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Abstract

Randomized subspace embedding methods, re-
ferred to as “sketching” have become increas-
ingly popular for solving large-scale least-squares
problems, reducing the problem size while main-
taining solution accuracy. In 2022, Nakatsukasa
and Tropp noted that the Rayleigh-Ritz method,
used for extracting eigenpair estimates of a ma-
trix A from a subspace, can be reformulated as a
least-squares problem, enabling it to be used with
sketching.
Krylov-based iterative methods generate a

Krylov basis for a matrix A from which these
eigenpair approximations can be extracted. How-
ever, to achieve accurate approximations, the ba-
sis must be orthonormal or close to orthonormal.
When seeking many eigenpairs, the Krylov basis
will lose orthogonality due to ”ghost eigenvectors”
appearing in the basis. While reorthogonalization
techniques can remedy this, they can also lead to
a bottleneck in computation. Sketched Rayleigh-
Ritz offers an alleviation to this computational ex-
pense, but introduces expenses of its own.
In this work, we implement sketched Rayleigh-

Ritz in the PRIMME software library and compare
it against its nonsketched counterpart using the
Lanczos and Generalized Davidson Krylov meth-
ods. This allows us to assess both computational
benefits and performance advantages between the
two methods.

Introduction

The eigenvalue problem is found across a diversity
of scientific disciplines, including spacecraft con-
trol systems,18 computational physics,29 and ma-
chine learning.4 The eigenproblem considers the
equation

Ax = λx, (1)

where A ∈ Cn×n is a square matrix, x ∈ Cn is a
column vector, and λ ∈ C is a scalar value. Any
(x, λ) pair that satisfies this equation is considered

an eigenpair of A, with x being an eigenvector, and
λ being its associated eigenvalue.

Using direct methods to compute all eigen-
pairs of matrix A has a computational complexity
of O(n3), rendering these methods infeasible for
large-scale matrices.30 Most users do not require
all eigenpairs of a matrix anyway, and instead only
seek an approximate subset. This has led to the
development of cost-effective Krylov-based itera-
tive methods, which begin with an initial guess
of the eigenvectors of a matrix before refining the
approximations iteratively.

Krylov methods build a subspace of the matrix
A using repeated applications of A to some ini-
tial normal vector(s).15 This subspace, known as a
Krylov basis, can then be used in conjunction with
methods such as Rayleigh-Ritz (RR) to extract in-
formation for solving a system of linear equations
or approximating the eigenpairs of a matrix.

Theoretically, this Krylov basis, denoted V ∈
Cn×d, should always maintain perfect orthogonal-
ity. However, in practical applications, this is not
the case. Due to having finite precision, once
eigenpairs begin converging in the basis, repeated
directions, referred to as ghost eigenvectors, begin
entering, causing degradation in the orthogonality
of V and an escalation in the condition number
κ(V ).24 When κ(V ) is large, RR may yield inaccu-
rate solutions that result in convergence slowdown
or stagnation and heightened numerical instabil-
ity.30

One way to avoid this degradation is by period-
ically reorthogonalizing the basis using methods
such as the QR Decomposition,10 Householder,13

and Classical Gram-Schmidt,5 each with their own
accuracy and speed tradeoffs. However, reorthog-
onalizing a matrix is expensive and may result in a
bottleneck in computation if done frequently. This
motivated the idea of using randomized subspace
embeddings, or “sketching” methods, as they al-
low extraction of data from a poorly conditioned
Krylov basis with minimal loss of accuracy com-
pared to their non-sketched counterparts.21

The remainder of this paper is as follows: Sec-

1



tion 2 will discuss background information perti-
nent to our work, including the RR method, an
introduction to Krylov methods, and the intuition
behind sketching. Following this, Sections 3 and
4 will discuss using sketched RR with the Lanczos
method and provide experimental results. Simi-
larly, Sections 5 and 6 will discuss sketched RR
used in conjunction with Generalized Davidson be-
fore presenting numerical results. Future work will
be outlined in Section 7, before concluding in Sec-
tion 8.

