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The optimization of converging-diverging (CD) nozzles is critical towards a variety of
applications throughout the aviation and space industries — areas closely inline with
NASA’s mission. This study specifically focuses on the application of machine learning
(specifically Genetic Algorithms) and computational fluid dynamics (CFD) software
towards the optimization problem surrounding CD nozzle geometry. By manipulating
the position of control points connected by cubic splines it is possible to create an open
design space and drive the best performing individual CD nozzle towards producing
an isentropic flow field as computed through the Euler equations (Δ𝑆 = 0.0 𝐽

𝑘𝑔𝐾
). The

optimal case produced from this paper took an initial guess withΔ𝑆 = 0.935 𝐽
𝑘𝑔𝐾

to a local
minimum geometry of Δ𝑆 = 0.395 𝐽

𝑘𝑔𝐾
. The foundation developed in this project opens

the door to further work in the application of genetic algorithms towards optimization
of CD nozzles and other subsonic/supersonic fluid components.

Nomenclature

𝛼 = Divergent half angle (deg)
𝛽 = Tanh dist. parameter (dimensionless)
Δ𝑆 = Change in Entropy (𝐽/(𝑘𝑔 ·𝐾))
𝜖 = Expansion ratio (dimensionless)
𝜖𝑐 = Chamber contraction ratio (dimensionless)
𝛾 = Specific heat ratio (dimensionless)
𝜅 = Geometry Curvature
𝜙 = Fitness (𝐽/(𝑘𝑔 ·𝐾))
𝜉 = Non-dimensional coordinate
𝐴𝑒 = Nozzle exit area (m2)
𝐴𝑖 = Nozzle exit ring area (m2)
𝐴𝑡 = Throat area (m2)
𝑏𝑝 = Crossover probability (%)
𝐶𝑝 = Specific heat at constant P (𝐽/(𝑘𝑔 ·𝐾))
𝑘 = Generation number (dimensionless)
𝑘𝑚𝑎𝑥 = Number of generations
𝐿𝑛 = Nozzle length (m)
𝑚𝑝 = Mutation probability (%)
𝑀𝑊 = Mach Number (dimensionless)
𝑀𝑊 = Molecular weight (g/mol)
𝑛 = Number of Individuals
𝑝 = Number of control points (dimensionless)
𝑃𝑐 = Chamber pressure (Pa)
𝑃𝑒 = Nozzle exit pressure (Pa)

𝑃𝑟 = Prandtl number (dimensionless)
𝑅 = Universal gas constant (𝐽/(𝑚𝑜𝑙 ·𝐾))
𝑅𝑒 = Nozzle exit radius (m)
𝑅𝑡 = Throat radius (m)
𝑇𝑐 = Chamber temperature (K)

1. Introduction

This study aims to investigate the applicability
of machine learning techniques coupled with

computational fluid dynamics (CFD) software in
order to optimize the axisymmetric contour of a
convergent-divergent (CD) nozzle. CD nozzles are
frequently utilized in aerospace applications ranging
from experimental wind tunnels to aircraft and rocket
engines. With this wide breadth of applicability
the performance of such devices is critical, with
even small improvements to their overall efficiency
or produced flow quality leading to drastic positive
effects on the systems in which they are integrated.
Typically when it comes to designing a nozzle three
options present themselves to the modern engineer:

1) Utilize basic empirical relations akin to those
outlined in undergraduate propulsion courses or
as touched on by Huzel and Huang specifically
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for application in liquid rocket engines [1].

2) Apply the Method of Characteristics (MOC) in
order to produce a shock-free nozzle based on
methods outlined by many authors including
Anderson [2] and in more modern software re-
lated papers such as that by Mishra and Kumar
[3]. An example of this technique is displayed
below in Figure 1.

3) Employ CFD software in order to produce the
most optimal nozzle for a given application
while simultaneously validating the design at
high fidelity.

