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Abstract

Triangle meshes are useful for many geome-
try processing tasks. A triangle mesh consists
of a set of points connected to form triangles.
Many triangles are required to faithfully rep-
resent the shape of a surface. The amount of
computation is adversely affected by the num-
ber of elements in a mesh, thus there is a trade
off between mesh quality and computational ef-
ficiency. Mesh simplification algorithms have
been developed to reduce the number of ele-
ments in a mesh while aiming to preserve fea-
tures of its shape. Recently intrinsic mesh sim-
plification was presented separately by Shoe-
maker et al.15 and Liu et al.11. Intrinsic mesh
simplification utilizes intrinsic triangulations to
help navigate the trade off, yielding high qual-
ity geometric approximation. However, current
current algorithms suffer from bent or kinked
edges. We examine the issue of edge kinks and
present an algorithm that avoids bent or kinked
edges.

Introduction

Intrinsic triangulations have proved useful
in many Geometry Processing tasks ranging
from conformal mesh parameterization1,6, to
geodesic computation13, and computing home-
omorphisms between shapes18. Recently intrin-
sic triangulations have opened the door to a new
class of mesh simplification algorithms15,11 bet-
ter able to preserve intrinsic geometry by oper-
ating in a larger space of triangulations14. In-
trinsic mesh simplification yields a coarse intrin-
sic mesh with far fewer mesh elements that is

suitable for many downstream geometry pro-
cessing tasks. Computing on the surface of
the coarse mesh is much faster since fewer el-
ements are used to represent the geometry.
Furthermore the intrinsic representation is de-
coupled from the original embedding of the
surface, ignoring details that are unnecessary
for intrinsic geometry processing. The coarse
mesh produced by intrinsic simplification algo-
rithms is useful for fast approximation of PDEs,
geodesics, and Voronoi cells.

Current intrinsic simplification algorithms
produce a mapping between the coarse and fine
mesh. This map is required to translate com-
putational problems defined on the fine mesh to
one defined on the coarse and vice versa. Eval-
uating the map at mesh vertices is fast, how-
ever, evaluating the map at any other point
is costly, since all coarsening operations affect-
ing the point must be replayed. Furthermore,
after significant coarsening, existing distortion
measures can not be utilized to compute the
geometric distortion induced by the mapping.
This is because significant decimation intro-
duces ‘kinks’ in the edges of triangles as shown
in Figure 1. These bent edges render typical
per-triangle distortion measures ill defined since
such measures assume that a triangle from the
original fine mesh remains a triangle under the
mapping12,8.

In this work we demonstrate that ‘kinked’
edges are caused by the interleaving of edge flip-
ping and conformal flattening operations used
by current approaches. We then present an al-
gorithm that avoids kinks by carrying out all
flattening operations prior to any flipping oper-
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Figure 1: Significant decimation of the bunny
model, reducing the number of vertices from
14290 vertices to 14, introduces ’kinks’. The
aquamarine intrinsic triangle on the bunny
(outlined with red in the bottom figure) con-
tains the projections of many triangles from
the original fine mesh (top), many of which are
bent/kinked.

ations. The algorithm first applies the CETM
algorithm17 globally to flatten the mesh away
from select cones. The algorithm then uses
edge flipping to remove the flattened vertices
to achieve the decimation target. By contrast
current intrinsic simplification approaches inter-
leave flattening and flipping operations by ap-
plying CETM locally to flatten the neighbor-
hood of a vertex before immediately removing
it via edge flips.

Related Work

Intrinsic Triangulations

Our method, and previous intrinsic mesh sim-
plification algorithms operate on intrinsic tri-
angulations. Intrinsic triangulation data struc-
tures enable the decoupling of the triangulation
used to represent the intrinsic geometry of a sur-
face from the triangulation used to represent its
embedding in R3. Decoupling the geometries al-
lows algorithm to efficiently operate on intrinsic
data by ignoring unnecessary extrinsic informa-
tion. Furthermore, given a vertex set, the set
of intrinsic triangulations is immense compared
to the set of extrinsic triangulations. Operating
in this larger space allows more freedom when
computing a triangulation for a specific applica-
tion14. Intrinsic triangulations frameworks pro-
vide a set of operations that can be used to mod-
ify an intrinsic triangulation. An early func-
tional intrinsic triangulation framework, the in-
cremental overlay, was introduced by Fisher et
al.3 and subsequent frameworks have expanded
the set of operations available14,5. Example
operations include vertex insertion, edge spits,
and face splits. The key intrinsic operation re-
quired for existing intrinsic mesh simplification
algorithms, as well as our method, is the in-
trinsic edge flip, illustrated in Figure 2. The
frameworks of Sharp14, and Gillespie5 provided
a means to flip away, i.e. remove vertices, but
only if they were previously inserted. Prior to
intrinsic mesh simplification algorithms, intrin-
sic triangulation frameworks did not provide a
means of removing a vertex contained in the
corresponding extrinsic triangulation.
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Figure 2: An example of an intrinsic edge flip.
The edge between the grey and pink triangles
is flipped. Notice that after the edge flip the
central vertex has valence 3 and is contained in
a triangle. Removing the central triangle yields
the bottom Figure. We call the combination of
flips and removal flip away.

