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Abstract

High-fidelity, nonlinear flight dynamic models for multirotor aircraft important for the advancement
of weather-tolerant advanced air mobility operations. The accuracy of these models directly affects the
validity of safety and performance guarantees for guidance, navigation, and control algorithms. This paper
presents a modeling and system identification approach for multirotor aerial vehicles. Lumped-parameter
aerodynamics are obtained for an isolated rotor using blade-element and momentum theory, which are then
incorporated into a six degree-of-freedom model for the multirotor aircraft. Critically, the obtained model
is valid over a wide range of flight conditions, while also being identifiable from experimental data. Using
a high-fidelity simulation constructed from wind tunnel data, the relative importance of model parameters
is evaluated. This process then informs the final statistical estimation of model parameters.

1 Introduction

Developing technologies that guarantee safe and
efficient advanced air mobility (AAM) operations
are critical to pubic and governmental adoption of
highly automated air transportation of people and
goods in urban and suburban areas [1]. The im-
portance of real-time weather prediction, wind ob-
servation, traffic management, and weather-tolerant
operation increase as we elevate to higher maturity
levels (UMLs) in NASA’s AAM Vision Concept of
Operations. These UMLs outline a need for higher
weather tolerance and thus relaxed margins for flight
safety [2]. As opposed to traditional aviation, safe
aircraft operation in urban settings may rely on ac-
curate in-situ wind estimation [3, 4], automation of
air vehicle path planning and management [5], as well
as new urban takeoff and landing technologies [6].
Achieving higher weather tolerance for AAM ve-

hicles requires safety and performance guarantees
across the levels of guidance, navigation, and con-
trol. The validity of these guarantees generally falls
down to the fidelity of the flight dynamic model –
i.e., how accurately a set of mathematical equations
models the motion of the system. Flight dynamic
models for aircraft are often represented as a low-
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dimensional system of ordinary differential equations
to allow for direct use in control and estimation al-
gorithms as well as efficient simulation and design
optimization. Unlike the case for fixed-wing air-
craft [7, 8, 9], there is no standard structure for com-
pact, finite-dimensional models of multirotor flight.
Typical approaches to multirotor modeling involve
identifying linear state space models in the time do-
main or low order transfer functions in the frequency
domain [10, 11, 12, 13, 14, 15]. Another approach is
to identify a linear aerodynamic model for the nonlin-
ear system [16]. Other common approaches include
developing a simplified nonlinear aerodynamic model
for a reduced number of degrees of freedom by assum-
ing symmetry [17] and polynomial-based regressor de-
termination using stepwise regression [18]. Multiro-
tor modeling approaches often begin with the physi-
cal principles of a single rotor, superposing these ef-
fects to obtain a final model structure [19, 12]. How-
ever, a model that is valid within a larger domain,
accurately capturing nonlinear dynamic and aero-
dynamic phenomena, may be required for stronger
safety guarantees.

This paper describes the derivation, analysis, and
identification of a multirotor flight dynamic model
that is higher-fidelity than linear, small perturbation
models, but easier to obtain and apply than models
based on look-up tables of wind tunnel or computa-
tional/numerical data. Similar to [20], we begin with
the forces and moments generated by a single rotor
in forward flight derived using blade-element and mo-
mentum theories. This result is then incorporated
into the forces and moments acting on the aircraft.
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The resulting nonlinear model is in a form amenable
to identification from experimental data and con-
trol/estimator design. To evaluate the effectiveness
of the postulated model structure, a simulation ex-
periment was conducted using a high-fidelity multi-
rotor aerodynamic model derived from wind tunnel
data [21]. A statistically designed test matrix was
developed to facilitate accurate identification of the
unknown model parameters through a novel two-step
regression approach.

