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Abstract 

Water levels in lakes, rivers, and oceans 

fluctuate due to the hydrological cycle. This 

study uses terrestrial water storage (TWS) 

estimates from GRACE satellite missions to 

predict reservoir operation in Brazil. Reservoir 

water elevations, derived from multi-satellite 

radar altimetry (RA) data, serve as a proxy for 

operation. Seventeen reservoirs in Southern 

Brazil were analyzed using two regression 

techniques and a machine learning (ML) 

model, incorporating geomorphologic and 

meteorologic factors such as precipitation and 

temperature. The ML model, optimized for a 

six-month forecast horizon, outperformed the 

others. The random forest regression model 

with 35 features reduced error by half 

compared to linear regression, predicting 

reservoir heights within 1.41 meters (MAE). 

These findings improve understanding of the 

relationship between TWS and RA heights in 

the Upper Paraná Basin, enhancing reservoir 

height prediction.  

Introduction 

Water levels fluctuate globally due to various 

factors like precipitation, runoff, and 

evaporation (Bates et al., 2008). 

Understanding these changes is crucial for 

managing water resources and mitigating the 

impacts of increasingly frequent and intense 

hydrological extremes. Reservoirs, critical 

infrastructure for water supply, energy 

production, and flood control, are particularly 

sensitive to these fluctuations (Nasar, 2015; 

Meng et al., 2021; Polomski and Wiatkowski, 

2023).  Accurately predicting reservoir height 

variations is essential for optimizing water 

allocation, ensuring energy security, and 

minimizing shortages, thus impacting 

numerous sectors from agriculture to urban 

development. 

Previous studies have explored reservoir 

height prediction using machine learning 

(ML) models, often focusing on individual 

reservoirs and employing complex algorithms 

(Sun et al., 2021; Yin et al., 2023;Li et al. 

2016 ; Sapitang et al., 2020). While these 

studies have provided valuable insights, gaps 

remain in multi-step forecasting, cross-

reservoir applicability, and the use of simpler, 

more interpretable models. Specifically, the 

ability to predict reservoir heights at multiple 

future time steps, and the testing of models 

across varied reservoir systems, is needed. 

Furthermore, the use of more widely 

understood models would increase the 

usability of any outputs of such research. 

To address these key research gaps, this study 

investigates the potential of GRACE TWS to 

assist in predicting reservoir height 

fluctuations across multiple reservoirs, using a 

comparative analysis of linear regression, 

polynomial regression, and a machine 

learning-based random forest approach. The 

goals of this work are to (1) explore the 

relationship between TWS and reservoir 

height, rather than focusing on inflows, 

outflows, or broader water storage dynamics, 

(2) compare the performance of simple 

regression models and random forest 

regression to determine the most effective 



 

Besnier   2 

 

approach for reservoir height prediction, (3) 

evaluate the models’ ability to provide multi-

step forecasts, enabling predictions of 

reservoir levels at different time horizons, and 

to (4) assess the generalizability of the models 

by applying them to a set of reservoirs withing 

the UPRB. By addressing these knowledge 

gaps, this study has the potential to advance 

the understanding of the complex linkages 

between TWS dynamics and reservoir height 

and to provide modeling tools for water 

resource management and decision-making.  

Data and Methods 

This study focused on seventeen reservoirs 

within the Upper Parana River Basin (UPRB), 

selected based on their geographic location, 

data availability, size, and relevance to the 

region. To ensure robust model training, 

reservoirs were included only if they had at 

least 10 years of overlapping monthly data for 

key variables: Radar Altimetry (RA) reservoir 

height (sourced from GREALM, DAHITI, and 

Hydroweb, spanning 2002-2022), 

GRACE/GRACE-FO Terrestrial Water 

Storage (TWS), IMERG precipitation, and 

GLDAS temperature. Additionally, reservoirs 

were chosen to be within distinct GRACE 

pixels, accounting for the dataset's spatial 

resolution. 

Three predictive models were 

employed to analyze and forecast reservoir 

height: Linear Regression, Polynomial 

Regression, and Random Forest Regression. 

Linear Regression was used to examine the 

direct linear relationship between TWS and 

reservoir height. Polynomial Regression 

aimed to capture potential non-linear 

relationships by incorporating TWS, 

precipitation, and temperature as input 

variables. Random Forest Regression, an 

ensemble learning method, was selected for its 

ability to handle complex, non-linear data and 

high-dimensional inputs. This model was 

optimized through feature engineering and 

hyperparameter tuning to enhance predictive 

accuracy. 

