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1. Abstract 
 

Accurate estimates of vertical land 
motion (VLM) are critical for projecting 
relative sea level rise along coastlines. The 
Chesapeake Bay region is a hotspot of negative 
VLM (subsidence) on the U.S. East Coast. In 
collaboration with a consortium led by the 
USGS, a new VLM solution was derived for 
the Chesapeake Bay region using more than 55 
campaign Global Positioning System (GPS) 
observations. We utilize this campaign GPS-
derived solution as a baseline for comparison 
with a recently published solution for the U.S. 
East Coast based on a combination of 
Interferometric Synthetic Aperture Radar 
(InSAR) and Global Navigation Satellite 
Systems (GNSS). VLM Differences between 
the combined InSAR and GNSS solution and 
the campaign GPS-derived VLM solution 
range from -3.95 mm/year to 7.30 mm/year, 
with an average discrepancy of 0.64 mm/year. 
Conventional statistical significance was not 
achieved when comparing the VLM difference 
with the GPS monument types or when 
comparing the VLM difference with associated 
National Land Cover Database (NLCD) values. 
This suggests that other factors, such as 
temporal resolution or local subsurface 
geology, may better explain VLM 
discrepancies. 
 

2. Introduction 
 

Relative Sea level rise (RSLR), driven 
by global climate change1, can cause hazards 
for coastal communities, including increased 
flooding and aquifer saltwater intrusion2. Low 
elevation coastal zones (<10 m above sea level) 
cover two percent of the global land area yet 
contain ten percent of the global population3 
and U.S. coastal counties, excluding the Great 
Lakes, support 30 percent of the U.S. 
population4. Quantification of RSLR and 
associated coastal hazard threats helps inform 
resilience in these communities to changing 
coastal conditions.  Elevated levels of RSLR 
outpacing marsh vertical accumulation also 
impact the biodiversity and stability of 
the coastal environment which can deteriorate 
coastal ecosystem services including the 
natural storm buffering system5-7.  

VLM is a factor that contributes to 
RSLR and varies spatially across the U.S. East 
Coast with particularly high VLM subsidence 
in the Chesapeake Bay region8-9. Since VLM 
measurements have varied throughout 
the Chesapeake Bay region, and there are 
different conclusions on regional negative 
vertical land motion (subsidence) averages, 
from -1.93 mm/yr10 to -1.5 mm/yr11,12, and 
measurements of subsidence exceeding 
5mm/yr13, continued efforts to combine local-
scale observations to constrain regional 
subsidence rates are underway. When VLM 
solutions are produced, there is a need to 
compare results across studies to assess 
agreement and further refine VLM estimates. 
Two recent studies of VLM13,14, drawing from 
different observational sources, have potential 
for comparison and synthesis to produce a 
high-resolution assessment of the Chesapeake 
Bay region and increase confidence in 
measured subsidence rates for estimating 
RSLR rates and resulting impacts on coastal 
communities. 
 Integrating InSAR and GPS data is an 
increasingly valuable approach for monitoring 
VLM. The high spatio-temporal resolution of 
InSAR measurements provide increased VLM 
measurement capability in coastal regions that 
are difficult to access, such as wetlands15 can 
be especially valuable. It is important to 
recognize that the depth of installation for point 
measurements such as GNSS or GPS are 
aligned with measuring certain types of VLM 
that are depth-dependent16. For example, GPS 
stations with deep rod installation will record 
deep subsidence (possibly tectonic in origin) 
while shallow-surface GPS monuments will 
measure shallow subsidence (which can be 
primarily controlled by shallow sediment 
compaction that has high spatial variability 
over short distances)16,17. As a result, studies 
have called for integration of multiple VLM 
measurement methods18, including GPS, 
GNSS, and InSAR into regional estimates of 
RSLR19. Quantifying variability in VLM 
measurements between GPS-derived VLM 
solutions and InSAR-derived VLM solutions in 
the Chesapeake Bay will further ability to 
combine understanding multiple observation 
platforms in VLM campaigns.  
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3. Data 
 

3.1 GPS-derived VLM solution 
 

An annual observational campaign 
funded by the U.S. Geological Survey (USGS) 
spanning five years from 2019-2023 collected 
millimeter-precision VLM measurements 
(Figure 1) using GPS receiver stations installed 
and in operation for two weeks each October14. 
The 201920 , 202021, 202122, 202223, and 202324 
datasets are made publicly available through 
EarthScope Consortium for data preservation 
and management. GAMIT-GLOBK and OPUS 
Projects will produce two independent velocity 
solutions from the Chesapeake Bay GPS 
campaign data. The separation of the long-term 
VLM signals from the short-term VLM signals 
seeks to provide greater understanding of VLM 
drivers in the Chesapeake Bay region14.  
  
