
1
Stalnaker

SBOMS AS A SOLUTION IN THE SOFTWARE SUPPLY CHAIN

Trevor Stalnaker

William and Mary

Abstract

Software Bills of Materials (SBOMs) have emerged as

a tool to facilitate the management of software depend-

encies, vulnerabilities, licenses, and the supply chain.

While significant effort has been devoted to increasing

SBOM awareness and developing SBOM formats and

tools, recent studies have shown that SBOMs are still

an early technology and not yet adequately adopted in

practice. This report* expands on previous research by

comprehensively investigating the challenges stake-

holders encounter when creating and using SBOMs. We

survey 138 practitioners belonging to five stakeholder

groups (practitioners familiar with SBOMs, members of

critical OSS projects, AI/ML, cyber-physical systems,

and legal practitioners) using differentiated question-

naires, and interview 8 survey respondents to gather

further insights about their experience. We identify 12

major challenges facing the creation and use of

SBOMs, including those related to SBOM content, de-

ficiencies in SBOM tools, SBOM maintenance and ver-

ification, and domain-specific challenges. We highlight

4 actionable solutions to these challenges and present

the major avenues for future research and development.

Introduction

The software supply chain has increasingly grown in

complexity with the proliferation of open-source soft-

ware (OSS) and AI/ML components. Consistent with

NASA’s stated directives on technology sharing, organ-

izations and developers often accomplish tasks by inte-

grating components from a variety of vendors. How-

ever, leveraging external packages does not come with-

out a cost. The fate of a software product becomes in-

trinsically tied to its evolving dependencies. If a de-

pendency displays a vulnerability, then so too could the

final product, potentially leading to severe conse-

quences. Moreover, failing to comply with the license

terms of software dependencies can lead to severe legal

and economic consequences for organizations.

Software Bills of Materials (SBOMs) have emerged as

a way to facilitate the management of dependencies10,

* The content of this report is supported by work that is

to be published at ICSE ’246.

leading to improved management of software vulnera-

bilities, enhanced license compliance, and increased

transparency in the software supply chain9.

The 2021 US Presidential Executive Order 14028 on

Improving the Nation’s Cybersecurity3 gave momentum

to SBOM formalization and adoption as it requires

companies selling software to the US government to

provide SBOMs. This was prompted by recent supply

chain attacks, such as the SolarWinds breach, and criti-

cal vulnerabilities such as those affecting the Log4J li-

brary. SBOMs are currently championed by the NTIA

and organizations such as the Linux Foundation and

OWASP. Significant effort has been put into promoting

SBOM formats and tools that can create and process

SBOMs, with the goal of increasing adoption and fully

enabling the benefits that SBOMs offer9.

Although organizations and developers have acknowl-

edged the importance of SBOMs and anticipate using

them more frequently in the coming years8,15, recent re-

search highlights concerns regarding commitment to

SBOMs and the actualization of SBOM benefits8,19.

These concerns arise due to the lack of industry agree-

ment regarding the content of SBOMs across different

domains, as well as how they should be employed and

integrated into their development and operational pro-

cesses18,70. An additional barrier is the lack of mature

tools for SBOM production and consumption8,19,21.

Considering this it is imperative to understand (i) how

developers and other stakeholders currently create and

use SBOMs, (ii) additional opportunities/benefits that

SBOMs can offer for different types of software and

stakeholders, (iii) the specific challenges that prevent

stakeholders from fully enjoying SBOM benefits, and

(iv) actionable solutions to overcome such challenges.

Background

A Bill of Materials (BOM) refers to a list of raw materi-

als, components, and parts needed to manufacture an

end product. The concept has been applied to software

systems as Software BOMs (SBOMs), which identify a

project’s dependencies and their provenance. SBOM

2
Stalnaker

use cases include component inventory, vulnerability

analysis, and license compliance. Two Major SBOM

format specs currently exist: SPDX and CycloneDX.

As modern software systems go beyond the mere inte-

gration of libraries and frameworks, various initiatives

have proposed different types of BOMs to account for

other components typically integrated into a software

system (e.g., hardware devices, firmware, APIs, or

AI/ML models). To this end, our study targets specific

populations of software stakeholders (e.g., AI and

Cyber-Physical Systems practitioners) to understand

needs that could be fulfilled by various kinds of BOMs.

While SBOMs have existed for some time1,2,7, they are

only now becoming more widely known12,20. The analy-

sis of their uses and shortcomings has been investigated

only by a few recent studies5,19,21. A comparison be-

tween our study and the most related prior studies, re-

garding methodology & scope can be found in our

ICSE submission6, and a more detailed comparison can

be found in our replication package17.

Study Design

This study aims to investigate the challenges encoun-

tered by stakeholders when creating and using SBOMs,

and how such challenges can be addressed.

We aim to address the following research questions:

RQ1: How do stakeholders create and use SBOMs?

RQ2: What challenges occur in this process?