2 Aircraft Rigid Body Dynamics

Consider a multirotor aircraft, modeled as a rigid
body of mass m. Let unit vectors {i1, i2, i3} define
an earth-fixed North-East-Down (NED) orthonormal
reference frame, FI. As the notation FI suggests,
we take this frame to be an inertial reference frame
over the time and space scales of vehicle motion. Let
the unit vectors {b1, b2, b3} define the orthonormal
body-fixed frame, FB, centered at the aircraft center
of gravity (CG) with b1 out the front of the aircraft,
b2 out of the right-hand side, and b3 out of the bot-
tom completing the right-hand rule. The position of
the body frame with respect to the inertial frame is
given by the vector q = [x y z]T. The attitude of the
aircraft is given by the rotation matrix, RIB, that
maps free vectors from FB to FI. Let v = [u v w]T

and ω = [p q r]T be the translational and rotational
velocity of the aircraft with respect to FI expressed in
FB, respectively. Let us represent the aerodynamic
force and moment on the aircraft expressed in FB as
F and M , respectively. Let I be the moment of in-
ertia matrix about the center of mass in FB. Thus,
the rigid body equations of motion are

q̇ = RIBv (1a)

ṘIB = RIB[ω×] (1b)

v̇ = v × ω + gRT
IBe3 +

1

m
F (1c)

ω̇ = I−1 (Iω × ω +M) (1d)

where [(·)×] is the skew-symmetric cross product
equivalent matrix satisfying [a×]b = a × b for 3-
vectors a and b. Here, the dependence of F and
M on the aircraft and rotor states remains implicit,
for now.

3 Rotor Aerodynamics

Consider a Nb-blade rotor of radius R rotating
about its spin axis at the rate Ω rad

s that is also
steadily translating through still air with velocity v
and airspeed V = ∥v∥. Let unit vectors {r1, r2, r3}
define a body-fixed orthonormal reference frame cen-
tered at the rotor hub with r1, r2, and r3 in the −b1,

+b2, and −b3 directions, respectively, as shown in
Figure 1. Note that the rotor frame is not defined
such that the velocity vector is in the r1-r3 plane as
typically done in rotor aerodynamics literature [22].

Since our goal is to develop a six degree-of-freedom
model for a multirotor aircraft, we define body axis
advance ratios µu, µv, µw and the rotor-plane ad-
vance ratio µ as

µ⋆ =
⋆

ΩR
, ⋆ ∈ {u, v, w} (2a)

µ =
Vh

ΩR
(2b)

where Vh =
√
u2 + v2 is the airspeed in the rotor

plane. The total inflow ratio, λ, is

λ =
ν − w

ΩR
(3)

where ν is the induced rotor inflow velocity (positive
down), and w is the vertical velocity of the rotor ex-
pressed in the body frame (positive down).

Consider the thrust (T ), hub force (H), side force
(S), rolling moment (R), pitching moment (P), and
torque (Q) on a single rotor as shown in Figure 1.
Recall, the free vector v is defined in the body frame,
{b1, b2, b3}. As detailed in [22, Ch. 4], the rotor forces

v

Ω

r1

r2

r3

T

H

S

Q

R
P

Figure 1: Rotor in forward flight

and moments can be obtained by integrating the force
and moment acting on a differential element of the ro-
tor blade. It is convenient to express these quantities
as the non-dimensional coefficients,

CT =
T

ρπR4Ω2
CR =

R
ρπR5Ω2

CH =
H

ρπR4Ω2
CP =

P
ρπR5Ω2

CS =
S

ρπR4Ω2
CQ =

Q
ρπR5Ω2

(4)
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Assumption 1. For the purpose of rotor force and
moment derivation, we assume the rotor blades

a) are rigid (no flapping);

b) do not stall;

c) have linear twist: θ(r) = θ0+θtwr, where r is the
non-dimensional radial station along the blade
measured from the hub.