3.2 Combined InSAR-GNSS VLM solution  
 

A recently published study13 of VLM 
over the U.S. East Coast has generated a 
velocity solution (Figure 2) using GNSS and 
SAR data that can be compared to that of the 
USGS funded campaign13. The GNSS data 
from 2007-2020 is made available by the 
Nevada Geodetic Lab [http://geodesy.unr.edu]. 
The SAR datasets come from two different 
satellites: Sentinel-1A/B from 2015-2020 and 
ALOS from 2007-201113. The combined SAR 
is transformed into a 3D line of sight (LOS) 
velocity using the wavelet based InSAR 
(WabInSAR)25,26 algorithm and after using a 
unified weighted least-squares joint 
optimization model, the 3D deformation field 
at each pixel was determined. The project 
enabled interpolation of VLM velocities over 
the national land cover pixels to determine 
VLM by land cover13. 
 
3.3 NLCD Data 
 

The 2019 National Land Cover 
Database (NLCD)27, a standardized and 
nationwide dataset developed by the Multi-
Resolution Land Characteristics (MRLC) 
Consortium, was used in comparisons. The 
NLCD provides 30-meter resolution land cover 
classifications derived primarily from Landsat 
8 Operational Land Imager (OLI) imagery, 
enabling detailed analysis of land surface 

properties across the United States. The 
majority land cover class within a 500-meter 
radius around each USGS campaign GPS 
station was extracted and used to assess the 
influence of surrounding land cover on vertical 
land motion differences. The NLCD categories 
were further grouped into broader land cover 
types (e.g., Water, Vegetated, Developed) to 
facilitate statistical analysis. 

Figure 1. A. GPS-Derived VLM solution based 
on the USGS campaign data mapped in a color 
scale ranging from -3.0 mm/yr to 3.0 mm/yr. B. 

Associated 1 sigma uncertainties. 
Figure 2. A. InSAR-derived VLM solution 
mapped in a color scale ranging from -3.0 
mm/yr to 3.0 mm/yr with GNSS stations 
plotted as triangles. B. Associated 1 sigma 
uncertainties with locations of the USGS GPS 
benchmark as circles. 
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4. Methods 
 

VLM estimates were compared from 
the GPS-derived VLM solution and the 
Combined InSAR-GNSS VLM solution within 
the Chesapeake Bay region, focusing on 
evaluating discrepancies across GPS 
monumentation types and land cover classes to 
understand potential spatial biases VLM 
Difference calculations.  

 
4.1 Data Preparation and Spatial Alignment  
 
The GPS-derived VLM solution and the 
Combined InSAR-GNSS VLM solution 
locations in decimal degrees were rounded to 3 
decimal places and 2 decimal places 
respectively. The distance between each data 
point in the INSAR dataset and the GPS dataset 
is found using the “Haversine” Function 
(calculates the distance between two points on 
the Earth’s Surface which is a geodesic 
measurement). All INSAR-based VLM values 
located within 500 meters of the GPS station 
were averaged to compare with the 
corresponding GPS station VLM 
measurement. 
 
4.2 Discrepancy Calculation 
 

The difference between InSAR and 
GPS VLM was calculated at each station: 
 

𝑉𝐿𝑀 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 
𝐼𝑛𝑆𝐴𝑅𝑉𝐿𝑀𝑎𝑣𝑔 − 𝐺𝑃𝑆𝑉𝐿𝑀 (1) 

 
Where 𝐼𝑛𝑆𝐴𝑅𝑉𝐿𝑀𝑎𝑣𝑔 is the InSAR-based 
VLM averaged within 500 meters of the GPS 
station and 𝐺𝑃𝑆𝑉𝐿𝑀 is the GPS-derived VLM 
solution at the corresponding GPS station.  This 
VLM Difference value was then stored for later 
statistical and geospatial analyses. 
 
4.3 Land Cover Classification and Analysis 
 

Each GPS station was assigned a land 
cover class using the 2019 National Land 
Cover Database (NLCD). A 500-meter radius 
buffer was computed surrounding the GPS site. 
Then, the majority raster value within that 
buffer of the 2019 NLCD dataset was 
computed.   

To assess whether InSAR-GPS VLM 
discrepancies differ significantly across land 

cover classes, a one-way Analysis of Variance 
(ANOVA) test was performed on three classes: 
Water, Vegetated, and Developed. Each GPS 
station was assigned to one of these classes 
based on the majority NLCD 2019 land cover 
value within a 500-meter radius. The Water 
category included NLCD classes 11 and 12, 
Vegetated included classes 31, 41–43, 52, 71, 
81, 82, 90, and 95, and Developed included 
classes 21–24. ANOVA tests the null 
hypothesis that all groups (land cover types) 
have equal mean discrepancies (Field, 2013).  
 
4.4 Geodetic Monument Analysis  
 

In addition to land cover classification, 
the type of GPS monumentation used at GPS 
sites was compared to the VLM Differences. 
Monument types across the Chesapeake Bay 
GPS campaign stations include deep rod 
monuments, surface monuments, disks on short 
rods, and massive concrete structures, each 
with differing degrees of structural coupling to 
the underlying Earth. These various 
monumentation types measure different types 
of motion and therefore result in different VLM 
measurements. 