RQ3: What are solutions to SBOM challenges?

Next, we describe the study methodology, which in-

cludes five distinct surveys and follow-up interviews

with participants from different stakeholder groups. See

Fig. 1 for a high-level overview of our methodology.

As the study involves human subjects, the methodology

was approved by the ethical board of the college.

Survey Design

We designed survey questions considering our RQs,

previous literature on SBOMs, and general guidelines

for survey design.

Since the study involves a general population of: (1)

software developers and other stakeholders that have

interacted with SBOMs, and (2) domain specialists

(AI/ML, CPSs, and legal practitioners), we designed

questionnaires with questions asked to all stakeholder

groups and questions asked to the specific groups.

The surveys contain a mix of (five-point) Likert-scale,

multiple-option, and open-ended questions that asked

about: SBOM content, use cases, benefits, distribution

preferences, challenges, potential solutions, dependency

management practices, and legal aspects. All question-

naires also featured a consent form, a statement about

data confidentiality, and a demographics section. Partic-

ipants who completed the survey entered a lottery to

win one of ten $50 USD Amazon gift cards.

Participant Identification

To explore different facets of SBOM usages, we identi-

fied 5 participant groups: SBOM Community and

Adopters, contributors of critical OSS13, AI/ML, Cyber-

Physical Systems (CPS), and legal practitioners.

 SBOM Community and Adopters (SBOM C&A)

Contacting people who directly use SBOMs and related

technologies allowed us to obtain firsthand feedback on

how SBOMs are currently used, as well as any per-

ceived deficiencies in current SBOM standards and

tools. Within this group, we identified five sub-groups

of stakeholders. We asked participants to self-identify

as belonging to one or more of the following groups:

SBOM Consumers: Read existing SBOM to gather in-

formation on dependencies, vulnerabilities, or licenses.

SBOM Producers: Document a software system and its

dependencies with an SBOM using a particular format.

SBOM Tool Makers: Contribute to the development of

tools that facilitate the creation or use of SBOMs.

SBOM Educators: Create or compile educational re-

sources about SBOMs, including guides and tutorials.

SBOM Standard Makers: Contribute to specifications

for the creation and usage of SBOMs.

Eligible participants for this group were identified

based on their potential experience with SBOMs, the

Figure 1: Methodology Overview

3
Stalnaker

supply chain, and software development, via a combi-

nation of three different approaches:

Keyword-based search of GitHub repositories. Combin-

ing manual effort and automated tools (based on

GitHub APIs), we located public GitHub repositories by

searching issues, commits, and files for keywords and

traces related to SBOMs and the supply chain. Next, we

considered contributors to those repositories and gath-

ered only publicly available contact information.

Identifying dependencies between GitHub repositories.

We found additional participants by (1) examining

GitHub profiles/organizations that listed projects with

SBOM-related tags as topics, and (2) using GitHub’s

dependency feature to locate dependent projects with

SBOM-related tags. These repositories and their con-

tributors logically represent groups currently using

SBOMs. In total, we identified 4,423 developer email

addresses via GitHub mining.

Sharing the survey in mailing lists. To locate additional

individuals familiar with SBOMs, we published a call

for participants through SBOM-related mailing lists, in-

cluding the SPDX and the OpenChain mailing lists.

 Developers of Critical Open-Source Systems

The Open-Source Software Foundation’s workgroup on

Securing Critical Projects compiled a list of the 102

most critical OSS, comprising 564 total repositories13.

The projects include the Linux Kernel, programming

languages, package managers, build systems, databases,

etc. Given the role of SBOMs in the software supply

chain, we sought to administer a targeted survey exam-

ining these critical projects, which are widely depended

on and may have a greater need to produce, use, and

distribute SBOMs. The actions of these projects are

also likely to represent and set the tone for the rest of

the open-source landscape. Also, examining these pro-

jects allowed us to assess how SBOMs have spread be-

yond early adopters.

Using the GitHub API, we mined the top-10 contribu-

tors (by # of commits) for each of these 564 reposito-

ries. Where there were fewer than ten total contributors,

we examined all that were available.

 CPS Developers and Researchers

These are people with expertise in cyber-physical sys-

tems (autonomous vehicles, medical monitoring and in-

dustrial control systems, robots etc.), which entail a

close interaction between hardware and software. Given

these systems have their own supply chains and are

becoming more popular in certain domains, surveying

this group allowed us to examine unique challenges fac-

ing the usage of SBOMs and HBOMs, as well as how

the two may interact. CPS participants were identified

from our professional network.

 AI/ML Developers and Researchers

These are: (i) Top-10 (by number of commits) develop-

ers that contribute to a machine learning project hosted

on GitHub (with 100+ stars) and expose a public pro-

file. AI/ML projects were identified by matching the

projects’ topics to keywords such as "machine learning"

or "artificial intelligence" (see the full list of keywords

in our replication package17); and (ii) AI/ML practition-

ers in our academic/professional network.