Denote the lift curve slope of a blade element as
a and its mean drag coefficient as c̄d (computed at
r =
√
2/2). The rotor coefficients given as [22, Ch. 4]

CH = Cσ

[
1

2a
c̄dµu +

(
θ0
2

+
θtw
4

)
λµu

]
(5a)

CS = −Cσ

[
1

2a
c̄dµv +

(
θ0
2

+
θtw
4

)
λµv

]
(5b)

CT = Cσ

[
θ0
3

(
1 +

3

2
µ2

)
+

θtw
4

(
1 + µ2

)
− λ

2

]
(5c)

CR = Cσ

[
θ0
3

+
θtw
4
− λ

4

]
µu (5d)

CP = −Cσ

[
θ0
3

+
θtw
4
− λ

4

]
µv (5e)

CQ = Cσ

[
c̄d
4a

(
1 + µ2

)
+

(
θ0
3

+
θtw
4
− λ

2

)
λ

]
(5f)

where Cσ = Nbc̄a
2πR for compactness. Note that the

signs of the rotor coefficients come from the relation-
ship between the body and rotor frames.
The inflow ratio, λ, is obtained from momentum

theory. For a rotor in hover, the inflow velocity is

ν0 =
√

mg
2ρAr

, where Ar is the total rotor disk area of

the aircraft, and ρ is the air density [23, Ch. 2]. How-
ever, we are interested in the more general forward
flight condition where the inflow velocity is implicitly
defined by ν = ν20/

√
V 2
h + (ν − w)2. To simplify the

dependence on Vh and w, we choose to approximate
this surface in the ν–Vh–w space by the plane

ν ≈ ν0 + CνµVh + Cνww (6)

Defining the hover inflow ratio, µ0 = ν0

ΩR , the total
inflow ratio, λ, can then be expanded and written as

λ = µ0 + Cνµ
µ+ (Cνw

− 1)µw (7)

Next, the rotor coefficients in Eq. (5) are expanded
using Eq. (7) to obtain the rotor force and moment
coefficients

CH = CHµb
µu + CHµb,µ0

µuµ0 + CHµb,µ
µuµ

− CHµb,µw
µuµw (8a)

CS = −CHµb
µv − CHµb,µ0

µvµ0 − CHµb,µ
µvµ

+ CHµb,µw
µvµw (8b)

CT = CT0 − CTµ0
µ0 − CTµµ+ CTµ2µ

2

+ CTµw
µw (8c)

CR = CRµb
µu − CRµb,µ0

µuµ0 − CRµb,µ
µuµ

+ CRµb,µw
µuµw (8d)

CP = −CRµb
µu + CRµb,µ0

µuµ0 + CRµb,µ
µuµ

− CRµb,µw
µuµw (8e)

CQ = CQ0
+ CQµ0

µ0 + CQµ
µ− CQµw

µw

− CQ
µ2
0

µ2
0 − CQµ,µ0

µµ0 + CQµ0,µw
µ0µw

+ CQµ2µ
2 + CQµ,µw

µµw − CQµ2
w
µ2
w (8f)

where unknown constants have been lumped together
to define a new set of dimensionless parameters. Be-
cause, the aim is to identify a dynamic model from
experimental data, these new lumped parameters will
appear in the final multirotor model. The rotor aero-
dynamic analysis presented here provides a physi-
cally motivated model structure, but specific coef-
ficient values will be determined from data for the
complete aircraft, not from computations of the ex-
pressions above.

4 Multirotor Forces and Moments

The rotor aerodynamic forces and moments de-
scribed by Eq. (8) are not exact representations of
the actual forces and moments applied to the air-
frame. Here, we consider a number of other factors
that influence a given rotor’s effect on vehicle motion.

4.1 Motor Dynamics

While there are many approaches to the electric
propulsion of multirotor aircraft, we consider the
common assumption as considered in [24, 12] that the
system composed of the motor and electronic speed
controller is well-described by a DC motor model. It
is often assumed that the armature inductance is suf-
ficiently small such that the electrical dynamics of the
motor can be ignored. Thus, we are left with

Jz
dΩ

dt
= −Qm +Q (9)

where Jz is the moment of inertia of the motor about
the r3 axis, Qm is the torque applied by the mo-
tor, and Q is the aerodynamic torque. Like in [25],
we recognize that the motor dynamics influence the
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rigid body in three dimensions. Consider the ith mo-
tor with position ri = [xi yi zi]

T in the body frame.
Let Ωi = [0 0 σiΩi]