Model performance was assessed by 

comparing predicted reservoir height values 

against actual RA reservoir height data. To 

evaluate the models' forecasting capabilities, a 

6-month multi-step forecast horizon was used. 

This approach allowed for the analysis of how 

well each model predicted reservoir heights at 

multiple points in the future. 

Results 

Initial Analysis 

 Feature correlation between the 

reservoir height anomalies and precipitation, 

temperature, and TWS. The Pearson 

correlations are reported as -0.04, -0.21, and 

0.45 for precipitation, temperature, and TWS 

respectively, thus indicating a stronger 

correlation between the TWS and reservoir 

height anomalies than the temperature and 

precipitation.  

3.2 Accuracy of Model Prediction  

The linear regression model provided insights 

into the relationship between TWS and 

reservoir height anomalies.  Figure 1 (a) 

illustrates the linear relationship along with 

the regression line equation y= 0.01x+1.19.  

Figure 1(b) shows  the actual vs. predicted 
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reservoir height anomalies, with a MAE of 

2.81m.  

 

 

Figure 1. Linear regression was run and (a)the 

relationship between the TWS and the RA height for all 

reservoirs for different monthly measurements and the 

linear line and (b) time series of the actual vs. predicted 

values over the test period.  

Polynomial Regression 

 Polynomial Regression builds upon 

linear regression as it also considers the 

relationships between one target variable and 

multiple other variables simultaneously, to see 

how several predictors influence the outcome 

together.  Figure 2 (a) shows the actual vs. 

predicted height anomalies from the 

polynomial regression model and the 

subsequent error values when the degrees of 

freedom are changed. When changing the 

degrees of freedom, the error value changes 

exponentially with three being the lowest error 

value. 

  

  

Figure 2: Polynomial Regression Results: (a) The plot 

of the predicted reservoir height anomalies and the 

actual height anomalies of the polynomial regression 

model with degrees = 3. (c) The time series of monthly 

average test values for the polynomial regression model 

from all of the reservoirs.  

 The MAE values tend to increase as 

the degrees increase, showing the lowest is 

degrees at 3, indicating that this problem is 

more linearly related than polynomial as the 

error barely decreased when switching from 

linear regression to polynomial regression. 

The overall MAE for this model is 2.47m, 

indicating a better predictor than the linear 

regression, which is expected due to the 

polynomial capabilities of this model. While 

linear regression requires the data to be linear, 

polynomial regression does not and allows for 

higher degrees of relationships between the 

datasets. However, there is no significant 

increase as the data might be linearly related 

as the decrease in error is not substantial, as it 

is only a modest improvement at 12.1%  from 

the MAE for linear regression.  

Random Forest Regression 

To optimize the Random Forest regression 

model, we systematically examined feature 
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dimensionality, testing configurations from 

k=5, five features to k=140,140 features. 

Through analysis of error metrics and 

computational efficiency,  k=35  emerged as 

the optimal feature count.  Figure 3 shows the 

MAE across different forecast horizons for the 

different permutations of the model. As the 

MAE increases, that indicates that the model 

is predicting worse and further away from the 

actual values. 

 

Figure 3: Random Forest Regression Error comparison 

from k=5 to k=140. This figure shows the Mean 

Absolute error across the forecast horizon (6 months) 

for each day for many different k-values.  

 The rationale for selecting about 35 

features was twofold: (1) it provided the best 

balance between predictive accuracy and 

computational efficiency and (2) the features 

at k=35, as revealed by importance analysis, 

included the most significant predictors across 

forecast horizons. Specifically, the reservoir 

height from the previous month and five 

months prior,   as well as the previous  

month’s TWS, ranked highest in importance. 

These predictors were consistently impactful 

due to the strong temporal autocorrelation in 

reservoir levels, which supports the hypothesis 

that recent and lagged reservoir states are 

critical forecasting. 