AI/ML components have their own supply chains but

are also increasingly integrated into traditional software

products. Model/data provenance is essential to security

(e.g., model poisoning), licensing, usage, and research

of AI/ML systems. The needs, challenges, and use cases

facing AI/ML developers may be similar and different

from those of typical SBOM users. By surveying this

group, we aimed to understand these similarities and

differences.

 Legal Practitioners

Through our professional network, we identified a legal

practitioner with a technical background who could an-

swer questions about non-technical challenges facing

SBOM use. This includes examining how SBOMs in-

teract with regulations, contractual obligations, and

more. The views of one respondent are not representa-

tive of the field at large, but with only a small pool of

legal practitioners having software development and

SBOM experience, this group is the hardest group to

survey at scale.

Survey Response Collection and Analysis

Survey responses were collected using Qualtrics4. Sur-

vey participants were only presented with questions re-

lated to the group(s) they selected. The survey for

SBOM community and adopters was kept open for four

months, with three waves of invitations. The remaining

surveys were kept open for two to four weeks.

Via email and mailing list posts, we invited 4.4k+ indi-

viduals to participate in the surveys and received 229

complete responses in total. After removing personal

information, the responses were analyzed following the

procedure described below, resulting in 150 valid re-

sponses. Table 1 provides details on our responses.

4
Stalnaker

Table 1: Survey Respondents

For closed-ended questions, we aggregated results us-

ing descriptive statistics and discussed them. We exam-

ined responses from Likert-scale questions to determine

practitioner sentiments, as well as frequently selected

answers to multiple-choice questions to identify com-

mon SBOM use cases and challenges. We report the

most frequently selected answers in Study Results.

For open-ended questions, a coding approach was ap-

plied in line with16. Two researchers ("annotators" in

the following) performed a first phase of open coding

on the first 28 valid responses of 101 received for the

SBOM community and adopters survey. They inde-

pendently assigned one or more codes to each response.

Once both annotators completed the open coding for the

first 28 valid responses, they convened to settle disa-

greements and consolidated a set of labels. Since multi-

ple codes could be assigned to each response and disa-

greements were discussed, we did not base our analysis

on inter-rater agreements.

From this point, the remaining responses were coded by

the annotators independently. During the further coding,

the annotators started from the previously established

codes (available in a shared spreadsheet); yet, they had

the option of adding new codes, that would, in turn, be-

come available to the other annotator.

When coding was completed, annotators met to discuss

their coding and reconcile the disagreement cases. Re-

sults were analyzed by leveraging descriptive statistics

on the codes the annotators assigned to each question.

Throughout the whole coding process, the annotators

flagged and reviewed answers that were nonsensical,

did not answer the survey questions, were copy-pasted

from the web, or appeared to be generated through

ChatGPT. In this way, 41 responses were removed from

the analysis. Another 20 responses were removed be-

cause of numerous blank or repeated answers, and 18

were discarded as spam (e.g., same email/IP addresses

or identical responses).

Interview Design and Response Analysis

We conducted one-hour semi-structured interviews with

eight participants of the surveys, to gather deeper

knowledge about their experience and responses.

We selected respondents from the 5 surveys whose re-

sponses warranted further investigation. We sought in-

terviews with respondents who (1) gave detailed replies

highlighting interesting use cases, challenges, and po-

tential solutions; (2) demonstrated experience in their

field; and (3) diversified our interviewee pool in terms

of their role (consumers, producers, etc.). We hoped to

capture a variety of perspectives from respondents fa-

miliar with SBOMs and those that were not but had in-

teresting thoughts on how SBOMs might affect them.

The interviews were conducted in two parts. The first

part asked follow-up and clarification questions which

varied depending on the survey responses of each inter-

viewee (e.g., You highlight the importance of identifiers

for each software element. Why are these identifiers so

important?). For interviewees in the SBOM C&A

group, a second part of the interview featured five ques-

tions that were common across interviews in that group.

Interviews were conducted over Zoom and recorded

with the participants’ permission. The recordings were

transcribed using the Whisper speech recognition tool.

The interviews included two researchers, taking notes

about the given responses. The same authors parsed and

analyzed participant responses and notes individually,

employing an open coding strategy like that used in the

analysis of the survey responses and discussing the cod-

ing when needed. Interviewees were given a $50 USD

Amazon gift card.

Study Results

56% of the study participants are familiar with SBOMs.

RQ1: SBOM Creation and Usage

 SBOM Awareness and Formats

Of the 50 producers, consumers, and tool makers sur-

veyed, 16 reported using SPDX, 8 CycloneDX, and 12

both. Those that consume SBOM do so frequently:

35.5% (11/31) of participants stated they use them daily

and 29% (9/31) weekly. Of the 22 critical OSS survey

participants, 9 were unfamiliar with SBOMs and 7 were

aware of SBOMs, while not adopting them yet. One in-

terviewee mentioned how the limited interest is also

due to the limited tool support and the need for manu-

ally maintaining SBOMs.