Background

The Rayleigh-Ritz Method

The Rayleigh-Ritz (RR) method is a mathematical
technique used for approximating the eigenpairs of
a matrix A ∈ Cn×n using a subspace V ∈ Cn×d.
Instead of solving the n×n eigenproblem Ax = λx,
RR instead solves the smaller, more managable
eigenproblem on the system V †AV ∈ Cd×d, yield-
ing eigenpairs (xi, λi) of V

†AV . The approximate
eigenpairs of A, referred to as the Ritz pairs, are
then computed as (V xi, λi) for i = 1, · · · , d. This
method is also Galerkin, as it sets the residuals
of the estimated eigenpairs orthogonal to the ba-
sis V .8,25 The standard RR method is outlined in
Algorithm 1.

Krylov-based Iterative Methods

Krylov methods were initially developed on the
insight that a subspace of a matrix A ∈ Cn×n can
be formed by successive applications of A on some
vector y. Information can then be extracted from
this subspace, referred to as a Krylov basis.15 This
is written

V = {y,Ay,A2y,A3y, · · · , Ad−1y}, (2)

where y ∈ Cn represents an initial normal vec-
tor, and d denotes the number of columns in the
basis, or the basis size. Once V ∈ Cn×d has
been established, RR can be performed by solv-
ing V †AV x̂ = λx̂, resulting in the Ritz pairs of A,
(V x̂i, λi) for i = 1, 2, · · · , d.24
Several Krylov-based iterative methods have

been developed for different problem and matrix
types. Arnoldi,2 Lanczos,16 LOBPCG,14 GM-
RES,26 and Generalized Davidson20 are just a few
examples. These methods have a common goal of
minimizing the residual norms of the sought eigen-
pairs.
The residual r ∈ Cn of an approximate eigenpair

(x̂, λ̂) of A is a measure of how well the estimation
satisfies Equation 1 and is computed as

r = Ax̂− λ̂x̂. (3)

The norms of the residuals can then be found:

∥r∥2 =
√
r†r =

√√√√ n∑
i=1

r2i . (4)

A smaller residual norm indicates a better eigen-
pair approximation.
In this work, we restrict ourselves to the Lanczos

and Generalized Davidson methods.

2.2.1 The Lanczos Method

The Lanczos algorithm employs a 3-term recur-
rence to establish a Krylov basis V ∈ Cn×d span-
ning A ∈ Cn×n. It is particularly useful when
dealing with symmetric matrices. While the basis
V is being formed, the matrix H ∈ Cd×d = V †AV
is also being built. When A is symmetric, H be-
comes a symmetric, tridiagonal matrix of the form:

H =


α1 β2

β2 α2 β3 · · ·
. . .

. . .
. . .

βd−1 αd−1 βd

βd αd

 = V †AV. (5)

This form of H is well-suited for use by the RR
method, as it circumvents the need for the orthog-
onalization of V . Lanczos targets the eigenpairs
corresponding to the eigenvalues of A situated at
the extreme ends of the eigenspectrum.
Algorithm 2 outlines the Lanczos process. On

line 12, the new basis vector is constructed through
a simple 3-term recurrence without additional or-
thogonalization. After establishing the Krylov ba-
sis, line 13 invokes RR to extract the approximate
Ritz pairs of A.
V should always maintain orthogonality in the-

ory. However, as eigenpairs converge, repeated di-
rections of the converged eigenvectors reenter the
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basis, causing convergence degradation or stag-
nation due to the loss of orthogonality and in-
creased condition number of V . To mitigate this
issue, a few strategies practitioners employ are full-
orthogonalization Lanczos and restarting.

Full-orthogonalization Lanczos, as its name sug-
gests, orthogonalizes all new basis vectors against
the preceding vectors in the basis, which ensures V
remains orthogonal at all times. Referencing Al-
gorithm 2, this would add an additional line after
line 12 that uses an orthogonalization technique
such as the Classical Gram-Schmidt process.5

Another notable expansion of the classic Lanc-
zos algorithm is restarting, which is used to over-
come challenges related to memory constraints
and orthogonalization issues and accelerate con-
vergence in instances of stagnation. Once the
number of columns in V reaches a user-defined
threshold d and not all desired eigenpairs have
converged, restarting is initiated.25 The standard
Lanczos restarting technique discards the entire
Krylov basis before restarting Lanczos using a new
initial starting vector. This approach may result
in a slower convergence due to the loss of conver-
gence information.11

Thick-Restarted Lanczos handles this limitation
by explicitly restarting the basis with multiple Ritz
vectors.31 In this method, the k Ritz vectors cor-

responding to the smallest or largest Ritz values,
depending on the sought eigenpairs, are preserved,
allowing the most significant information in the
basis to be retained. k is referred to as the restart
size, and is defined by the user.