Mesh Simplification

There is vast body of literature concerning mesh
simplification. Here we only briefly discuss con-
cepts necessary to motivate our work and refer
the reader to7 for an in depth survey. The goal
of mesh simplification is to reduce the number
of elements, i.e. vertices and faces, required
to represent a surface. The number of ver-
tices is reduced whilst a desired quality mea-
sure is maintained. The process of reducing the
number of elements is referred to as coarsen-
ing. Classic, extrinsic mesh simplification algo-
rithms coarsen the mesh while preserving some
extrinsic measure, such as visual appearance4.
In contrast, we present an intrinsic coarsening
algorithm which aims to preserve the intrinsic
geometry of the surface.

Recently, intrinsic mesh coarsening was intro-
duced simultaneously by Liu et al.11 (ICE) and
our previous work, Shoemaker et al.15 (IMS).
Both methods achieve coarsening by greedily
selecting vertices for removal before flattening
the neighborhood of the vertex and removing
it. In contrast, our method achieves coarsening
by first flattening all desired vertices simulta-
neously before any vertex is removed. In order
to minimize mesh distortion both ICE and IMS

maintain a deletion queue for vertices ordered
by an intrinsic metric. Our method, however,
can remove vertices arbitrarily since only the
flattening operation introduces distortion. Both
IMS and ICE utilize edge flips to aid in vertex
removal by reducing the valence, or number of
incident edges, of a vertex to three. We refer
to this operation as flip away. When a vertex is
incident to three edges it is contained in a trian-
gle formed by the three vertices that neighbor
it, making removal trivial. Since IMS and ICE
interleave flattening and edge flipping they both
introduce kinked edges after significant decima-
tion. These kinks make typical distortion mea-
sures ill defined Our method ensures that kinks
do not occur, ensuring a higher quality map.

Conformal Parameterization

Our method, as well as previous mesh simplifi-
cation algorithms utilize the CETM algorithm
of Springborn et al.17 to flatten vertices prior
to removal. IMS and ICE both apply CETM
locally, to flatten a single vertex at at time,
whereas our algorithm flattens desired vertices
simultaneously. CETM was designed for confor-
mal mesh parameterization of a mesh. It does
so by scaling the edges of a mesh such that its
vertices have 0 Gaussian curvature except for a
set of cones. The per edge scales are computed
by minimizing an energy function via Newton’s
method.

Background

We briefly present the concepts and notation
required for our exposition.
The intrinsic geometry of a surface is com-

pletely described by a mesh M = {V,E,F} of
vertices V, edges E, and F faces along with a
function ℓ : E → R+, called the metric, de-
scribing the lengths of edges. We typically
denote vertices using single variables, usually
i, j, k, and edges with two variables grouped to-
gether, for example ij. Faces are denoted by
using three variables grouped together, as in
ijk. This notation allows us to specify the rela-
tionship between mesh elements. For example
suppose i, j, k,m ∈ V denote the vertices of tri-
angles ijk, jim ∈ F as in Figure 3. Given ijk
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Figure 3: Neighboring triangles ijk and jim.
Single variables represent vertices, a pair of vari-
ables represents an edge, and a tripple repre-
sents a face.

and jim, we may deduce that ijk connects the
vertices i, j, and k and contains edges ij, jk,
and ki. We can also deduce that ijk and jim
share edge ij ∈ E.

θjki denotes the corner angle in triangle ijk at
vertex i and can be computed using edge lengths
and the law of cosines. We denote the total
angle around a vertex Θi =

∑
θjki , and κi =

2π −Θi is the Gaussian curvature at i.

A pair of intrinsic triangulations with the
same connectivity M = {V,E,F} and edge
lengths ℓ and ℓ̃ respectively are related by a
discrete conformal equivalence17 iff there is a
function u : V→ R such that ℓ̃ij = ℓije

(ui+uj)/2

for every edge ij ∈ E.

