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The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework is used to investigate
the kinetics of radiation damage to a silicon carbide (SiC) semiconductor. The energy eigenstructure
is developed by the Replica-ExchangeWang-Landau (REWL) algorithm that determines the density-
of-states of a discrete system. The REWL method is able to provide the various energies of a 3C-SiC
cubic crystal system comprised of 1000 atoms. Scaling up to larger systems is in progress. Currently,
the radiation damage mechanisms include vacancies and interstitial atoms (⟨100⟩ dumbbells). The
model predicts the rate with which clusters form during primary damage from irradiation. Using the
energy eigenstructure provided by the REWL algorithm, the SEAQT equation of motion determines
the unique non-equilibrium path taken by the system, providing insights into its microstructural
evolution due to radiation damage.

I. INTRODUCTION

Silicon carbide (SiC) is a wide bandgap (WBG) semi-
conductor that offers desirable properties including high
electrical conductance, high thermal stability, and high-
power switching performance [1–3]. It is known to have
many different crystal structures or polytypes (hexag-
onal, cubic, and rhombohedral) that differ from each
other in the stacking sequence of a closed-packed plane.
Each structure has somewhat different properties [4].
Although a candidate material for semiconductors and
widely used in automotive applications, it is susceptible
to solar radiation damage in space or avionic devices.
There have also been numerous studies on its radiation
resistance as a cladding material for the nuclear indus-
try [5] . Under irradiation, point defects accumulate into
defect clusters that ultimately lead to failure [6]. Many
studies of WBG semiconductors [7, 8] utilize information
on SiC under nuclear radiation as a baseline for possible
damage mechanisms involved with solar radiation. Be-
cause of the covalent nature of SiC, the damage mecha-
nisms differ quite significantly from metals under irradi-
ation and are less prevalent. Noticeable radiation effects
in SiC are the formation of anti-site defects, which entail
a Si atom occupying a C atom site and vice versa. Also,
single interstitials occupying tetahedral sites, along with
dumbbells in the ⟨100⟩ orientation can form.

It is known that SiC devices have high resistance to to-
tal dose radiation [8] but are more affected by transient
radiation effects, also known as single-event effects (SEE)
that occur in space. The SEE are caused by high-energy
protons or heavy ions in space, whereas neutrons are the
main cause of radiation damage in nuclear reactors [2].
Simulating SEE by experimental techniques is costly and
difficult, and there is not yet much modeling of solar ra-
diation effects on SiC. In terms of numerical simulations,
β-SiC (or the 3C-SiC polytype) is modeled with classi-
cal molecular dynamics (MD) for primary damage from

radiation exposure [6, 9–11], which is a good technique
for understanding the damage mechanisms by solar radi-
ation.
Conventional computational modeling, however, has

limitations that include small length and time scales
and an assumption that the material is near equilibrium.
With irradiation, non-equilibrium kinetic phenomena can
be computationally burdensome when they rely on trans-
port equations (diffusion, heat, or mass fluxes). Utiliz-
ing an alternative approach called SEAQT, there is no
need to assume linear transport laws or near-equilibrium.
SEAQT can predict a thermodynamically unique kinetic
path from an initial non-equilibrium state to stable equi-
librium based on the steepest-entropy-ascent (or maximal
entropy production) principle at each instant of time. Its
equation of motion predicts the probability distributions
of each state in time and is, thus able to track the chang-
ing extensive property values of energy and entropy [12].
In this study, the rates of defect accumulation predicted
with SEAQT equation of motion are compared with ex-
isting MD studies on 3C-SiC for ⟨100⟩ dumbbells. Plans
for including other defects (anti-sites and single intersti-
tials) are discussed.

II. METHOD

In order to determine the kinetics of radiation dam-
age using the SEAQT equation of motion, construction
of the energy eigenstructure is needed. For the purposes
of this paper ony, a small demonstration system is used
that consists of β-SiC (3C-SiC) with 1000 atoms in a
5× 5× 5 unit cell with dimensions of 21.8× 21.8× 21.8
Å. On-going work includes much larger systems using
a combination of the Replica-Exchange Wang-Landau
(REWL) algorithm [13, 14] coupled to LAMMPS [15]
and neural networks. For the present system, only the
former (i.e., REWL/LAMMPS) is needed to find all pos-
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sible energy levels, ek, and their degeneracies, gk, from
the ground state to a Monte Carlo-determined maximum
energy. The energy levels and their statistically deter-
mined degeneracies constitute the density of states used
by the SEAQT equation of motion. Associated with each
energy eigenlevel is a set of microstructural configura-
tions arising from dumbbell and vacancy locations in the
LAMMPS simulation block. The REWL is a paralleliza-
tion of the original the Wang-Landau algorithm [16–18],
which is a stochastic non-Markovian Monte Carlo ap-
proach. The combination of REWL and LAMMPS allows
the program to read in numerous interatomic energy po-
tentials from NIST database files. As in the case here for
3C-SiC, a Tersoff potential is used for the Hamiltonian
expressed as

ek =
1

2

∑
i

∑
j

Vij (1)

where Vij represents the two-body interactions between
three bodies and the summations are over all the neigh-
bors within a cutoff distance.