2.2.2 The Generalized Davidson Method

The Davidson algorithm was designed to address
large, sparse eigenproblems common in quantum
chemistry,6 and Generalized Davidson (GD) was
later introduced to incorporate a basis restart-
ing technique.20 What sets GD apart from other
Krylov methods is how it expands the basis and
that it allows the use of preconditioning.

Unlike methods such as Lanczos, GD expands
the basis using the residual of the first uncon-
verged eigenpair to “target” it and accelerate its
convergence. When introducing this new basis
vector, GD orthogonalizes it against all previous
vectors using Classical Gram-Schmidt (CGS).24 If
the basis fills up before all eigenpairs are con-
verged, the method restarts with the first k uncon-
verged Ritz vectors, similar to the restarted Lanc-
zos algorithm. It then continues iterating until all
estimated eigenvectors are marked as converged,
or a user-specified number of the iterations have
passed. A more detailed depiction of the GD al-
gorithm is provided in Algorithm 3.

Although this algorithm may entail higher com-
putational costs than methods such as Lanczos,
several advantages often justify these expenses.
Firstly, GD offers faster convergence, particularly
when solving large, sparse eigenproblems.20 Sec-
ondly, it can further enhance convergence rates
due to the incorporation of preconditioning. Fi-
nally, it exhibits robustness across different prob-
lem types, making it applicable to various scientific
domains.

Sketching

Randomized Numerical Linear Algebra (RNLA)
has grown in popularity due to randomized al-
gorithms offering advantages in speed, reliability,
and cost-effectiveness.17 These algorithms can be
applied to various domains, including solving the
least-squares problem,23 preconditioning,9 singu-
lar value decomposition (SVD),7 and orthogonal-
ization.3

One technique within RNLA is random sketch-
ing, also known simply as sketching, which oper-
ates as a dimensionality reduction method to lower
the computational costs of matrix operations while
still providing accurate estimations. Originally,
sketching was utilized in solving n×d least-squares
problems, formulated by the equation:

minimizey∈Cd∥V y − f∥2. (6)
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where V ∈ Cn×d with n ≫ d.23

Subsequently, the sketched least-squares prob-
lem reformulates Equation 6 into the reduced s×d
problem:

minimizey∈Cd∥S(V y − f)∥2. (7)

where S ∈ Cs×n is the sketching matrix and n ≫
s.
In a paper by Sarlos,27 he states that the sketch-

ing matrix S is considered a subspace embed-
ding for matrix A ∈ Cn×n with distortion factor
ϵ ∈ (0, 1) if

(1− ϵ) · ∥Ay∥2 ≤ ∥SAy∥2 ≤ (1 + ϵ) · ∥Ay∥2, (8)

noting that the optimal size for the embedding di-
mension is s ≈ d

ϵ2 . From this equation, we can
also infer that if the original problem yields a small
residual, the sketched problem will similarly result
in a small residual.
In their 2022 manuscript, Nakastukasa and

Tropp noted that RR could also be cast as a least-
squares problem:

minimizeλ,x∥Ax− λx∥2, (9)

presenting an opportunity to apply sketching tech-
niques to Krylov-based iterative methods.21

2.3.1 Sparse Maps

The sparse dimension reduction map,19,22 also
known as Sparse Maps, is one method used to con-
struct a sketching matrix. Defined as

S =
1√
s
[s1, s2, · · · , sn] ∈ Cs×n, (10)

the sketching matrix S ∈ Cs×n consists of sta-
tistically independent columns, with each column
si containing exactly z nonzero element, implying
that nnz(S) = z · n. Each nonzero element of S
is drawn from the Steinhaus distribution, which is
uniform on the complex unit circle, for a complex
matrix, or chosen as ±1 with 0.5 probability for a
real matrix.