5
Stalnaker

Of 6 CPS respondents, 3 were familiar with HBOMs

and 2 had used them, but with bespoke formats.

No ML practitioners surveyed were aware of BOM for-

mats for AI systems or datasets, but one interviewed

standard maker was on an SPDX team that had worked

on adding fields to SPDX 2.x for ML systems. Since

our initial survey, we have learned that CycloneDX has

added an ML-BOM to its specification.

Participants expressed that pressure to maintain SBOMs

primarily targets industry and projects at the end of a

supply chain, while projects near the beginning have lit-

tle incentive to produce them. Some projects, such as

the Linux kernel, may have no real dependencies of

their own and so do not require dependency manage-

ment methods.

This results in downstream components creating

SBOMs on behalf of their dependencies. Other than be-

ing a cumbersome task done for somebody else; as one

interviewee said, "[the risk is] miss[ing] something be-

cause you got to go back and dig back through all these

different dependencies.”

 SBOM Use Cases, Benefits, and Data Fields

Among SBOM practitioners we found that dependency

tracking (55), security (22), and licensing (22) are the

main use cases for SBOMs. Other responses include

software versioning (14), provenance (10), documenta-

tion (6), and transparency (4).

While tracking vulnerabilities was a main use case for

consumers (80.7%), producers (100%), and tool makers

(83.3%), some respondents were concerned that

SBOMs might provide a road map of vulnerabilities for

attackers.

When 41 SBOM producers, tool makers, and standard

makers were asked which data fields should be included

in SBOMs, responses varied. The most common an-

swers were general information about the software

components: version number (24 of 41), license (22),

component name (18), and a URL to the component

(18). Notably, 13 respondents indicated that the SBOM

should contain unique identifiers for the software com-

ponent the SBOM is documenting and/or its dependen-

cies.

Although we found little evidence to suggest AI and

DataBOMs are being used in practice, respondents

mentioned two potential use cases. These BOMs could

facilitate ML model reproducibility and help to identify

/ verify datasets across academic papers. Specifically,

AIBOMs can provide transparency into how a model

was trained, providing information about its architec-

ture, hyper-parameters, and any pre-trained base models

used. By providing provenance and usage information,

a linked DataBOM can also make developers aware if a

model was trained using a poisoned, biased, or illegally

sourced dataset.

The surveyed and interviewed CPS practitioners men-

tioned that BOMs could serve as regulatory documents

for critical embedded systems and that they could in-

crease the transparency and reproducibility of research

results in academic communities. For these tasks, the

BOMs must communicate information related to the

physical hardware components (part numbers, manufac-

turer, etc.), firmware, and other software (including

configurations) of the system.

 SBOM Generation and Distribution

Despite the NTIA recommendations103, there is cur-

rently no agreed-upon method for distributing SBOMs.

That said, respondents have the expectation that the de-

velopers of third-party components should be the ones

creating, maintaining, and distributing SBOMs along

with their software.

Concerning support for DataBOMs and AIBOMs, two

survey participants mentioned that Hugging Face da-

taset cards could serve as DataBOMs. Three respond-

ents mentioned the same service’s model cards, provid-

ing similar information to AIBOMs.

When asked when SBOMs should be generated, pro-

ducers said: during each build (28/34), when publishing

a major release (21/34), during deployment (19/34), and

at the developer’s discretion (7/34).

RQ2: SBOM Challenges

 C1: Complexity of SBOM Specifications

A common concern among participants is the complex-

ity of SBOM specifications, as stated in this comment:

"[...] one core issue [...] is definitely a tension between

use case coverage and the complexity of the spec."

Adding support for new use cases lengthens and com-

plicates SBOM specifications.

We noticed that the user’s perception of the SBOM

specification is in part determined by their use case. “If

all you’re interested in is licensing, [...] [you] don’t

want to have to learn [about other domains like secu-

rity] just to be able to use the spec.” However, "even if

6
Stalnaker

[SBOM producers] don’t have that use case in mind,

[their] consumers [might]."

Participants also mentioned the lack of adequate educa-

tional resources about the SBOM specifications to bet-

ter communicate their content. One interviewee men-

tioned: "It’s not just simplicity in the spec. It’s not sim-

plicity in the tooling, but how we message it and how

we communicate it."

 C2: Determining Fields to Include in SBOM

While some fields (software versions, licenses, or com-

ponent names) are commonly agreed upon, others de-

pend on the use case. For example, practitioners seek-

ing to analyze their software for vulnerabilities may re-

quire BOMs to link to an external vulnerability data-

base.

Interesting is the case of BOMs for AI/ML. AI/ML re-

spondents expressed the need to include provenance in-

formation about datasets and models in SBOMs, to ena-

ble model verification and reproducibility. Other than

standard SBOM fields, the 20 respondents from this

group pointed out fields such as descriptions of the

training data (17) and validation/testing data (14), pre-

processing steps taken on the data (13), dataset version

(13), and used optimizers/loss functions (13). When

asked about fields needed in DataBOMs, they high-

lighted data sources (18), data transformations (18),

preprocessing steps (17), dataset size (16), known/po-

tential biases (14), and data collection procedures (14).