Analysis and Method

Our goal is to coarsen a given mesh M0 (de-
scribed intrinsically or extrinsically), yielding
a coarse intrinsic triangulation M∗with a con-
formal mapping taking the triangles of M0 to
geodesic triangles embedded in the intrinsic tri-
angulation M∗. We first describe the causes of
kinked edges and afterwards present our algo-

Figure 4: Interleaving intrinsic edge flips and
edge scaling can introduce ’kinked’ edges.

rithm avoiding them.

Avoiding ’Kinked’ Edges

Kinked edges arise when the intrinsic operations
of edge scaling and edge flipping are interleaved.
Consider the triangulated square in Figure 3.
We shall consider two scenarios. In the first
scenario we shall apply an edge flip before a
conformal scaling, and in the second scenario we
shall apply a conformal scale prior to an edge
flip.

In the first scenario we flip the interior edge
and apply a conformal scale uk at vertex k, scal-
ing edges ℓjk, ℓki, and lmk by euk/2 resulting
in Figure 4. Note that flipping prior to scaling
caused the original edge ij to have a slight bend.
However scaling is performed prior to flipping
then bending is avoided. This provides motiva-
tion for our algorithm; if edge flips appear after
all conformal scaling bent edges can be avoided.

Coarsening via Decoupled Flattening
and Removal

Recall our goal is to decimate a given mesh M0

with metric ℓ to achieve a target number of ver-
tices N . At a high level, Algorithm 1 describes
our decimation strategy. We first apply the pro-
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cedure CETM to flatten all but N vertices, yield-
ing a per vertex function u. The conformal fac-
tors u are then used to scale the edges of M0,
flattening the metric at all vertices except N
cones. Our algorithm then attempts to remove
all flat vertices via the procedure Flip Away,
shown in Figure 2. Flip Away applies intrinsic
edge flips to a vertex until its valence is reduced
to 3, at which time it is contained inside a tri-
angle, making removal trivial. For a boundary
vertex Flip Away first reduces the valence to 2
before removal.

Algorithm 1 first applies the CETM algorithm
to flatten all vertices except N cones. A natu-
ral question arises: how does one select which
vertices to flatten, or equivalently, which ones
do we choose as cones? Computing cones is
non-trivial due to the fact that each choice of
cone changes the global geometry. Cone selec-
tion is an active area of research with many ap-
proaches10,2,9,16. Computing globally optimal
cones is computationally intensive, so to keep
our method feasible for mesh simplification we
must use a heuristic. Following Springborn et
al.17 we use automatic cone placement by taking
a few newton steps and iteratively selecting the
vertex with the largest conformal factor in mag-
nitude. The vertex with the largest conformal
factor has a larger impact on incident edges and
so introduces the largest distortion in its neigh-
borhood. When comparing to ICE or IMS we
use the same cones to get an apples to apples
comparison.

Discussion

The CETM algorithm has many desirable prop-
erties. It formulates conformal flattening (and
in general curvature prescription) as a convex
optimization problem, ensuring it has a global
minimizer. The gradient of the convex energy
is simply half the difference between the desired
total angle of a vertex Θ̂ and the total angle as
a function of the conformal factors, which can
be easily computed. Furthermore, the Hessian
is half of the Cotan Laplacian, which is sparse,
symmetric and easily computed. While CETM
has many desirable properties, our choice of
CETM is not without consequences.

Algorithm 1

Input: Mesh M0 = (V0,E0,F0);
Metric ℓ : E→ R+;
Desired number of vertices N
Output: Intrinsic Triangulation Mesh M∗ =
(V∗,E∗,F∗) s.t. |V∗| = N ;
ℓ̃ : E→ R+

u← CETM(M0, ℓ,N) // Compute conformal
factors
for edge ij ∈ E0 do
ℓij ← e(ui+uj)/2ℓij // Apply conformal fac-
tors

end for
(M∗, ℓ̃) ← Flip Away(M0, ℓ) // Remove flat
vertices via edge flips
return (M∗, ℓ̃)

First, for CETM to converge it may need
to traverse a configuration of conformal factors
that induces degenerate triangles into the mesh.
Springborn et al.17 provide a means to extend
the acceptable values of u to all of R|V |. How-
ever, due to numerical issues, the method can
fail to converge, especially when encountering
challenging geometries and may even fail on
‘nice’ triangulations. Another issue is that the
conformal factors minimizing the energy may
themselves induce degenerate triangles. This
latter problem is handled by Gillespie et al.6,
and separately by Campen et al.1 by model-
ing the problem with ideal hyperbolic triangu-
lations, enabling the use of Ptolemy edge flips
and careful projection schemes. However, both
methods interleave edge flipping and scaling,
leaving open the possibility of kinked edges.
Since our goal is to address the issue of kinked
edges we disallow edge flips prior to confor-
mal scaling, and are susceptible to the short-
comings of CETM. Navigating the interplay be-
tween convergence and bent edges is an active
and ongoing area of research.