Model Comparison 

After the three of the models were run and the 

subsequent error values were calculated. They 

were all recorded and compared against each 

other. Table 1 shows the error values for 

Linear regression, Polynomial Regression, and 

Random Forest Regression with k= 35. Based 

on these results, random forest regression has 

the lowest error results  

Table 1: Error Value Table: This table displays the 

three models run in the study and their subsequent error 

values (MSE, RMSE, and MAE). The RF regression 

error value is the average error across the 6-month 

forecast horizon for k=35 

Based on these error metrics, linear regression 

has the greatest error with a MAE of 2.81m, 

followed by polynomial regression with a 

MAE of 2.47m, then random forest regression 

with k=35 with a MAE of 1.41m. Although 

the random forest models require the most 

computing time compared to linear and 

polynomial regression, the error values are 

significantly improved. For MAE and RMSE, 

the units are the same as the output, reservoir 

height anomalies in meters. In comparison to 

linear regression, the polynomial regression 

decreased by a percentage of 12.1% and the 

random forest regression decreased by 49.8%, 

or almost half regarding MAE.  

 For RMSE, linear regression also had 

the highest error with 4.13m, followed by 

polynomial regression at 3.67m, and then 

random forest regression with k=35 at 2.47 m. 

These patterns are also seen in MSE, as that is 

the square of these values. In comparison to 

linear regression, polynomial regression 

decreased the error by 11.1% and random 

forest regression decreased this error by 

40.1%. While the RMSE results are not as 

drastic as the MAE differences between the 

different methods, they both express that 

Model MSE 

(m2) 

RMSE 

(m) 

MAE 

(m) 

Linear 

Regression 

17.08 4.13 2.81 

Polynomial 

Regression 

13.49 3.67 2.47 

Random 

Forest 

Regression 6.088 2.47 1.41 
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random forest regression significantly 

improved the error results for all reservoirs 

compared to the linear regression.  

Model Performance and Model Uncertainty  

 Compared to other studies, our random 

forest regression model demonstrated superior 

performance. Ibanez et al., (2021) finds with 

an MAE of 2.9, 5.1, and 6.7m for 30-day, 90-

day, and 180-days ahead using deep neural 

networks-multivariate method. When 

compared to this study, random forest 

regression has an error (average first month 

MAE across all reservoirs) of 1m (1.41m 

average across 6-months) a 65.5% increased 

improvement in the first month prediction 

alone. There are also significant 

improvements for the 90-day forecast when 

compared to the 3-month forecast horizon and 

the 120-day forecast when compared to the 4-

month forecast horizon (1.7m vs. 5.1m and 1.8 

vs. 6.7m) for a 66.7% and 73.1% increase in 

water level prediction. The size, location, and 

other attributes of the reservoirs could be a 

reason for the large variation of error values as 

well as the diversity in methods to carry out 

the predictions. 

 There are several factors that 

contribute to model uncertainty including 

variability in satellite performance, 

complexity of hydrological interactions, and 

the sensitivity of the model to its input 

parameters. While the random forest 

regression showed promising results with low 

MAE, it is paramount to investigate potential 

sources of uncertainty. For all three regression 

techniques, data variability, natural or 

unnatural, introduces uncertainty especially 

over longer forecast horizons. Additionally, 

model sensitivity is critical to understanding 

the reliability of predictions.  

 The results of a sensitivity analysis for 

the random forest regression model with k=35 

highlight the model’s robustness and 

susceptibility to input data perturbations. 

When the input variables (reservoir heigh 

anomaly, TWS, precipitation, and 

temperature) were perturbed by +/- 5%, +/- 

10%, +/- 20%, the models performance 

exhibited varied degrees of degradation when 

measured by MAE. Table 5 showcases the 

outputs from the sensitivity analysis. A 5% 

perturbation of the input resulted in a 22-25% 

increase in the baseline MAE, 1.41m. This 

impact escalated with greater perturbations, 

showing a 37-43% increase for 10% 

perturbations. Finally, the greatest 

perturbations showed the greatest increases 

with MAE reaching 2.50m and a large 

increase of 69-77% for 20%. These findings 

indicate that the model is relatively sensitive 

to changes in the overall input data, before it 

is tabulated. When perturbated after being 

tabulated the MAE only changed to 1.45 m 

with a maximum of a 2.8% increase for 20% 

due to having so many features and the 

numbers being very small and the model being 

robust to these small changes.  

