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Abstract

I outline the goals of my lab and report on the progress made in designing and
building a linear Paul trap for trapped ion experiments involving barium and lutetium
species. With a radial diameter of 2 mm, an axial size of 6 mm, operating with constant
and oscillating voltages of 8 V and 80 V, respectively, oscillating at 2π×8 MHz, I have
found that the device should trap barium and lutetium ions. I also outline aspects of
the trap design that cater to increasing observation signals.

1 Introduction

The observed imbalance of matter to anti-
matter in the universe goes directly against
predictions of the standard model (SM) of
particle physics, prompting investigations
into beyond-standard-model (BSM) experi-
ments and theories. Sakharov [1] determined
two conditions for any quantum field the-
ory that models an asymmetry in matter
and antimatter formation: time-reversal (T)
symmetry must be violated and the universe
must evolve out of thermal equilibrium. By
the CPT theorem, CPT symmetry (where
charge-conjugation (C) refers to exchange of
matter with antimatter and parity (P) refers
to spatial inversion) is not violated, so T vi-
olation necessarily implies CP violation and
vice versa. Though CP violation is present in
the SM, it is too suppressed to account for ob-
servations. Generally, BSM theories include
additional sources of CP violation either not
found in the SM or altered from the predic-
tions of the SM that would have an effect at
lower energies, such as the electric dipole mo-

ments (EDMs) and magnetic quadrupole mo-
ments (MQMs) of charged particles and their
composites [2, 3, 4, 5]. EDMs and MQMs
offer a set of observables that complement
current searches for BSM particles in mod-
ern colliders, with the benefit of being exe-
cuted on the scale of table-tops and at lower
costs than accelerator facilities, while provid-
ing mass constraints on BSM particles that
are comparable to (and can exceed) the abil-
ity of the LHC [6].

Recently it was realized that atoms and
heavy molecules are promising candidates in
the search for CP-invariance violation [7].
Molecules in particular are useful as they of-
fer experimental access to large effective elec-
tric fields (> 10GV/cm) [8]. Linear triatomic
molecules offer several additional advantages
over the isoelectronic diatomic molecules em-
ployed in recent EDM measurements [9, 10]:
the ℓ-doubling effect gives a small energy gap
between levels of opposite parity [8], mean-
ing we can fully polarize them with relatively
weak electric fields; the ℓ-doublet can sup-
press any systematic errors brought on by
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magnetic fields; and they can be laser-cooled
[11]. Currently there are experiments plan-
ning to take advantage of these properties
to perform high precision measurements of
the MQM using 173YbOH [12]. Due to their
deformed nuclei, the atoms 175Lu and 176Lu
have large MQMs, and recent calculations
suggest that the CP-violating energy shift of
175LuOH+ and 176LuOH+ may be as much as
a factor of 2 higher than that of 173YbOH
[11], making it a promising subject of study.
These isotopologues are ionized to give them
a similar electronic structure to that of YbOH
while also allowing them to be easily trapped
using ion trapping techniques.

Recent developments in the toolbox of
trapped ion quantum information experi-
ments have resulted in high contrast mea-
surements with low dead times [13]. I aim
to utilize techniques such as quantum logic
spectroscopy to investigate LuOH+. Trap-
ping has a number of benefits that contribute
to high-precision results, including the ease of
cooling and trapping and the high fidelity as-
sociated with detection due to the long in-
terrogation times it permits. Additionally,
quantum-information-style ion trap experi-
ments offer easy scalability, allowing us to
eventually build an experiment that simulta-
neously treats hundreds of trapped molecular
ions [14].

In this paper, I will discuss the mathemat-
ical considerations involved in trapping ions

and building a functioning ion trap. I will
discuss how these considerations were incor-
porated into our ion trap design, and I will
discuss how these considerations will aid in
performing the experiments outlined above.