Of the 6 surveyed CPS practitioners, 3 expressed a need

for hardware part numbers, 2 for testing and quality as-

surance data, 1 for system deployment information, 1

for manufacturer information and location (e.g., com-

pany and geographical location), and 1 for known limi-

tations about parts (e.g., if they are not suitable for cer-

tain tasks due to security risks).

Adding additional fields to SBOM specifications makes

the documents more useful, but as mentioned previ-

ously, also contributes to the complexity of the specifi-

cation (C1).

 C3: Incompatibility Between SBOM Standards

Responses show that competing standards confuse de-

velopers. When consuming SBOMs, 23.33% of the

SBOM practitioners stated that different standards pose

a challenge, due to interoperability issues between

standards and inconsistency between standards and

tooling. Despite this, one practitioner said: "Competi-

tion is good [...] I definitely think that we have moved

faster because of CycloneDX and SPDX having this

kind of competition."

There are also multiple ways of creating an SBOM for

the same piece of software, often for backward compat-

ibility reasons. One practitioner remarked: "You may

have two SBOMs that technically represent the same

software, but they’re being produced by two different

tools, and they look radically different."

Fortunately, respondents suggested there are plans to in-

crease and maintain interoperability among different

standards. As one interviewee put it, "I think [the stand-

ards are] on two different paths now. [...] To say one’s

going to die over the other or try to do the grand con-

vergence and bring them together, you’re just not going

to, it’s just going to take too long. [...] it makes much

more sense to try to get the two groups to collaborate."

Addressing incompatibility between standards would

likely require a community-led effort, creating clear

mappings between them, and developing tools that sup-

port these mappings.

 C4: Keeping SBOM Updated

Once an SBOM has been created, it must be maintained

along with the software it represents. Substantial

changes to an SBOM over time are known as SBOM

drift. Such changes can occur suddenly, such as a dra-

matic increase in the number of dependencies when an

application is added to a container, or when new vulner-

abilities are discovered in dependencies asynchronously

from changes in the software — one interviewee de-

scribed SBOMs as "a static vulnerability snapshot of

the state of a [piece of] software at a certain point of

time."

When asked about deficiencies in standards, 4.35% of

participants expressed issues concerning keeping

SBOM updated (1), upkeep requirements (1), and the

syncing of SBOM versions (1). Of 3 critical OSS devel-

opers that consume SBOM, 1 mentioned difficulty in

keeping SBOMs up-to-date. This motivates a need for

tools which can dynamically update SBOMs as changes

occur [114].

 C5: Insufficient SBOM Tooling

Figure 2 shows stakeholders’ views on whether current

SBOM tools address the needs of their users. While we

generally found a lack of consensus among participants,

7
Stalnaker

we observe that tool makers are slightly more negative.

These results, combined with the participants’ open-

ended answers, suggest that current tool support is in-

sufficient. One participant identified a lack of "auto-

mated ways to generate SBOM for embedded code like

assembly, C, C++."

Across stakeholder groups, there was little familiarity

with tools. 85% of the ML respondents were unaware

of any tool support for generating AIBOMs, and 90%

were unaware of tooling for DataBOMs. Only one CPS

practitioner was aware of existing tools. Part of the

problem may be low demand. One practitioner had used

"a few [SBOM] tools [but] they [didn’t] work very

well," noting that "it would be nice if they were fixed"

but "nobody seems to care because maybe nobody’s us-

ing them."

Some projects with specific features may be unable to

use current tooling, as no support exists for them yet.

For example, one practitioner noted that current tooling

could not "run fast on projects with tens of thousands of

files... They’re not designed to work with very, very

large projects." Two producers faced challenges involv-

ing projects that used multiple programming languages,

suggesting an unmet need for tools to support multi-lan-

guage projects. Similarly, tools should be available for

SBOMs to be created when only certain types of infor-

mation are available, such as building SBOMs from bi-

naries: "[T]here’s source SBOMs. There’s binary only

SBOMs. There’s SBOMs that have dependency infor-

mation. There’s SBOMs that have really just infor-

mation about the package [...]."

 C6: Inaccurate and Incomplete SBOMs

An SBOM is only as good as the information that it

provides. If the information is inaccurate or incomplete,

it becomes difficult for teams to make informed deci-

sions concerning the dependencies, licensing, and secu-

rity of their projects.

According to the results, SBOMs are of varying quality

and are often found wanting. 33% of SBOM consumers

from the SBOM C&A survey mentioned poor quality

SBOMs as one of the challenges they had faced in us-

ing SBOMs. 25% of the consumers from the critical

OSS groups stated the same. Surprisingly, 12% of the

SBOM producers had the same complaint.