The computational cost of applying S to some
matrix A ∈ Cn×n is O(z ∗ nnz(A)) if leverag-
ing a software library capable of sparse matrix
operations. When constructing a Krylov basis
V ∈ Cn×d, with d being the maximum basis
size, we adhere to the conventions outlined in
Nakatsukasa and Tropp’s manuscript by setting
z = ⌈2log(1 + d)⌉.21

Lanczos with Sketched
Rayleigh-Ritz

As mentioned in Section 2, one notable limitation
of the Lanczos method is that when searching for
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many eigenpairs, the Krylov basis being built will
eventually lose orthogonality due to repeated di-
rections appearing in the basis V . Reorthogonal-
ization methods can prevent this but may lead to a
bottleneck in computation. This is the motivation
behind using Lanczos in conjunction with sketched
RR.
Sketched RR (sRR) solves the eigenvalue prob-

lem on the sketched system C†Dy = λy, and does
not require a fully orthogonal basis to extract in-
formation as long as κ(V ) < ϵ−1

mach. Here, C ∈ Cs×d

is the sketched Krylov basis, SV , and D ∈ Cs×d

is the sketched projected basis SAV . ϵmach refers
to the machine epsilon of a system, which in most
modern systems is ≈ 1E − 16.
Once V begins to lose orthogonality, κ(V ) will

inevitably grow to surpass ϵ−1
mach, rendering sRR

pointless. There have been two proposed ways
of handling this situation. The first method is
whitening ,23 which computes the QR decomposi-
tion of the sketched basis,

[U, T ] = qr(C). (11)

Here, U ∈ Cs×d is an orthonormal matrix, and T ∈
Cd×d is an upper triangular matrix and C = UT .
Not only is κ(T ) ≈ κ(C) ≈ κ(V ), T can be used to
“pseudo-orthogonalize” V , bringing the κ(A) back
down to ∼ 1. The whitened basis V̂ is computed

V̂ = V T−1 (12)

before proceeding with sRR. Similarly, C must be
recomputed as SV̂ and D as SAV̂ .
The second method, known as stabilization,21

computes the truncated SVD12 of the sketched ba-
sis

[USVD,ΣSVD, V
†
SVD] = svd(C), (13)

throwing away all singular triplets (ui, σi, vi)
where σmax

σi
> ϵ−1

mach. The eigenvalue problem is then
solved on the truncated system

U†
SVDDVSVDŷ = λΣSVDŷ. (14)

This results in the Ritz pairs of A, (V VSVDŷ, Λ).
The computational cost between whitening and
stabilization is approximately the same.
Preliminary experiments were run to compare

the effectiveness of whitening compared to sta-
bilization. Results, shown in Figure 1, indicate
that while whitening reduces the condition num-
ber of the sketched basis more than stabilization,
it also results in convergence stagnation when ap-
plied at every instance of sRR while yielding worse
Ritz pair approximations than when stabilization
is used every time sRR is called.
For this reason, we do not use whitening at all

and solely rely on stabilization when computing
sRR with κ(V ) > ϵ−1

mach. This decision leads to our

version of sRR algorithm, delineated in Algorithm
4.
We implemented Algorithm 4 1 into the C/C++

high-performance eigensolver library, PRIMME.28

The Lanczos method, previously not in PRIMME,
was implemented per Algorithm 2, and adapted
to be run with RR and sRR, depending on the
user’s input parameters2. The only difference be-
tween Lanczos with RR and with sRR is that
we no longer need to explicitly store the matrix
H ∈ Cd×d, and on line 12, the Rayleigh-Ritz func-
tion call is changed to its sketched counterpart.

