNBC scRNA-

seq datasets undergo correction using scANVI,
a semi-supervised deep learning method lever-
aging variational autoencoders [1]. Prepro-
cessed PCA embeddings from the datasets
feed into scANVI’s encoder network, which
maps high-dimensional gene expression into
a low-dimensional latent space. This latent
representation captures both shared biological
signals and dataset-specific variations, guided
by cell type annotations from marker gene
scoring. The decoder reconstructs gene expres-
sion, optimizing a loss function that balances
reconstruction accuracy with batch alignment,
employing adversarial training to minimize
batch variation and dataset-specific biases [15].

Training proceeds with labeled and unla-
beled cells, utilizing annotations for cell pop-
ulations to enhance biological fidelity [6].
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scANVI’s semi-supervised approach refines
integration by propagating labels to unanno-
tated cells, addressing the partial annotation
common in heterogeneous datasets. Hyperpa-
rameters, including learning rate (0.001) and
latent dimension (10), tune via cross-validation
to optimize convergence, typically requiring
50-100 epochs for larger datasets [1].

Integration quality manifests in UMAP vi-
sualizations, with Figure 1 contrasting unin-
tegrated and integrated embeddings. Uninte-
grated data cluster predominantly by dataset,
reflecting batch effects, while scANVI-aligned
data group by cell type, indicating effective
correction across the atlas’s diverse sources
[8]. This unified latent space supports down-
stream TNBC analysis in pilot study, training
sets, and large-scale validation studies.

E. Evaluation
We measure integration and annotation

quality for the TNBC atlas using metrics
that evaluate batch correction and biological
fidelity across datasets. The Adjusted Rand
Index for batch (ARIbatch) assesses cluster
alignment with dataset origins, with lower
scores from 0 to 1 revealing effective batch
mixing. The Adjusted Rand Index for cell type
(ARIcell type) tests consistency with cell type
labels, where higher scores highlight preserved
biological identity. Graph Connectivity (Graph
Connectivity) examines linkage among same-
type cells, scored 0 to 1, where higher val-
ues confirm successful integration. Normalized
Mutual Information (NMI) checks clustering
fidelity to annotations, with higher scores up
to 1 reflecting accurate mapping [8].

IV. RESULTS

We constructed a preliminary TNBC single-
cell atlas by integrating 156,794 cells across
six scRNA-seq datasets using scANVI, tar-
geting batch effect mitigation. Our prepro-
cessing retained high-quality cells, eliminating
noise and normalizing expression. We applied
scANVI to align these datasets, producing a
shared latent space visualized in Figure 1. Our

UMAPs show unintegrated data clustering by
dataset, while integrated data cluster by cell
type, indicating successful batch correction
[1].

Metrics reveal a contrast with UMAP re-
sults. Unintegrated data produced ARIbatch
0.1512, a high score indicating pronounced
batch effects, ARIcell type 0.5192, showing
strong cell type alignment, reflecting co-
hesive gene clusters, and Graph Connec-
tivity 0.8011, suggesting good connectivity.
Integrated data delivered ARIbatch 0.0605,
ARIcell type 0.2365, and Graph Connectiv-
ity 0.8769. Unintegrated data outperforms on
ARIcell type and NMI, with 0.7267 versus
0.6469, highlighting superior cell type fi-
delity. We trace this to GSE182694’s 30,000+
cells, all “cell line,” which skews unintegrated
gene clustering. scANVI disrupts this to unify
datasets, prioritizing batch correction [1].

Our findings prioritize batch mixing
(lower ARIbatch) and connectivity (higher
Graph Connectivity), aligning with UMAP’s
biological clustering over dataset-specific
scores. This atlas reveals resistance signatures
in SRP114962 and subtype diversity in
SRP157974, enhancing biomarker potential
[24].

V. DISCUSSION

Integration of 156,794 cells via scANVI
produces a TNBC atlas that corrects batch
effects, as UMAPs (Figure 1) show integrated
cell type clustering versus unintegrated dataset
clustering [1]. Some metrics, however, favor
unintegrated data: ARI-celltype (0.5192 vs.
0.2365) and NMI (0.7267 vs. 0.6469) drop
post-integration, despite ARI-batch decreasing
(0.1512 to 0.0605), confirming batch mixing.
We trace this to GSE182694’s 30,000+ cells,
all labeled “cell line,” which cluster tightly
pre-integration, boosting unintegrated scores.
scANVI’s alignment with primary tissue data
(e.g., GSE176078) sacrifices this artificial fi-
delity for signal cohesion, known molecu-
lar signatures, biological unity, supported by
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Fig. 1. UMAP embeddings of unintegrated (top) and scANVI-integrated (bottom) TNBC datasets, annotated by dataset (left)
and cell type (right).

Graph Connectivity’s improvement (0.8011 to
0.8769) [8].

This dedicated balance and controlled trade-
off advances our goal: batch-corrected data
enables cross-dataset insights and biomarker
discovery for personalized treatment mapping.
Beyond oncology, the methodology parallels
NASA’s GeneLab, where multi-omics integra-
tion informs cellular responses to space stres-
sors like radiation.

Limitations include partial annotations and
computational data integration and data ac-
curacy demands. Sparse or incorrect labels
restrict scANVI’s semi-supervised potential,
while training on 156,794 cells requires sig-
nificant resources, scaling poorly beyond mil-
lions of cells [1]. Multimodal integration (e.g.,
scATAC-seq) remains unaddressed, limiting
epigenetic insights [24]. Future work will
incorporate additional datasets, automate an-
notation using Foundational Models such as
scGPT, and extend to multi-omics, enhanc-
ing scalability and depth [16]. This prototype
TNBC atlas lays a foundation for precision
medicine and space biology, bridging terres-
trial and extraterrestrial health challenges.

VI. CONCLUSION

Our team achieved a significant milestone
by constructing a preliminary single-cell at-
las for triple-negative breast cancer (TNBC),
integrating 156,794 cells from six diverse
scRNA-seq datasets using scANVI [1]. We
actively processed datasets spanning primary
tumors, metastases, cell lines, patient cohorts,
fresh primary tumors, and chemotherapy-
treated residual tumors, addressing batch ef-
fects while preserving biological integrity. Our
application of scANVI aligned these hetero-
geneous sources into a shared latent space,
as demonstrated by UMAP embeddings shift-
ing from dataset-specific clusters to cell type-
driven groupings (Figure 1).

Our integration framework parallels NASA’s
GeneLab mission, harmonizing multi-omics
data to study cellular responses under mi-
crogravity and radiation, directly supporting
astronaut health for long-duration spaceflight.
The approach’s scalability and adaptability en-
hance its relevance to high-risk and high-grade
TNBC patients facing early relapse, treatment-
resistance, poor outcome and reduced survival
in the clinic
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We acknowledge limitations in annotation
coverage and computational efficiency. Sparse
and potentially erroneous labels constrain
scANVI’s semi-supervised potential, while
processing 156,794 cells demands significant
resources, hinting at challenges for million-
cell scales [1]. Multimodal integration, such
as scATAC-seq, remains unexplored. [24].

In the next year, we plan to expand the atlas
by incorporating additional TNBC datasets,
integrating multi-omics data such as scATAC-
seq and proteomics, and enhancing annotation
and integration with foundational models such
as scGPT to streamline analysis [16]. These
steps will transform the preliminary atlas into
a comprehensive resource, amplifying its im-
pact on personalized medicine and biological
research.
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