To model radiation damage with REWL, a Potts model
is employed to characterize states corresponding to SiC
defects, such as the ⟨100⟩ dumbbell orientation for C+-C,
C+-Si, Si+-C, and Si+-Si [6], where the superscript + is
the interstitial atom. For each Monte Carlo trial move,
atoms are randomly chosen to form a dumbbell and the
energy is computed and stored to generate the set of ek
for possible configurations of the simulation block and
their respective degeneracies, gk.

A. SEAQT Equation of Motion

The energy eigenstructure developed by the REWL
method can be used to solve the SEAQT equation of
motion for a simple quantum system [19, 20], namely,

dρ̂

dt
= − i

ℏ
[Ĥ, ρ̂] +

1

τ(ρ̂)
D̂(ρ̂) (2)

where [·, ·] is the commutator; ρ̂ the density operator,
which for classical systems reduces to a probability distri-
bution; t the time; i the imaginary unit; ℏ Planck’s mod-
ified constant; Ĥ the Hamiltonian operator expressed
classically in non-operator form by Eq. (1); D̂ the dis-
sipation operator that describes the non-linear dynamics
of irreversible state evolution; and τ the relaxation pa-
rameter.

For an isolated classical system, no quantum correla-
tions are present and, thus, ρ̂ and Ĥ commute so that
the equation of motion can be expressed when the only
generators of the motion are Ĥ and the identity operator

Î as [12, 21, 22]

dpj
dt

=
1

τ
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where ⟨·⟩ represents an expectation value and the system
energy, ⟨e⟩, and entropy, ⟨s⟩, are given by〈

e
〉
=

∑
k

ekpk (4)

〈
s
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pk ln
pk
gk

(5)

〈
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〈
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pkek ln
pk
gk

(7)

Here, pj , ek, and gk are the occupation probability, en-
ergy eigenvalue, and degeneracy of the jth eigenlevel, re-
spectively.
Now, for a system interacting with a thermal reser-

voir, the equation of motion is written for an isolated
composite of the system and reservoir with the system
represented by subsystem A and the reservoir by subsys-
tem B. In this case, there are three generators of the
motion, namely, the Ĥ of the composite system and the
identity operator, ÎA, of subsystem A and that, ÎB , of
subsystem B. Thus,
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Expanding the determinants, the equation of motion re-
duces to

dpAk
dt

=
1

τ
pk[(s

A
k −

〈
s
〉A

)− (eAk −
〈
e
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)
C3

C1
] (9)

where 〈
e
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eAk p
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k (10)
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and the cofactors C1 and C3
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Now, using the hypoequilibrium concept developed by
Li and von Spakovsky [22], each non-equilibrium state of
the composite system is represented by a 2nd-order hy-
poequilibrium state by factoring the overall state space
of the composite system into two subspaces A and B. As
a result, the ratio C3/C1 is the non-equilibrium intensive
property, β, that accounts for the non-equilibrium en-
ergy and entropy fluctuations of subsystem A. At stable
equilibrium when subsystem A is in mutual stable equi-
librium with subsystem B (the reservoir R), β is inversely
proportional to the temperature and β = βR. Eq. (9) is
is then rewritten as

dpAk
dt

=
1

τ
pk[(s

A
k −

〈
s
〉A

)− (eAk −
〈
e
〉A

)βR] (14)

where βR = 1
kBTR , kB is Boltzmann’s constant, and TR

is the temperature of the reservoir [22].
In order to solve the equation of motion, an initial state

represented by a non-equilibrium probability distribution
is needed. This is found from the following perturba-
tion function, which requires the probabilities ppek and
psek from a partially canonical (pe) and a canonical (se)
distribution function:

pk
init = λpk

pe(ek, δk) + (1− λ)pk
se(ek) (15)

Here, λ is a number between 0 and 1, and the closer to 1
the further it is from stable equilibrium. The probabili-
ties corresponding to stable equilibrium can be calculated
from the canonical distribution given by

pk
se =

gkexp(−βseek)∑
k gkexp(−βseek)