Lanczos Experiments

Initial tests were conducted in MATLAB to evalu-
ate the efficiency of Thick-Restarted Lanczos with
sRR compared to Thick-Restarted Lanczos with-
out sketching. The parameters utilized for this
experiment were as follows:

• A = diag(
√
1 : 5000)

• Maximum basis size = 100

• Restart size = 20

• Seeking 10 eigenpairs of largest magnitude

• Convergence tolerance = ϵmach

• ϵ−1
mach = 4.5036E + 15

The results of this experiment are shown in Figure
2.
Observation of Figure 2 reveals an immediate

stagnation in the convergence of Thick-Restarted
Lanczos with sRR. Subsequent analysis revealed
that the descent direction of the sketched Ritz
vectors used to restart the Krylov basis no longer
corresponded to the direction of the actual eigen-
vectors of A. These results were consistent across
various input parameters and matrix types. Con-
sequently, it became apparent that sRR, when
paired with the Lanczos algorithm, can not be
used when restarting. As a result, all subsequent
experiments were conducted using unrestarted
Lanczos.
Next, we turned our attention to comparing the

time it took sRR with unrestarted Lanczos to run
compared to RR with unrestarted Lanczos, as well
as the difference in the number of iterations until
full convergence was reached. All tests were con-
ducted using 32 MPI processes on one node of the
Femto subcluster at William & Mary, where each
compute node is a 32-core 960 Xeon Skylake with
a clock speed of 2.1GHz.1 While experiments are
still being conducted, some initial results can be
seen in Figure 3.

1https://tinyurl.com/SketchedRR
2https://tinyurl.com/PrimmeLanczos
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Figure 1: Comparisons of convergence between 3-term Lanczos with sRR utilizing whitening and stabi-
lization to manage the condition number of the basis. Parameters: A = diag(

√
1 : 5000), basis size =

1000, eigenpairs = 10 LM, convergence tolerance = ϵmach, ϵ
−1
mach = 4.5036E+15.

Figure 3 shows the 3-term Lanczos method run
with the following parameters:

• A = diag(1.00001[1:1E+6])

• Maximum basis size = 3000

• Seeking 100 eigenpairs of largest magnitude

• Convergence tolerance = 1E − 6

While we present results for a specific matrix run,
our observations generalize across all matrices and
inputs tested. Initially, we note that the conver-
gence rates of unrestarted Lanczos for sketched
and nonsketched RR are nearly identical. This
consistency was observed across various matrices,
sough eigenpairs, and basis sizes.
Although the convergence rates for sketched and

nonsketched RR with Lanczos are similar, there
is a notable disparity in the runtime. For the
specified matrix and basis size, the total runtime
was approximately 61 seconds for the nonsketched
run, with about 58 seconds spent within the RR
function. In contrast, the sketched run took ap-
proximately 1,500 seconds, with 439 seconds be-
ing spent in the sRR function, while the remaining
time was spent maintaining the sketched basis via
sparse matrix-vector multiplications.
These observations yield a few conclusions:

• Our method may not be implemented opti-
mally, warranting further investigation into
the code

• The performance advantages of sRR might
only become apparent when using larger ma-
trices or basis sizes. A comprehensive analysis
of the computational complexities of the two
methods is necessary.

Generalized Davidson with
Sketched Rayleigh-Ritz

Upon realizing the incompatibility of Thick-
Restarted Lanczos with sRR, using Generalized
Davidson emerged as the next logical step. Given
that GD expands the basis with residuals of the
unconverged Ritz vectors, maintaining the descent
direction and preserving orthogonality is inherent.
Several adjustments were necessary in modify-

ing the base GD code3 within PRIMME, with spe-
cific implementation details to be noted:

1. By default, PRIMME’s GD implementation
operates as a hybrid method, switching to the
JDQMR method once convergence slows. For

3https://tinyurl.com/PrimmeDavidson
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our purposes, this dynamic method was dis-
abled.

2. When sRR is turned on, locking within GD is
disabled.

3. Any orthogonalization done within GD is dis-
abled when sRR is turned on, except during
the verification of estimated residual norms
marked as converged right before returning.
During restart, a pseudo-orthogonalization is
performed on the restarted basis.