The aforementioned options have been ordered by
increasing level of fidelity and cost. Typically the
MOC is employed with modifications made after the
fact through a thorough CFD analysis. Not much
work has been done into development of a method
that can produce a truly optimal nozzle for a given
unique objective function while still keeping cost
(in this case, time) low. Therefore, the aim of this
study is to investigate the potential for leveraging
modern computing techniques in the form of genetic
algorithms in order to fill the existing gap in the field
of CD nozzle design.

An optimal CD nozzle can mean a variety of
things for a variety of different applications. The
goal overall is to produce an axisymmetric geometry
that can best obtain some objective function for a
supersonic exit flow. Typically this involves driving
the process towards an isentropic one by minimizing
losses; however, it can also include other factors such
as minimizing nozzle weight, maximizing thrust,
or improving flow uniformity/quality. This wide
range of definitions for what an "optimal nozzle" is
further dictates the development of a more flexible
and effective approach to designing CD nozzles.

Research has been conducted on the optimization
of CD nozzles in the past including by the Air Force
[4], Quintao [5], and Bahamon and Martinez [6].
The variance between this study and those previously
performed is the more open design-space application
combined with the inclusion of modern machine-
learning algorithms. Most previous research has
investigated if the existing methods such as those
derived from empirical relations or MOC can be

optimized. In contrast to that standard approach,
this paper aims to see if an optimal solution can be
reached by the model organically given some design
space surrounding an initial geometry.

This study began by outlining an initial software
framework that allows for a set of input geometric
variables to be evaluated as a nozzle geometry for
some defined objective function (in this case entropy
change Δ𝑆). Next, a variety of machine-learning and
numerical methods were applied in order to determine
which one would be best suited for producing an
optimal nozzle geometry. Specifically, Gaussian-
Process models and Reinforcement Learning Neural
Networks were implemented first with some, but not
great, success. However, based off the success of
Genetic Algorithms in other papers (such as Bahamon
and Martinez [6]) they were utilized here and found
to be suitable for the given problem. Finally, a wide
sweep of cases and hyperparameter configurations
were utilized to find a best case given the time and
resources available. The methods and collected
results and conclusions will be discussed throughout
the remainder of this paper.

A. Relevance to NASA Mission Directorates

The research conducted within this study is applica-
ble to two of the main NASA Mission Directorates:
Aeronautics and Space Technology [7]. CD noz-
zles, as previously mentioned, have a wide range of
applications that are directly applicable to NASA’s
missions. Aeronautics frequently employs CD noz-
zles for wind-tunnels (both subsonic and supersonic)
along with for research surrounding high-speed in-
atmosphere flight noise reduction (such as for the
X-59 project). The research into CD nozzle optimiza-
tion is even more critical for the space technology
directorate as NASA begins to ramp up the Artemis
missions and the push to return humans to the Moon
and then on to Mars. CD nozzles are in almost every
propulsion system, from launch vehicle engines to
attitude control systems such as cold gas thrusters.
Improving the performance of propulsion systems
through better performing CD nozzles can allow
for both an increased payload capacity while simul-
taneously increasing system reliability and safety
margins.
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Figure 1. Method of Characteristics Approach to Supersonic Nozzle Design reproduced from Anderson
[2]

2. Methodology
The approaches taken throughout this study are crit-
ical to discuss as they directly determine the valid-
ity of the presented results and drawn conclusions.
Therefore, this section of the paper will be focused
on analyzing the utilized methods, techniques, and
software/algorithms utilized throughout the project.

A. Initial Geometry
The first step for the optimization process is to pro-
duce an initial set of geometrical control points based
on empirical relationships and basic steady state anal-
ysis as outlined by Huzel and Huang for liquid rocket
engines [1]. This allows for the determination of the
position of critical points for a 80% bell nozzle, such
as the nozzle exit position, which is defined based on
the equations 2 and 3 below for a given expansion
ratio (𝜖). Note that a conical divergent half angle of
(𝛼 = 15◦) is used in this study as is recommended by
Huzel and Huang [1].