T be its angular velocity vector
with respect to the body frame, expressed in the body
frame, where σi ∈ {−1,+1} represents the rotor rota-
tion direction according to the right-hand rule. Then,

JΩ̇i = JΩi × ω −Mm,i +Mr,i (10)

where J = diag(Jx, Jy, Jz) is the moment of inertia
matrix of the motor/rotor rigid body, Mm,i is the
moment applied to the airframe at the base of the
motor (hence the minus sign), and

Mr,i = σi

−Ri

Pi

−Qi

 (11)

is the aerodynamic moment on the ith rotor expressed
in the body frame. Here, the rotor aerodynamic mo-
ments are each evaluated at the rotor local velocity
expressed in the body frame, vi. Note that Eq. (10)
contains the implicit assumption that Ωi ≫ r for all
i ∈ {1, · · · , Nr}, where r is the aircraft yaw rate. As-
suming knowledge of Ω̇i, an expression for Mm,i in
terms of motor parameters and electrical states is not
needed. Instead, we rearrange and simplify Eq. (10)
to obtain the moment applied to the airframe by a
single rotor,

Mm,i = Mr,i − σiJz

 qΩi

−pΩi

Ω̇i

 (12)

Equation (12) shows the relationship between the ro-
tor aerodynamic moments derived in Section 3 and
the moment applied to the rigid body by a single ro-
tor. The terms JzqΩi and JzpΩi are the gyroscopic
effects of the motor, and JzΩ̇i is net motor torque.
The transmission of rotor aerodynamic forces is

much simpler than that of the moments. By the re-
lationship between the rotor and body frames and
using Eq. (4), the aerodynamic force of the ith rotor
applied to the airframe at the base of the motor is

Fm,i = Fr,i =

−Hi

Si

−Ti

 (13)

4.2 Multirotor Aerodynamics

With an understanding of how forces and moments
are transmitted to the airframe from Section 4.1, and
the individual rotor forces and moments developed in
Section 3, we can derive expressions for the total force
and moment on a multirotor aircraft. Let the total
force and moment applied to the airframe be F =

[Fx Fy Fz]
T and M = [Mx My Mz]

T, respectively.
Consider a multirotor aircraft whose configuration is
defined by the following assumptions.

Assumption 2.

a) The number of rotors, Nr ≥ 4, is even.

b) Neighboring rotors spin in opposite directions.

c) The rotor configuration is symmetric about the
b1 and b2 axes.

d) The rotors arms have equal length, ℓ, and are
arranged with equal interior angles, 2π/Nr.

e) The rotors are uncanted (coplanar) and located
at the same height, h = −zi, above the CG.

As an example, a quadrotor in an “X” configuration
as pictured in Figure 2 satisfies Assumption 2.

b1

b2

b3

b2

ℓ

h

Ω1

Ω2

Ω3

Ω4

σ = +1
σ = −1

Figure 2: Quadrotor geometry

As it will be important for the final model, we de-
fine three classes of configurations that satisfy As-
sumption 2.

Definition 1. A multirotor aircraft satisfying As-
sumption 2 is called a

a) quadrotor+ if Nr = 4 and (xi, yi) = (0, ℓ) for
some i ∈ {1, 2, 3, 4};

b) quadrotor× if Nr = 4 and (xi, yi) = (ℓ
√
2
2 , ℓ

√
2
2 )

for some i ∈ {1, 2, 3, 4};
c) multirotor≥6 if Nr ≥ 6.

To this point, we have not mentioned airframe-
specific (rotor-independent) forces and moments.
Since the blade-element theory indicates there are ro-
tor aerodynamic effects that do not depend on rotor
speeds, we assume the following.