Table 2: Sensitivity Analysis. This table shows 

the percentage that the initial input variables 
perturbation, the resulting MAE, and the percent 
increase from 1.41m  

Input 

Perturbation  

Updated 

MAE 

Increase in 

MAE  

-20% 2.39 69% 

-10% 1.93 37% 

-5% 1.72 22% 

5% 1.77 25% 

10% 2.02 43% 

20% 2.50 77% 

For the overall changes, the increasing trend 

in MAE with larger perturbations suggests 

that the model relies heavily on the accuracy 
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of input variables to maintain performance, 

thus emphasizing the importance of ensuring 

high-quality data to receive reliable 

predictions. This analysis reveals potential 

vulnerabilities in the performance of the 

model under different scenarios of data, 

highlighting the need for rigorous data 

validation. 

Accuracy of Forecast 

Upon determining that k=35 is the optimal 

Random Forest model, the average MAE 

across the entire forecast horizon (6 months) is 

1.41m. This value is significantly lower than 

both the linear regression and polynomial 

regression and will be further explored in the 

next section. Additionally, the error for the 

first forecast horizon (1 month) is 1m, 

indicating that for the first month, the model 

predicted the reservoir height anomalies 

within one meter. As the forecast extends, the 

error also grows, reaching approximately 

1.75m when forecasting six months ahead for 

the model.   

 Figure 4 shows the three different 

models plotted across the six-month forecast 

horizon for the various reservoirs. For the 

Frunas reservoir, month 1 is 7/2021 and 

month 2 is 8/2021 and so on. These results 

show the model forecast based on the training 

data the models were given and then the figure 

shows the output from what the models 

predicted to the actual values showing a 

testing aspect of the models and their capacity 

to predict across the six-month forecast 

horizon.  

 

Figure 4b:Actual vs. Predicted values for the Frunas 

Reservoir: Individual reservoir model comparison plots. 

This figure shows the three different model outputs for 

each reservoir compared to the actual values. The plots 

for all the reservoirs are in supplementary materials and 

represent the last 6 months of validated data for each 

reservoir. This plot shows values for 7/2021 to 12/2021.  

 The random forest regression model 

most accurately predicted the height anomaly 

compared to the polynomial regression and 

the linear regression model.  

Discussion 

This study explores the use of terrestrial water 

storage (TWS) from GRACE to predict 

reservoir operations in the Upper Paraná River 

Basin. Analyzing 17 reservoirs, we compared 

three regression approaches, finding that 

random forest regression significantly 

outperformed linear and polynomial models 

by capturing complex relationships between 

TWS and reservoir height. 

While linear and polynomial 

regression offer interpretability, they assume 

fixed relationships that limit their 

performance. Random forest regression, 

despite requiring more computational 

resources, proved more accurate, reducing 

mean absolute error (MAE) by nearly 50% 

compared to linear regression. Feature 
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engineering, incorporating precipitation, 

temperature, and lagged reservoir heights, 

enhanced model performance. Error increased 

with forecast horizon, from 1m in the first 

month to 1.9m at six months, highlighting the 

challenge of long-term predictions. Feature 

analysis confirmed that previous reservoir 

height and TWS are key predictors, though 

feature importance varies by reservoir and 

time span. Future improvements could involve 

dynamic feature selection and additional data 

sources, such as land use or socio-economic 

factors. 

This study demonstrates the potential 

of integrating TWS data for multi-step 

reservoir forecasting, supporting optimized 

water management, flood control, and 

sustainable resource use. Further refinement 

with real-time data and advanced modeling 

techniques could enhance predictive accuracy.  

Conclusions 

This study improves reservoir height 

predictions by integrating terrestrial water 

storage (TWS) estimates with multi-step 

forecasting across various reservoirs. Using 

GRACE TWS, IMERG precipitation, GLDAS 

temperature, Hydrolakes attributes, and radar 

altimetry data, we demonstrated that TWS 

effectively predicts reservoir height in the 

Upper Paraná Basin. The methodology can be 

applied globally. Machine learning models 

benefit from feature selection and importance 

analysis, which enhance interpretability and 

improve prediction accuracy. Understanding 

key features aids in refining model 

performance and supporting reservoir 

management decisions. Despite 

advancements, predicting reservoir height 

remains challenging due to human-driven 

operations. Future research should refine 

models by incorporating real-time data, 

expanding datasets, and exploring advanced 

techniques to improve predictions of storage 

volume, inflow, and outflow. Machine 

learning-based forecasting can enhance water 

resource management, flood control, and 

drought preparedness, contributing to 

sustainable water governance.  
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