2 Trapping Ions

While it is possible to confine neutral atoms
using such apparatuses as the magneto-
optical trap or optical tweezers (see [15], Ch
10), the trapping of ions by electric fields of-
fers stronger confinement at less cost (see [15],
Ch 12). Earnshaw’s theorem (see [16], Ch
3) states that a point charge cannot be held
at equilibrium solely by an electrostatic in-
teraction, however one can circumvent this
theorem using a time-varying force; consid-
ering the two-dimensional case, we can pro-
duce a field which is confining along one di-
rection and non-confining along another di-
rection, e.g. the quadrupole field depicted in
Fig. 1a. A positive charge will move in the
direction of the arrows of the field. As the
charge begins to move in that direction, we
can invert the field with some frequency ωrf

which will invert the sign of the field, causing
the particle to change its trajectory into the
new direction of the arrows. This oscillation
can cause a charge to stay localized to a small
region near the center of the quadrupole field.
An example of this kind of motion is depicted
by the blue trajectory in Fig. 1a.

Jeffries 2



2 TRAPPING IONS

(a) (b)

Figure 1: (a) A 2-dimensional quadrupole field, with a sample trajectory (blue). (b) A linear
Paul trap.

A linear Paul trap consists of six elec-
trodes arranged in a configuration like that of
Fig. 1b. The four long electrodes produce the
quadrupole field in the radial (xy) directions,
while the two short electrodes, called “end-
caps,” produce another quadrupole field that
confines motion along the axial (z) direction.
We put a voltage of Vdc on each endcap and
2Vrf cos(ωrft) across two diagonal electrodes
(grounding the remaining electrodes). As-
suming the oscillation is not too rapid (say at
a radiofrequency of less than 2π × 100MHz),
the magnetic fields produced by the chang-
ing electric field may be neglected. In gen-
eral, the total field produced by this config-
uration requires a multipole expansion; how-
ever the field along the central axis of the trap
can be approximated to lowest order by the
quadrupole field

Φ(x, y, z, t) =
Vdc

2z20

(
−x2 − y2 + 2z2

)
+

Vrf

2r20
cos(ωrft)

(
x2 − y2

)
,

(1)

where z0 is the distance from the center of
the trap to the endcaps and r0 is the shortest
distance from the trap axis to the electrodes.

The equations of motion (EOMs) for an
atomic ion of mass m and charge Ze under
the influence of the field in Eq. 1 are

ẍ+
Ze

m

(
−Vdc

z20
+

Vrf

r20
cos(ωrft)

)
x = 0,

ÿ +
Ze

m

(
−Vdc

z20
− Vrf

r20
cos(ωrft)

)
y = 0,

z̈ +
Ze

m

(
2
Vdc

z20

)
z = 0,

(2)

though it is customary to introduce some
substitutions to facilitate simpler expressions.

First, let ξ = ωrft
2

(
⇒ d2

dt2
=

ω2
rf

4
d2

dξ2

)
and let
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ax = − 4Ze

mω2
rf

Vdc

z20
, ay = − 4Ze

mω2
rf

Vdc

z20
, az =

8Ze

mω2
rf

Vdc

z20
,

qx = − 2Ze

mω2
rf

Vrf

r20
, qy =

2Ze

mω2
rf

Vrf

r20
, qz = 0.

(3)

Then Eqs. 2 become

d2xi

dξ2
+ (ai − 2qi cos(2ξ))xi = 0, (4)

for i = x, y, z. Eq. 4 is called Mathieu’s equa-
tion, whose solutions, the Mathieu functions,
are already well understood [17, 18, 19].

We say that the ion’s motion is “stable”
if the trajectory is bounded in the limit that
ξ → ∞. To determine whether an ion is sta-
ble in our model of a trap for given ai and qi
(i = x, y, z), we can evaluate the solutions of

the EOMs and check if they exceed some min-
imum allowed distance from the center of the
trap. We can produce a plane of pairs (qi, ai),
coloring in points that correspond to stable
trajectories in black; this produces a “stabil-
ity diagram” (also known as a Ince-Strutt di-
agram) like that found in Fig. 2a. Initial
conditions have no influence on the stability
of a solution to Mathieu’s equation due to its
linearity, meaning we can produce these sta-
bility diagrams without the need to specify
initial conditions.

(a) (b)

Figure 2: (a) The stability diagram for the Mathieu equation. Black regions are stable
regions and white regions are unstable regions. (b) The first stability region for the linear
Paul trap, in terms of x-directed stability. Black regions are stable regions and white regions
are unstable regions.