Assumption 3. The airframe-specific aerodynamic
forces and moments and rotor-airframe interactions
effects can be lumped into the rotor aerodynamics.
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Thus, the body frame force, F , is equal to the total
rotor aerodynamic force, Fr = [Xr Yr Zr]

T:

F = Fr =

Nr∑
i=1

Fr,i =

Nr∑
i=1

Fm,i (14)

As shown in Section 4.1, however, M is not simply
equal to the total rotor aerodynamic moment,

Mr =

Nr∑
i=1

(Mr,i + ri × Fr,i) =:

 Lr

Mr

Nr

 (15)

Instead, M =
∑Nr

i=1 (Mm,i + ri × Fm,i). Alterna-
tively, the total applied moment, M , can be written
using the total aerodynamic moment in Eq. (15) as

M = Mr − Jz

Nr∑
i=1

σi

 qΩi

−pΩi

Ω̇i

 (16)

Furthermore, we must determine for each rotor the
contribution of vehicle angular velocity to the rotor
aerodynamic forces and moments. These forces and
moments are defined in the body frame whose origin
does not coincide with the rotor hubs. Therefore,
the velocity vector that defines the advance ratios
in Eq. (2) should be the velocity vector at the rotor
hub, which is equal to the sum of the body velocity
vector, v, and the velocity at the rotor’s hub due
to the vehicle’s angular velocity, ω. Recalling from
Assumption 2 that the rotors are not canted, i.e., the
r1-r2 plane is parallel to the b1-b2 plane, the local
velocity vector of the ith rotor in the body frame is

vi = v + ω × ri (17)

Incorporating this correction yields a complicated
model structure, however, that is difficult to iden-
tify from flight data. To obtain a more compact and
identifiable form, we make the following assumption.

Assumption 4. When computing the rotor forces
and moments due to vehicle angular velocity, effects
due to the vehicle yaw rate, r, and the vertical mo-
ment arm, h, can be neglected.

Assumption 4 reflects the expectation that the pri-
mary contribution of the vehicle angular velocity to
the rotor forces and moments is the resulting change
in inflow velocity. Following Assumption 4, we ap-
proximate the local velocity of the ith rotor as

vi ≈ v +

pq
0

×
xi

yi
0

 =

 u
v

w + pyi − qxi

 (18)

While it is possible to identify a model with indi-
vidual rotor speeds as inputs, this model would be
less compact and less intuitive to analyze. Instead,
we use the following motor mixing formula,

δ2t
δ2a
δ2e
δ2r


︸ ︷︷ ︸

δ2

:= Mix


Ω2

1

Ω2
2
...

Ω2
Nr


︸ ︷︷ ︸

Ω2

(19)

where Mix is determined by aircraft geometry:

Mix =


1/Nr 1/Nr · · · 1/Nr

−y1 −y2 · · · −yNr

x1 x2 · · · xNr

−σ1 −σ2 · · · −σNr

 (20)

Here, xi and yi are the b1 and b2 coordinates, re-
spectively, of the ith rotor hub, and σi ∈ {−1,+1}
represents the rotor rotation direction according to
the right-hand rule in the body frame. To capture
first-order rotor speed terms, we also define

δt
δa
δe
δr


︸ ︷︷ ︸

δ

:= Mix


Ω1

Ω2

...
ΩNr


︸ ︷︷ ︸

Ω

(21)

In Eqs. (19) and (21), δ2 and δ are considered vir-
tual actuators. Specifically, δa, δe, δr, and δt are
referred to as virtual aileron, elevator, rudder, and
thrust commands, respectively. Note, however, that
δ2 and δ are not independently controlled.
Finally, the body frame forces and moments are

obtained using Eqs. (14) and (16), where each Fr,i

and Mr,i is evaluated at vi as defined in Eq. (18)
and rotor speeds are replaced using the virtual actu-
ator definitions in Eqs. (19) and (21). As a result,
the rigid-body force and moment components for a
multirotor aircraft satisfying Assumption 2 are given
in Eq. (22) (full derivation found in [26]). Note the
configuration-dependent terms, ∆ν(·), stem from the
effect of angular velocity on the rotor inflow velocity.