𝜖 =
𝐴𝑒

𝐴𝑡
(1)

𝐿𝑛 =

𝑅𝑡

(√
𝜀−1

)
+𝑅 (sec𝛼−1)

tan𝛼
(2)

𝑅𝑒 =
√︁
𝜖𝑅𝑡 (3)

Other points are defined based on other basic
geometric relations defined by Huzel and Huang
as shown in Figure 2 for reference. Note that a
throat position of (𝑥𝑡 = 0.0, 𝑦𝑡 = 1.0) was used in

this study for simplicity. Upstream of the throat
the positioning of control points was less critical
and chosen somewhat arbitrarily with a chamber
contraction ratio of (𝜖𝑐 = 2.50) with a suitably long
overall chamber section. Effectively no losses were
reported in the chamber section throughout the
project and, therefore, these assumptions were vali-
dated as reasonable for the given initial configuration.

Figure 2. Initial Geometry Empirical Nozzle
Design reproduced from Huzel and Huang [1]

These initial empirical points were fit to a cubic
spline and then a linearly spaced set of 𝑝−1 control
points were laid out based on it. An extra control
point was added exactly at the throat position leading
to the number of total control points to be 𝑝.

B. Software Infrastructure (FORGED)
Supporting software was developed in Python in
order to support the optimization process surround-

Nathan Rand 3



ing this project. This software is the First Order
Rocket Geometry Enhancement and Design tool or
(FORGED). The FORGED algorithmic structure and
code flow is displayed below in Figure 3.

Figure 3. FORGED Algorithm Flow

The main steps that the FORGED software man-
ages is the first 2 parts of the "Evaluate()" rou-
tine. First, a cubic spline geometry and cor-
responding mesh must be generated based on
the control points. This is done using Python’s
’scipy.interpolate.CubicSpline’ library [8] and the
mesh generation is done using GMSH’s Python wrap-
per library [9]. The mesh features hyperbolic tangent
distributions for its cell spacing with higher density at
the throat, inlet, and exit planes. These distributions
are based on those outlined by Samuel in his work
on the subject [10] and are shown below in equations
4 and 5.

𝑥 =
𝐿

2

[
1− tanh [𝛽(1−2𝜉)]

tanh 𝛽

]
(4)

𝑥 = 𝐿

[
1− tanh [𝛽(1− 𝜉)]

tanh 𝛽

]
(5)

The Δ𝑋 values were blended across the connected
distributions by matching the derivative values of
each distribution with its neighboring ones through
numerical convergence of the parameter 𝛽.

Second a Python wrapper was developed for Vir-
ginia Tech’s research CFD Code: SENSEI (finite-
volume) that was developed by the research group led
by Dr. Christopher Roy. This allows for the SENSEI
code to be ran directly from within FORGED on each
iteration for an individual’s given mesh and geometry
in order to determine the flow field and properties rel-
evant to an individual’s fitness. SENSEI was run with
an inviscid axisymmetric case (to minimize computa-
tional time) that features a subsonic inflow pressure
(𝑃𝑐 = 5.0𝑀𝑃𝑎, 𝑇𝑐 = 3000𝐾) and temperature bound-
ary condition at the inlet and a supersonic outlet
condition (𝑃𝑒 = 50𝑘𝑃𝑎) at the nozzle exit. Slip wall
and axisymmetric boundary conditions were also
enforced in order to complete the problem setup.
The working fluid was defined to have properties
(𝛾 = 1.40, 𝑃𝑟 = 0.72, 𝑀𝑊 = 28.97 𝑔

𝑚𝑜𝑙
). The flow is

calorically perfect and therefore has constant specific
heat with constant pressure (𝐶𝑝 = 1004.45 𝐽

𝑘𝑔𝐾
).