To assess this, each GPS station was 
labeled with its monumentation class based on 
metadata from the USGS campaign records. 
The VLM Difference at each site was then 
grouped by monument type to assess whether 
certain installation types were more prone to 
measurement inconsistency. 

Each GPS station was classified as 
either a Surface or Deep Rod monument based 
on its construction type. The Surface category 
included stations mounted at or near the ground 
surface, such as those on buildings or shallow 
foundations. The Deep Rod category included 
stations anchored deeper into the ground, such 
as those installed using steel rods or other 
intermediate anchoring methods. These 
categories were used to examine whether 
monument construction influences the 
discrepancies between GPS- and InSAR-
derived VLM estimates. A two-sample 
independent t-test was performed to evaluate 
whether the absolute vertical land motion 
(VLM) differences between GPS- and InSAR-
derived estimates varied significantly by GPS 
monument type. 
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5. Results 
 

Calculation of VLM Differences 
produced a summary map across the 
Chesapeake Bay region at USGS campaign 
GPS sites (Figure 3). VLM Differences 
between the combined InSAR and GNSS 
solution and the campaign GPS-derived VLM 
solution range from -3.95 mm/year to 7.30 
mm/year, with an average discrepancy of 0.64 
mm/year. 

Figure 3. Plot of discrepancies where there are 
VLM solutions. 
 

There was poor correlation between 
GPS VLM and InSAR VLM and the VLM 
Differences were skewed right (Figure 4). 

 
 

Figure 4. Left. Scatterplot of InSAR-based 
VLM and GPS-derived VLM. Right. 
Histogram of discrepancies.  
 

After conducting the two-sample t-test 
to assess whether the absolute vertical land 
motion (VLM) discrepancies between GPS 
and InSAR differed by GPS monument type. 
The mean absolute VLM difference was 2.52 
mm/yr (SD = 2.24, n = 11) for Surface 
monuments and 1.08 mm/yr (SD = 1.13, n = 
14) for Deep Rod monuments. Although 
Surface monuments exhibited larger 
discrepancies on average, the difference was 
not statistically significant, t-statistic = 1.939, 
p = 0.073. This suggests a potential trend 
toward greater inconsistency in Surface 
monuments, but the result does not meet the 
standard threshold for statistical significance 
(p < 0.05). 

Figure 5. Boxplot showing the absolute 
vertical land motion (VLM) difference 
between GPS-derived and Combined InSAR-
GNSS measurements by monument type.   
 
 A one-way Analysis of Variance 
(ANOVA) was performed to examine whether 
the absolute vertical land motion (VLM) 
differences between GPS and InSAR 
measurements varied by surrounding land 
cover type. The average absolute VLM 
discrepancy was highest in Developed areas 
(Mean = 2.19 mm/yr, SD = 2.25, n = 10), 
followed by Water (Mean = 1.90 mm/yr, SD = 
1.89, n = 5), and Vegetated areas (Mean = 1.14 
mm/yr, SD = 1.25, n = 10). 
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However, the ANOVA revealed that 
these differences were not statistically 
significant, F-statistic = 0.85, p = 0.441, 
suggesting that land cover type was not a 
major driver of GPS–InSAR VLM 
discrepancies in this dataset.  

Figure 6. Boxplot showing the absolute 
vertical land motion (VLM) difference 
between GPS and InSAR measurements, 
grouped by generalized NLCD 2019 land 
cover class. 

 
 7. Conclusion 

 
This study compared vertical land 

motion (VLM) estimates derived from 
campaign GPS observations and a combined 
InSAR-GNSS solution across the Chesapeake 
Bay region. By examining discrepancies 
between these two datasets, we assessed the 
influence of GPS monumentation type and 
surrounding land cover class on measurement 
differences. VLM discrepancies ranged from -
3.95 mm/year to 7.30 mm/year, with an 
average difference of 0.64 mm/year. Although 
Surface-mounted GPS stations exhibited 
larger VLM discrepancies compared to Deep 
Rod installations, the difference was not 
statistically significant. These results would 
likely be improved using a larger sample size 
of GPS station locations. Similarly, no 
significant differences in VLM discrepancies 
were found across major land cover types, 
including Developed, Vegetated, and Water 
classes. These results suggest that neither 
monumentation type nor land cover alone 
fully explain the observed VLM differences 
between the two datasets. Instead, the 
discrepancies may reflect a combination of 

factors, including the vertical sensitivity of 
InSAR, differences in temporal resolution, and 
local geologic or hydrologic conditions. 
Continued integration of geodetic datasets and 
exploration of additional environmental 
variables will be key to refining future VLM 
estimates that  support coastal resilience 
planning. 
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