While Fig. 2a is the stability diagram for
the Mathieu equation, the choice in the ge-
ometry of an ion trap will couple the Mathieu

parameters (q, a) for the x, y, and z motion.
In particular, from Eqs. 3 we find that

az = −2ax = −2ay; qy = −qx; qz = 0qx,
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and thus that a stability diagram that applies
to the motion in both x and y is found by tak-
ing the intersections of the stable regions in
Fig. 2a with the stable regions flipped about
the ax axis for the y-directed motion, and
with the stable regions along the qx = 0 line
for the z-directed motion. The result is shown
in Fig. 2b. Recall from Eq. 4 that the EOM
in z is really that of the simple harmonic os-
cillator with frequency ωz =

√
az, which only

admits negative eigenvalues, giving stability
along z for all ax ≤ 0.

In the limit of small ai and qi, the motion
can be reasonably approximated using a few
terms in a Fourier series [20]

xi(t) ≈ 2A

[
−qi
4
cos

((
βi

2
− 1

)
ωrft

)
+

cos

(
βi

2
ωrft

)
− qi

4
cos

((
βi

2
+ 1

)
ωrft

)]
= 2A cos

(
βi
ωrf

2
t
) [

1− qi
2
cos (ωrft)

]
,

where i = x, y, z and βi ≈
√

ai + q2i /2. The
trajectory features motion of two frequencies,
βiωrf/2 and ωrf, called the “secular motion”
and the “micromotion,” respectively.

The regions of stability in Fig. 2a are
numbered according to the order they are en-
countered as we go up the ax axis (i.e. “first,”
“second,” etc. ). By accounting for the mo-
tion along all three directions, only the por-
tions of the stability regions that rest below
the ax = 0 line remain. The second stability
region encounters this line around qx ≈ 7.5;
it is difficult to produce rf fields that corre-
spond to qx in this range, so ion trappers typ-
ically aim for the first stability region which
is closer to the 0 ≤ qx ≲ 0.908 range for small
ax.

3 Ion Trap Design

While there are many geometries that can
trap a given ion, we are often limited by

practical limitations such as the achievable
voltages and frequencies of our experimental
equipment. As a basic guideline, we seek to
find values in the following ranges:

� |ax| ≳ 0, and ax < 0,

� −0.15 ≲ qx ≲ 0,

� ωsec as large as possible.

My lab is limited to values in the following
ranges:

� |Vdc| ≲ 10V,

� Vrf ≲ 100V,

� ωrf ≲ 2π × 20MHz.

Our choice of r0 and z0 will serve to produce
stable (q, a) as well as sufficiently large sec-
ular frequency. A large secular frequency is
necessary to put the ion in the Lamb Dicke
regime, which is a regime in which the cou-
pling between the ion’s internal qubit states
and motional states is sufficiently small such
that any transitions that change the mo-
tional quantum number ∆n > 1 are strongly
suppressed [20]. The Lamb-Dicke regime is
characterized by the Lamb-Dicke parameter
η ∝ (βiωrf/2)

−1/2 when η ≪ 1, meaning the
secular frequency must be large.

In the interest of producing a large secular
motion frequency, we aim to make ωrf large:
let ωrf = 2π × 8MHz. This choice restricts
Vdc and Vrf. Letting Vdc = 8V and Vrf = 80V,
the optimal values of ax and qx that both
trap an ion and produce a large secular fre-
quency are r0 = 0.5mm, z0 = 3mm. Assum-
ing a singly ionized particle (Ze = 1e), then
the (qx, ax) coordinates of 137Ba+, 138Ba+,
175Lu+, 176Lu+, 175LuOH+, and 176LuOH+

are given in Table 1, along with the corre-
sponding secular frequencies of motion in the
z, x, and y directions.
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qx ax
ωz

2π
(kHz) ωx,y

2π
(kHz)

137Ba+ -0.0892 -0.000911 178 219
138Ba+ -0.0886 -0.000984 177 217
175Lu+ -0.0698 -0.000776 158 163
176Lu+ -0.0694 -0.000772 157 162

175LuOH+ -0.0636 -0.000707 150 145
176LuOH+ -0.0633 -0.000704 150 144

Table 1: Mathieu parameters and motional frequencies for 137Ba+, 138Ba+, 175Lu+, 176Lu+,
175LuOH+, and 176LuOH+.