C. Genetic Algorithm
The genetic algorithm for this study was implemented
using the popular DEAP library in Python [11]. The
optimization problem was configured as an effort to
minimize the objective function, thus maximizing
performance, in each generation with the general
form shown in equation 6.

min
(𝑥,𝑦) ∈R𝑝

𝜙(®𝑥, ®𝑦) (6)

The objective function can then be numerically
determined based on equations 7 - 9.

𝜙(®𝑥, ®𝑦) = Δ𝑆 = Fitness (7)

Δ𝑆 = 𝐴

(
𝐶𝑝 log

𝑇𝑒

𝑇𝑐
−𝑅 log

𝑃𝑒

𝑃𝑐

)
(8)

𝐴 = 𝜋𝑅2
𝑡 (𝑦𝑖+1 − 𝑦𝑖) (9)
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The goal is to minimize the entropy change (Δ𝑆)
from the chamber to the nozzle exit weighted based
on the area for each ring (𝑖 to 𝑖 + 1). This involves
taking the area weighted value of quantities such
as entropy in ring-shaped regions defining the exit
plane of the CD nozzle based on the axisymmetric
geometry. The fitness for each individual 𝜙(®𝑥, ®𝑦) is
computed based on these outlined equations based
on the SENSEI CFD outputs. Each generation in the
genetic algorithm has 𝑛 individuals and runs for 𝑘
generations. Elitism, which is carrying over the best
performers from the previous generation to the next
one, is implemented in order to ensure that the seeded
initial guess and strong performers do not get diluted
out of the population. It is known that the optimal
solution is similar to the initial guess case and it
is therefore critical to ensure that some individuals
similar to this guess persist in the population pool
until a more optimal geometry is discovered.

Mutation and crossover is performed when cre-
ating the 𝑘 +1 generation and has defined mutation
probability (𝑚𝑝) and crossover probability (𝑏𝑝). The
action space on which mutations can occur is defined
based on perturbation ranges surrounding the initial
geometry as displayed in Figure 4.

Figure 4. Mutation Action Space for Control
Points in the Genetic Algorithm Process

This process persists until the defined final gen-
eration (𝑘𝑚𝑎𝑥) is reached. At this point the best
performing individual (with the minimum amount
of entropy change) is selected as the resulting local
minimum of the optimization process.

A variety of penalty method constraints are imple-

mented that aid in allowing the genetic algorithm to
converge including:

1) Equality constraint such that all points are
increasing in x and y (ensuring all control
points 𝑝 are sequential in the design space).
The applied penalty is based upon a scaled
summation of a fixed factor and the amount
of non-sequentiality summed across all points
as shown below in Equation 10 as the non-
sequential penalty (𝑝𝑛𝑠). The difference is set
to zero if the difference returned by 𝑑𝑖 𝑓 𝑓 ()
is positive (or sequential such that position
𝑖 + 1 > position 𝑖) for each point set. This
penalty is only applied if any set of points is
non-sequential.

𝑝𝑛𝑠 = 1000∗ (25+ 𝑑𝑖 𝑓 𝑓 (®𝑥𝑖+1 − ®𝑥𝑖)) (10)

2) Penalty factors applied for excessively non-
smooth geometry as determined by a second
derivative of the cubic spline and a basic cur-
vature relation shown below in equation 11.
This is to try and prematurely avoid failed/non-
converging CFD runs.

𝜅 =
| 𝑓 ′′(®𝑥) |

(1+ ( 𝑓 ′(®𝑥))2) 3
2

(11)

3) Penalty factors for geometric cases that are
sequential and smooth but still lead to a failure
in either GMSH or SENSEI.

These penalty factors and try-catch cases ensure
that the code can effectively converge even given a
very wide range of potential CD nozzle geometries.