A further consequence of using CETM is com-
putational cost. The CETM energy is mini-
mized by taking newton steps, each of which
involves solving a linear system involving the
Hessian and gradient. In practice the cost of
solving a system involving the Laplacian is lin-
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ear in the number of vertices so each newton
step is roughly linear, which may become pro-
hibitively expensive for large meshes. The issue
will be more pronounced with poor triangula-
tions. Adopting a local or local-global hybrid
approach to more efficiently avoid kinked edges
is an ongoing focus of research.

Results and Evaluation

To understand the trade offs of our algorithm,
we fist compare and contrast it to a previous
intrinsic coarsening algorithm, ICE11. After-
words, we show some examples of our algorithm
with high decimation levels.

We ran our algorithm and ICE on a diverse
set of 50 meshes from the Thingi10k19 dataset.
We use three per-triangle distortion measures to
compare the two methods. The first two mea-
sures are the Anisotropic and Area distortion
measures of Khodakovsky et al.8, and the third
measures the relative change in the length of
the edges from the original mesh. In order to
compute these distortion measures we must first
compute the length of an extrinsic edge as it is
embedded in the coarse intrinsic triangulation.
For our algorithm we can easily compute the
edge lengths from the conformal factors. Com-
puting the edge lengths for ICE (and IMS) is not
trivial. Due to the presence of kinks, the em-
bedding of an extrinsic edge is not guaranteed
to be a shortest geodesics, or even geodesics,
in the coarse mesh. We get an estimate of the
length of an embedded edge by tracking the em-
bedding of the edge during simplification. We
accomplish this by inserting pilot points on the
original edge before any simplification occurs.
The pilot points are tracked as ICE progresses
and after simplification the length is estimated
as the sum of the segments between the pilot
points. Clearly if one could track every point
of an edge then the true length could be com-
puted. In practice we insert hundreds of points
per extrinsic edge, depending on its length.

As we noted previously, due to the presence
of kinked edges, per triangle distortion measures
are unable to give a faithful estimate of distor-

Figure 5: An example of our algorithm with
high coarsening. The original mesh contained
14, 290 and the coarsened meshes each contain
14.

tion. So additionally we keep a count of when
the embedding of a triangle violates the trian-
gle, as can occur in the presence of kinked edges.
Table 1 shows a comparison our Algorithm 1 to
ICE using Anisotripic, Area, and length distor-
tion measures. Our algorithm performs much
better than ice when it comes to anisotropic dis-
tortion. The presence of heavy anisotropic dis-
tortion is consistent with the presence of kinked
edges. However, ICE is better able to preserve
area than our algorithm. It appears that ICE
is, on average better able to preserve the metric,
but this appears to be due to the presence of an
outlier as the medians are comparable.

Figures 5 and 6 show two meshes by heavily
coarsening with our algorithm. Notice that no
kinked intrinsic edges occur as is the case with
the mesh produced by ICE in Figure 1.

Conclusion

We examined the issue of kinked edges pro-
duced by current intrinsic mesh simplification
algorithms, including our previous work. In-
trinsic mesh simplification algorithms are able
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Table 1: Mesh simplification statistics over a subset of 50 triangle meshes from the Thingi10K
dataset comparing our Algorithm 1 to ICE.

Anisotropic Area Length

OURS ICE OURS ICE OURS ICE

mean 0.40 1.33e+06 1.02 0.90 1.48e+45 9.03e-01
median 0.09 1.49+03 1.05 3.81e-3 9.90e-01 1.85e-01
std 1.50 3.22e+06 20.7 1.62 1.70e+46 1.58e+00
min 0.00 4.16e-07 -110 -1.58 0.00e+00 1.34e-07
max 13.6 2.28e+07 29.4 7.00 1.96e+47 1.10e+01

Figure 6: An example of our algorithm with
high coarsening. The original mesh contained
14, 290 and the coarsened meshes each contain
14.

to achieve coarsening by scaling mesh edges un-
til a vertex is flat, when it can be safely re-
moved by intrinsic edge flips. These steps are
repeated until the desired decimation level is
achieved. We illustrated that bent, or kinked
extrinsic edges occur when intrinsic edge flips
are interleaved with conformal scaling of mesh
edges. We presented our algorithm for intrinisic
mesh simplification that avoids causing kinked
extrinsic edges by first conformally scalling all
edges until a desired number of vertices are flat.
Our algorithm then safely removes flat vertices
via edge flips until the desired decimation level
is achieved. We compared our method to ICE,
an existing mesh simplification algorithm, and
exhibited a few meshes to illustrate that our
method avoids kinked edges.
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