(16)

where βse is proportional to the reciprocal of the sta-
ble equilibrium temperature T se. The partially canonical
probabilities, on the other hand, are found from

pk
pe =

δkgkexp(−βpeek)∑
k δkgkexp(−βpeek)

(17)

where βpe is an unknown intensive property of the par-
tially canonical state, and δ = {δj} is a vector of 0 and
1 values corresponding to whether or not a given energy
eigenlevel of the partially canonical state is unoccupied or
occupied, respectively. The unknowns for this last equa-
tion are all the ppek as well as βpe and, thus, an additional

equation is needed in order to resolve this system of equa-
tions. This is given by energy of the partially canonical
state expressed as 〈

e
〉pe

=
∑
k

pk
peek (18)

where consistent with the choice of βse made for the sta-
ble equilibrium state, ⟨e⟩pe must equal the energy, ⟨e⟩se,
given by 〈

e
〉se

=
∑
k

pk
seek (19)

For the radiation process, the equation of motion must
be written for the SiC system interacting between a high-
temperature and a low-temperature reservoir since the
desired final state for the SiC system is not stable equi-
librium but steady state instead. In this case, the equa-
tion of motion is written for an isolated composite sys-
tem consisting of three subsystems A, B, and C with the
latter two representing the two reservoirs. The genera-
tors of the motion now are Ĥ for the composite system;
the identity operators, ÎA, ÎB , and ÎC , for the the three
subsystems; and the particle number operator, n̂A, for
subsystem A. The latter is added to account for the
changing microstructure resulting from the defect clus-
tering due to radiation damage. The equation of motion
is then written as
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where nA
k = nA,cl

k +nA,ncl
k . This can then be reduced and

re-cast in terms of the grand potential such that

dpAk
dt

=
β

τ

(
pAk ⟨Φ⟩A − pAk Φ

A
k

)
(21)

where the grand potential is

Φa
k = eai − β−1sai − β−1 γ na

i (22)

The final form shown equation 21 can simply be run
on Matlab and obtain the necessary data for steady-state
radiation damage.
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III. RESULTS AND DISCUSSION

The energy eigenstructure obtained from REWL
has approximately 234 energy eigenlevels, representing
all possible configurations from the ⟨100⟩ dumbbells
throughout the simulation box. The number of dumb-
bells range from 1 to 5 and provide details of scattering
at lower energy levels and clustering near higher energy
eigenlevels. These clustered defects can be a sink for
other defects or dumbbells to cause migration towards
the cluser during irradiation and after prolonged radia-
tion damage, limiting their duration as a semiconductor.
In Fig. 1 the y-axis labeled as ln(g(ek)) is the logarithm
of the degeneracy of each energy eigenlevel in the x-axis
labeled as ek.

Currently in this preliminary work, the energy eigen-
structure only consists of the ⟨100⟩ dumbbells and does
not include the other defects, so the higher energy range
is not fulfilled just yet, hence not a complete parabolic
curve. The lower energy levels have more scattering due
to incomplete convergence during the REWL algorithm,
where more testing is needed. Also, microstructural de-

scriptors are necessary to detail the evolution during ir-
radiation and can be taken as an arithmetic average for
each energy eigenlevel ek, where they are included in the

Eq. 21 as nA,cl
k and nA,ncl

k , where the data is obtained
from the REWL simulation.

IV. CONCLUSION AND FUTURE WORK

In this work, the REWL algorithm gave the energy
eigenstructure of many possible configurations represent-
ing radiation damage from solar flares. The microstruc-
tural evolution can then be determined by the SEAQT
equation of motion to understand the effect of solar ra-
diation on WBG semiconductors. Future work entails
scaling the simulation size higher to account for realistic
defect concentrations by using a neural network machine
learning model. Also, applying the derived SEAQT equa-
tion of motion to determine steady non-equilibrium for
the larger simulation size of 3C-SiC. Although the ⟨100⟩
dumbbells are the most favorable defect, including the
anti-site and single interstitials for future modeling pur-
poses will be assessed as well.
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Corrales. Ab initio and empirical-potential studies
of defect properties in 3C-SiC. Physical Review B,
64(24):245208, December 2001.

[12] Gian Paolo Beretta. Nonlinear model dynamics for
closed-system, constrained, maximal-entropy-generation
relaxation by energy redistribution. Physical Review E,
73(2):026113, February 2006.

[13] T. Vogel, Y. W. Li, T. Wüst, and D. P. Landau. Generic,
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