3. Results & Discussion
A wide range of optimization cases were ran with
varying mutation spaces as well as differing hyper-
parameters (primarily 𝑝, 𝑘𝑚𝑎𝑥 , 𝑛, 𝑚𝑝, and 𝑏𝑝). The
optimal case was run with the following parameters:
𝑝 = 9, 𝑘𝑚𝑎𝑥 = 50, 𝑛 = 100, 𝑚𝑝 = 0.25, and 𝑏𝑝 = 0.5.
The final optimized control point geometry (along
with its produced cubic splines) can be seen in Figure
6 along with the original initial guess control point
geometry in Figure 5.

The optimization process progressed through all
50 generations, consistently approaching a local min-
imum of (𝜙(®𝑥, ®𝑦) = Δ𝑆 = 0.395 𝐽

𝑘𝑔𝐾
). Rapid conver-

gence appears to occur over the first 5 iterations
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Figure 5. Initial Guess CD Nozzle Control Points
and Corresponding Cubic Splines

Figure 6. Optimized CD Nozzle Control Points
and Corresponding Cubic Splines

and levels off with smaller relative fine adjustments
for the remaining 45 iterations. By opening up the
design space with more individuals and a higher
mutation probability it is likely possible to more
effectively explore the design space and determine
a geometry that produces true isentropic flow such
that (Δ𝑆𝑖𝑑𝑒𝑎𝑙 = 0.00 𝐽

𝑘𝑔𝐾
). The optimization process

fitness for the best performer in each generation is
displayed below for reference in Figure 7.

Flow fields for both entropy change (Δ𝑆) and Mach
number (𝑀) were also determined for three cases:
the initial guess (𝑘 = 0), the best performer in one of
the middle generations (𝑘 = 27), and the optimal case
(𝑘 = 49). Both of these contour plot progressions
can be seen in Figures 8 and 9. It can be seen clearly
that the optimization process creates a flow field that
has less losses while maintaining uniformity. The
original large entropy spike near the nozzle wall
at the exit plane has been entirely removed by the
optimization process. Overall, as the optimization
process progresses the nozzle flow field becomes
more isentropic while maintaining an acceptable and
even more uniform Mach field. This was the original
goal of the study and therefore validates the primary

objectives of the work presented here.

Figure 7. Best Performing Individual’s Fitness in
Each Generation

Figure 8. Entropy Change (Δ𝑆 Contour Plots
Throughout Optimization Process

4. Conclusion
Throughout the course of this study an optimization
technique and the corresponding optimal results for
axisymmetric CD nozzle geometry presented in order
to minimize entropy gain and losses throughout the
nozzle flow field. Through a thorough investigation
genetic algorithms were determined to be the best
option for the presented problem. Developing the
FORGED software in Python allowed for the overall
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Figure 9. Mach Number (𝑀 Contour Plots
Throughout Optimization Process

meshing and CFD process to be seamlessly integrated
into DEAP’s genetic algorithm structure. An optimal
result was produced that reduced the entropy gain
from Δ𝑆 = 0.934 𝐽

𝑘𝑔𝐾
in the initial guess to Δ𝑆 =

0.395 𝐽
𝑘𝑔𝐾

, a significant change of 57.71% as the
optimization problem drives the flow towards an
isentropic state. This study has also set up a strong
foundation for future work in the field of organic
and open-design space CD nozzle optimization using
machine learning techniques. By leveraging more
computational resources and parallel computing it
could be possible to drive the nozzle towards a global
minimum where (Δ𝑆𝑖𝑑𝑒𝑎𝑙 → 0.0 𝐽

𝑘𝑔𝐾
). The work

can then be even further expanded by implementing
more control points for fine control of the geometry,
non-inviscid CFD conditions to incorporate more
realistic areas of loss, and other more accurate (but
expensive) cases. The organic nature of the FORGED
+ Genetic Algorithm approach taken in this paper
leaves the possibility for also integrating additional
terms into the objective-function to optimize for
a variety of applications such as weight-reduction,
flow-uniformity, or thermal loading.
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