Consider that the minimum SBOM requirement would

be to include all direct and transitive dependency infor-

mation, including the URLs of their sources. The legal

practitioner we interviewed mentioned that, in his/her

experience, this condition is rarely met.

Participants also discussed "false positives" in BOMs.

For example, using a dependency that has a vulnerabil-

ity does not necessarily mean the software will be im-

pacted. Determining if a project is actually impacted is

a difficult problem and requires sophisticated tooling.

The problem of inaccurate SBOMs also impacts tool

developers. One respondent described how "it’s been

difficult to build tooling that accepts an SBOM when

I’m not sure if all the fields that I’ll need to depend on

have been filled out."

 C7: Verifying SBOM Accuracy / Completeness

33% of the critical OSS contributors mentioned how

SBOM verifiability is a major challenge. This was also

reported by 3 participants of the SBOM practitioner

survey. The enforcement of SBOM correctness should

not be so strict that it impedes SBOM creation and

adoption. For example, the legal practitioner we con-

tacted cautioned that holding BOM creators liable for

inaccuracies in the documents they produce is a disin-

centive to creating SBOMs at all. For security reasons,

consumers will also need mechanisms to validate the

integrity of an SBOM, to check that nobody has (mali-

ciously) altered it in transit. Well-known solutions, e.g.,

those based on hashing and checksums, can be applied

to this context.

 C8: Differences Across Ecosystems

Participants indicated that SBOM support varies across

languages and package ecosystems. One interviewee

mentioned: "a big part of the bottleneck is just retriev-

ing all the information that needs to go into the SBOM

and getting it from different sources [...] some language

communities do a better job of capturing the metadata

[to] include in the SBOM." Some respondents even

suggested that tools from the same standard (e.g., Cy-

cloneDX) drastically vary in quality across languages.

Figure 2 – Perceived sufficiency of SBOM tooling

8
Stalnaker

As another participant mentioned, this "creates an eco-

system challenge for getting that data in an SBOM in a

reliable way, because there are some data sources that

you can’t really trust."

We also observed challenges of creating SBOMs for

languages with limited or no package managers. A sur-

vey respondent mentioned: "For C/C++ projects, de-

pendencies are typically defined in autotools or cmake

files, and Node, Ruby, Python, Golang, etc. all have

their own dependency management systems; typically

recording exact versions is an output of the build pro-

cess, although this doesn’t come "out of the box" with

C/C++ projects". 25% of the critical OSS developers

surveyed who were familiar with SBOMs listed a lack

of language support as a deficiency in current SBOM

specifications, while 8.7% of SBOM practitioners

agreed. When asked about tool deficiencies, 41.67% of

critical OSS developers surveyed who were familiar

with SBOMs expressed a need for more language-spe-

cific tooling.

 C9: SBOM Completeness vs. Data-Privacy

AI/ML participants indicated that AIBOMs and Data-

BOMs may entail a tradeoff between completeness and

privacy on large datasets, given that these datasets may

contain personally identifiable, private, sensitive, or

proprietary information. CPS respondents also men-

tioned privacy concerns in BOMs, as CPS may actively

collect and process private and sensitive data from the

environment.

 C10: SBOM for Legacy Software

One interviewee expressed the challenge of generating

SBOMs for legacy software, which may be deployed

and used by certain user groups. Even if SBOMs be-

come well-adopted and automatically generated during

software builds, the question of what to do about legacy

software remains. Software that is still regularly main-

tained could feasibly have an SBOM created, but it is

more challenging for older systems where the original

source code is missing or for systems written in lan-

guages that are now substantially less common (e.g.,

COBOL). These languages are less likely to be sup-

ported by open-source SBOM tooling. This is particu-

larly problematic for entities like the US government or

the banking industry. Community-driven effort may be

needed to generate, store, and share SBOMs in such sit-

uations.

An important question is whether, for existing systems,

only the newest releases require an SBOM, or if older

releases that are still used by dependents also require

SBOMs. The respondent said: "if ecosystems did start

to publish SBOMs, [...] it would be great to see [cen-

tralized repository maintainers] go back in time, gener-

ate SBOMs for older packages"

 C11: Inability to Locate Dependencies

There may be cases where during the production or

consumption of an SBOM, a certain dependency cannot

be located. This could happen if a dependency was re-

moved from a package manager (perhaps it was mali-

cious or no longer maintained) or from the associated

repository. One practitioner mentioned: "They [depend-

encies] may have been yanked and removed from the

upstream package registries, meaning that the mere fact

of detecting that they exist could be a challenge" and

"In some cases, [finding your dependency is] a lost

cause in the sense that your source may be dead, the re-

pository has disappeared and you’re left to have to sift

through random snapshots of archive.org calls made on

the website. That’s rare, but that happens."

A centralized database indexed on global IDs and con-

taining provenance information for software reposito-

ries / distributions could allow developers to access crit-

ical information for projects that are no longer hosted or

available. This would essentially be a third-party

SBOM archive.