One of the simplest linear Paul trap de-
signs employs blade-like electrodes which of-
fer greater optical access (over cylindrical
and hyperbolic electrodes) to the center of
the trap without sacrificing the origin-to-
electrode distance r0 [21]. The simplest blade
design possesses planar symmetry, and the
four blades are arranged at 45◦ from the ver-
tical and horizontal axes in the trap (see
Fig. 3a); however, a linear Paul trap of-
ten reserves the horizontal plane for laser-
addressing, while the vertical axis is reserved
for imaging. Since the lasers in the horizon-
tal plane often have a beam waist of no more
than 0.75mm, we are free to reduce the angle
between the blades and the horizontal plane
and increase the angle with the vertical axis
without sacrificing laser access. Additionally,
we can slightly reduce the distance of the
blades to the horizontal plane. This increases
the solid angle available for photon collection
in the optical system. In a similar vein, it
is common to design asymmetric blades that

further cater to our desire to maximize the
angle of optical access (see Fig. 3b). The
blades have an internal angle of 30◦ and are
arranged 42◦ from the vertical axis and 18◦

from the horizontal axis.
To compare the collection efficiency of

these two configurations, we can look at the
fraction of a sphere that is subtended by a
cone formed by the angle from the vertical
axis to the first point of contact with the
blades. Assuming the length of the side of the
blades facing the vertical axis is d = 4.918mm
and the interior angles are 30◦, and recalling
that the asymmetric blades are slightly dis-
placed toward the horizontal plane, we find
the angle from the vertical is 30.855◦ and
43.660◦ for the symmetric and asymmetric
arrangement, respectively, which amounts to
7.076% and 13.828% of the solid angle of a
sphere (as a reminder, 50% would be the
“ideal” case). This corresponds to an increase
in collection efficiency by a factor of 1.95.
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(a) (b)

Figure 3: (a) A simple blade arrangement. (b) An optimized blade arrangement.

Similar ideas can be applied to the end-
caps to increase their proximity to the ions
(decreasing z0 and decreasing the necessary
Vdc of the trap) without sacrificing optical ef-

ficiency. Additionally, a 1mm hole is drilled
along the axis of the endcaps to offer optical
access for a laser (see Fig. 4a).

(a) (b)

Figure 4: (a) Endcap. (b) Macor mount.

The blades and endcaps are secured to
two insulating mounts that isolate each con-
ductor and fix their positions in the trap.
The mounts are made of Macor, a machin-
able vacuum-safe ceramic. Its machinability
allowed us to cut it into a shape that maxi-
mizes accessibility to ions from lasers (see Fig.
4b).

Since the blades and endcaps are close to

the center of the trap, they must be non-
porous materials, such as stainless steel 304
(SS304) or oxygen-free electronic (OFE) cop-
per, to avoid outgasing in the vacuum. The
blades are made of SS304 and the endcaps
are OFE copper. The Macor mounts insulate
the electrodes and are non-porous to prevent
outgasing complications near the ions. The
configured trap can be found in Fig. 5.
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Figure 5: The assembled ion trap.

4 Summary

I have given an outline of the ideas we must
consider when designing an ion trap for pre-
cision quantum information experiments on
137Ba+, 138Ba+, 175Lu+, 176Lu+, 175LuOH+,
and 176LuOH+. With this trap, I aim to per-
form experiments on Ba+ that will aid in the
development of quantum information tech-
niques that can be directly implemented on
Lu+ and LuOH+ to perform high-precision
CP-violation experiments, with expected re-
sults comparable to contemporary experi-
ments currently underway in groups such as
JILA. Along the way, I aim to resolve the
branching ratios of Ba+ isotopes and compare
with recent ab initio calculations performed
by [22], which will simultaneously address a
recent disparity between experiment and the-
ory and allow our lab to gain experience with
some of the techniques that will be involved
in a CP-violation experiment.
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