Davidson Experiments

All experiments utilizing GD in PRIMME were
again conducted using 32 MPI processes on one
node of the Femto subcluster at William & Mary,
as detailed in Section 4. Tests were conducted with
the following parameters:

• A = diag(1.00001[1:1E+6])

• Maximum basis size = 200, 1200, or 2200

• Seeking 1, 100, 500, or 1000 eigenpairs of
largest magnitude

• Convergence tolerance = 1E − 6

• Restart size = # of eigenpairs sought

If an experiment exceeded 48 hours, it was forcibly
terminated.
Figure 4 illustrates a single run of GD seeking

100 eigenpairs corresponding to the eigenvalues of
largest magnitude with and without sketching. It
is important to note that both methods were ter-
minated prematurely as their runtimes reached the
48-hour threshold without achieving convergence
for all eigenpairs.
Observations derived from this figure remain

consistent across all matrices and input param-
eters tested. Notably, GD with sRR exhibits a
slower convergence rate than its nonsketched coun-
terpart. While a higher number of iterations to
reach convergence is acceptable if each iteration
requires less time, this isn’t the case.
To further understand the runtime discrepancy,

the average time per iteration is broken down in
Figure 5.
Even though GD with sRR consistently required

more time per iteration than RR regardless of the
number of eigenpairs sought (1, 100, 500, or 1000),
the ratio between the two methods remains rela-
tively consistent. Specifically, sRR takes approxi-
mately 7.5x more time, most of which is dedicated
specifically to the sketched Rayleigh-Ritz function.
This suggests that the issue may not lie within
the implementation itself, but rather the inherent
computational costs of the two methods. Further
investigation into this matter is required.

Future Work

While this work remains ongoing, we are actively
pursuing various avenues for refinement and explo-
ration. These include:

1. Investigation of the PRIMME code to further
optimize the performance of sketching.

2. Conducting a comprehensive computational
cost analysis of the Lanczos algorithm with
and without sketching, as well as the Gener-
alized Davidson algorithm with and without
sketching in PRIMME.

3. Expanding experiments to encompass a wider
range of matrices and input parameters to
gain a more comprehensive understanding of
the methods’ behavior.
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Figure 2: Comparisons of convergence between Thick-restarted 3-term Lanczos with classical RR and
sRR.

Figure 3: Convergence rates of the 1st, 50th, and
100th eigenpairs

4. Potential integration sRR with other Krylov-
based iterative methods to explore their com-
bined efficiency.

5. Exploration of the use of block methods in
conjunction with sketching to potentially in-
crease efficiency and scalability.

Several of these points have already been explored
or are currently being analyzed by us, but are not
yet ready to be shared.

Conclusion

This work incorporates the sketched Rayleigh-
Ritz (sRR) algorithm into the high-performance

Figure 4: Convergence of targeted eigenpairs of
GD with and without sketched. Results with
sketching are shown in res, while results without
sketching are shown in blue.

C/C++ software library PRIMME. PRIMME is
designed to utilize iterative techniques for approxi-
mating the eigenpairs of a matrixA. Subsequently,
we evaluated the efficiency of the sRR method in
conjunction with two Krylov methods: Lanczos
and Generalized Davidson. The outcomes of these
tests were compared against their non-sketched
counterparts.

Though this study remains ongoing, several in-
sights have already be emerged. First, when
the condition number of the Krylov basis exceeds
ϵ−1
mach, utilizing sRR with stabilization proved more
effective than using sRR with whitening. Sec-
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Figure 5: Break-up of where time is spent per iteration on average when seeking 1, 100, 500, and 1000
eigenpairs using GD with and without sketching

ondly, Thick-Restarted Lanczos is incompatible
with sRR due to the sketched Ritz vectors no
longer corresponding with the descent direction of
the actual eigenspace. While unrestarted Lanczos
is compatible with sRR, the lack of orthogonaliza-
tion resulted in repeated directions continuously
entering the basis, causing stagnation as stabiliza-
tion discards these vectors without altering the ba-
sis itself.

Generalized Davidson (GD) maintains the ba-
sis’s low condition number by solely expanding
with the residuals of unconverged Ritz pairs, which
are inherently orthogonal to the basis. Sketched
Ritz pairs can also be used to restart the GD
method. However, the number of iterations re-
quired for all eigenpairs to converge increases when
using sRR without any reduction in runtime.

In future work, we aim to optimize our sRR al-
gorithm within PRIMME and conduct an exten-
sive computational analysis to compare our timing
results with the accrued theoretical complexities.
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