 C12: Unclear SBOM Direction / Low Adoption

While a recent executive order3 requires companies

selling software to the US government to provide

SBOMs, our results indicate that adoption and

knowledge of SBOM are still limited. Moreover, while

incentives for library users are clear, those for library

creators are not. Given the effort and knowledge needed

for creating SBOMs, most developers forgo this effort.

This suggests a fear that the work required to create and

maintain SBOMs will outweigh their benefits. As one

practitioner said, "I hope that the hype around SBOM

will lead to something that’s productive [...] and will

not just be something which is a compliance require-

ment that’s going to be met in a minimal way.”

Lastly, SBOMs are still a new technology that will take

time to mature. There is still a need to motivate and im-

plement support for consumer use cases. In an inter-

view, one respondent stated, “You know, if you are a

large organization and, say, you take a magic wand, and

tomorrow all your software vendors start to provide ac-

curate SBOMs, what are you going to do with this?”

9
Stalnaker

RQ3: Solutions to SBOM Challenges

 S1: Multi-dimensional SBOM specifications.

We identify 3 dimensions that contribute to the com-

plexity of SBOM specifications: (1) the intended use

case of an SBOM, (2) the type of software the SBOM is

generated for, and (3) the amount of information docu-

mented in an SBOM. Providing clear guidance for these

dimensions is needed to inform consumers/producers

which fields an SBOM should contain (C2), hopefully

reducing the cognitive load placed on users (C1). Only

requiring relevant fields is also likely to improve the

completeness of SBOM (C6).

 S2: Enhanced tooling and build system support.

 Across all surveys, three respondents suggested better

libraries as a tooling solution. One said, "Increased in-

vestment in open-source libraries that can be incorpo-

rated in end user commercial and open-source tools

[can address current deficiencies in tooling]." Well-

maintained, easy-to-use libraries would serve as the

foundation and motivation to develop SBOM tools (C5)

providing functionality for creating, maintaining (C4),

parsing, and managing SBOMs, enhancing the user ex-

perience and, potentially, SBOM adoption. Our findings

indicate the need for language specific SBOM

production tools. A language-agnostic tool is unlikely to

adequately support all scenarios. As such, there is work

to be done creating SBOM generation tools for different

ecosystems, including resolving disparities in the qual-

ity of available tools. Language-specific tooling can be

built on language-agnostic libraries (C8). SBOMs will

likely become more accurate and complete with better

tool support (C6). Moreover, in the current landscape of

varying SBOM quality, consumption tools may also be

responsible for checking the accuracy of the SBOMs

consumed (C7). A respondent noted that consumption

tools "have a perhaps harder job to make sure that the

data that’s being generated is accurate." Furthermore,

existing build systems (e.g., Maven or Gradle) should

be made SBOM-aware: capable of reading and generat-

ing SBOMs: "[O]ne way [for SBOMs to be easier to

use] would be for build tools to start generating them

without asking." We have observed from our surveys

that developers tend to prefer processes or tools that are

commonly used or predetermined: "when the recom-

mended way of doing something is the default, then it

gets done more often." SBOM generation functionality

in build tools would more easily facilitate the update of

SBOMs (C4). We have seen that developers rely on

package management systems to obtain a list of their

project’s dependencies. Many of these systems also

Table 2: Mapping SBOM Challenges to Solutions

10
Stalnaker

provide quasi-SBOM files. If SBOM generation and ac-

quisition could be handled at the package manager

level, we would likely see a large uptick in adoption

(C12). SBOMs could be stored along with other pack-

age information and queried through APIs. Indeed, in-

terviewed practitioners suggested that SBOMs should

be kept as close to the source as possible. As an SBOM

moves further from the source, it is less likely to be up-

to-date (C4). GitHub recently unveiled new functional-

ity capable of generating SPDX documents for a cloud

repository. Through integration with GitHub’s Depend-

ency Graph tool, this capability supports SBOM gener-

ation for a number of popular languages and is easily

accessible to developers, marking a strong start for

SBOM integration. It was also suggested that ML li-

braries could generate AIBOMs or play an integral part

in easily accessing required information: "eventually

there’ll be [...] something built into TensorFlow or

PyTorch [...] that outputs a document [...] that tells you

the key elements [like] the hyper-parameters."

 S3: Strategies for SBOM verification.

One initially apparent method to approach incomplete

or incorrect SBOMs would be to hold parties accounta-

ble for the SBOMs they generate (C6), but this could

lead to unintended consequences. A legal practitioner

said, "[a] requirement for them to certify that it is com-

plete or correct is only going to result in fear of creating

SBOMs. ‘Perfect’ should not be the enemy of ‘good.’"

Beyond this, SPDX SBOMs are licensed under Creative

Commons 0 (CC0), meaning no warranty is included

and the producer assumes no liability. The open-source

licensing of tools protects their creators from litigation

since many licenses also do not provide a warranty.

Two other solutions emerged from our surveys (C7). A

third-party certification or review board could approve

SBOMs and endorse them. However, as one respondent

put it, "central authorities have never seemed to work

too well in our industry [...]". A decentralized approach

could involve the assessment of SBOMs by their con-

sumers and other stakeholders, with issues reported to

the SBOM producer or posted in a shared database.

 S4: Increasing incentives for SBOM adoption.

There is a need to either minimize the effort needed to

create and maintain SBOMs or by gaining other bene-

fits, such as having tools that consume SBOM and help

with developer tasks. Similarly, it is necessary to moti-

vate the creators of the development toolkits to support

SBOM creation (C5). Issuing badges might be a simple

incentive that might promote the adoption of SBOMs

(as it has been in other domains18) (C12). Other stake-

holders could require their participants to provide

SBOMs. For example, the scientific publication of tools

and models could require that artifacts be accompanied

by SBOMs (C12). At the same time, better marketing

and educational materials that emphasize the im-

portance of SBOMs are needed, both for software de-

velopers and consumers. Ultimately, creating and using

SBOMs should be done because it helps to create and

maintain better, more secure, and reliable software, and

that ultimately benefits society.

Bibliography

[1] CycloneDX History. https://cyclonedx.org/about/history/.
[2] SPDX Overview. https://spdx.dev/about/.
[3] 2021. EXECUTIVE ORDER 14028. https://www.nist.gov/itl/execu-
tive-order-14028-improving-nations-cybersecurity.
[4] [n.d.]. Qualtrics. https://www.qualtrics.com/.
[5] Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Mar-
tin Monperrus, Javier Ron, Aman Sharma, Gabriel Skoglund, César Soto-
Valero, and Martin Wittlinger. 2023. Challenges of Producing Software

Bill Of Materials for Java. arXiv preprint arXiv:2303.11102 (2023).
[6] T. Stalnaker, N. Wintersgill, O. Chaparro, M. Di Penta, D. M. German,
and D. Poshyvanyk, “Boms away! inside the minds of stakeholders:
A comprehensive study of bills of materials for software systems,” in
Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, 2024, pp. 1–13.
[7] "Bill Bensing". 2022. History of the Software Bill of Material
(SBOM). https://billbensing.com/software-supply-chain/history-software-

bill-of-material-sbom/.
[8] Stephen Hendrick. 2022. Software Bill of Materials (SBOM) and Cy-
bersecurity Readiness. https://tinyurl.com/293v3xte.
[9] NTIA. 2019. Roles and Benefits for SBOM Across the Supply Chain.
https://ntia.gov/files/ntia/publications/ntia_sbom_use_cases_roles_bene-
fits-nov2019.pdf.
[10] NTIA. 2021. SBOM at a Glance. https://tinyurl.com/txyvbhfu.
[11] NTIA. 2021. Sharing and Exchanging SBOMs.
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchang-

ing_sboms-10feb2021.pdf.
[12] NTIA. 2021. Software Bill of Materials Elements and Considerations.
https://ntia.gov/sites/default/files/publications/uscc_-_2021.06.17_0.pdf.
[13] OpenSSF. 2022. Securing Critical Projects Workgroup: List of Pro-
jects Identified as ’Critical’. https://tinyurl.com/sxpeasey.
[14] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine
McLeavey, and Ilya Sutskever. 2022. Robust speech recognition via large-
scale weak supervision. arXiv preprint arXiv:2212.04356 (2022).

[15] Neil Sheppard. 2023. SBOMs (Software Bill of Materials): Why Do
They Matter? https://www.leanix.net/en/blog/sboms-matter
[16] Donna Spencer. 2009. Card sorting: Designing usable categories.
Rosenfeld Media.
[17] Nathan Wintersgill Oscar Chaparro Massimilano Di Penta Daniel M
German Denys Poshyvanyk Stalnaker, Trevor. 2023. Online replication
package. https://github.com/TStalnaker44/boms_away_study.
[18] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Va-

silescu. 2018. Adding sparkle to social coding: an empirical study of re-
pository badges in the npm ecosystem. In Proceedings of the 40th Interna-
tional Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Mar-
sha Chechik, and Mark Harman (Eds.). ACM, 511–522.
An Empirical Study on Software Bill of Materials: Where We Stand and
the Road Ahead. arXiv preprint arXiv:2301.05362 (2023).
[19] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua Lu, and Liming

Zhu. 2023. An Empirical Study on Software Bill of Materials: Where We
Stand and the Road Ahead. arXiv preprint arXiv:2301.05362 (2023).
[20] Henry Young. [n. d.]. SBOMs: Considerable Progress, But Not Yet
Ready for Codification. https://tinyurl.com/y2xzxs8m.
[21] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and
Laurie Williams. 2023. Software Bills of Materials Are Required. Are We
There Yet? IEEE Security & Privacy 21, 2 (2023), 82–88.