This proposed model has several benefits when ap-
plied to control and estimation applications. Mainly,
this model structure is valid over a large range of ve-
locities. For flight in any direction, barring vortex
ring state, there are very few approximations made.
This model is also valid for large roll rate and pitch
rate perturbations from translating flight because the
local rotor velocity is incorporated directly. Further-
more, the use of virtual actuators not only generalizes
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the model to any configuration satisfying Assump-
tion 2, but also reveals an intuitive understanding of
non-trivial effects such as CHµb

R(uδa + vδe) in the
yawing moment equation, Mz. This term captures

the yawing moment due to differential drag under
virtual aileron and elevator commands; it is similar
to adverse/proverse yaw for fixed-wing aircraft.

Fx = ρπR2Nru
(
−CHµb

Rδt− CHµb,µ0
ν0 − CHµb,µ

Vh + CHµb,µw
w
)

(22a)

Fy = ρπR2Nrv
(
−CHµb

Rδt− CHµb,µ0
ν0 − CHµb,µ

Vh + CHµb,µw
w
)

(22b)

Fz = ρπR2
(
− CT0

R2Nrδ
2t+ CTµ0

RNrν0δt+ CTµ
RNrVhδt− CTµ2NrV

2
h − CTµw

R(Nrwδt−∆νz)
)

(22c)

Mx = ρπR2

(
CRµb

R2uδr + CT0R
2δ2a− CTµ0

Rν0δa− CTµRVhδa+ CTµw
R
(
wδa−∆νL

)
− CHµb

RNrhvδt− CHµb,µ0
Nrhvν0 − CHµb,µ

NrhvVh + CHµb,µw
Nrhvw

)
+ Jzqδr (22d)

My = ρπR2

(
CRµb

R2vδr + CT0
R2δ2e− CTµ0

Rν0δe− CTµ
RVhδe+ CTµw

R
(
wδe− ∆

ω,δ
wM

)
+ CHµb

RNrhuδt+ CHµb,µ0
Nrhuν0 + CHµb,µ

NrhuVh − CHµb,µw
Nrhuw

)
− Jzpδr (22e)

Mz = ρπR2

(
CQ0

R3δ2r + CQµ0
R2ν0δr + CQµ

R2Vhδr − CQµw
R2

(
wδr −∆νN

)
− CQµ2

w
RNrℓ

2∆ν2N − CHµb
R(uδa+ vδe)− 1

2
CHµb,µw

Nrℓ
2(up+ vq)

)
+ Jz δ̇r (22f)

where ∆νz = pδa+ qδe and

∆νL =


1
2ℓ

2p(Nrδt− δr) quadrotor+
1
2ℓ

2(Nrpδt+ qδr) quadrotor×
1
2ℓ

2pNrδt multirotor≥6

∆νM =


1
2ℓ

2q(Nrδt+ δr) quadrotor+
1
2ℓ

2(Nrqδt+ pδr) quadrotor×
1
2ℓ

2qNrδt multirotor≥6

∆νN =


qδe− pδa quadrotor+
−pδe− qδa quadrotor×
0 multirotor≥6

∆ν2N =


1
2 (p

2 − q2) quadrotor+
pq quadrotor×
0 multirotor≥6

5 Quadrotor Simulation Experiment

A simulation study was conducted using a high-
fidelity multirotor simulation [21] to investigate the
utility of the proposed model structure. The rigid
body forces and moments computed in the simula-
tion are obtained from isolated rotor and airframe
wind tunnel data. Thus, we are able to directly query
the simulation’s aerodynamics database at given ve-
hicle state and control values in a similar manner to
wind tunnel testing and computational aerodynamic
prediction techniques. For this analysis, a simplified
model assuming constant inflow velocity was used.
This was done because the wind tunnel testing used
to generate the simulation ignored non-trivial side-
slip effects that would exemplify more complicated
inflow velocity models. The effect of this simplifi-

cation on Model (22) is the removal of terms that
linearly depend on rotor-plane airspeed, Vh.

The test points were chosen using design of exper-
iments and response surface methodology techniques
to facilitate accurate identification of the terms in-
cluded in the postulated model structure (see [4]
for details). The ranges of explanatory variables
considered in this study are listed in Table 1.
The u and v body velocity components as well as
the angular velocity bounds were chosen to be op-
erationally representative for the vehicle size. The
lower bound on vertical component w was chosen sim-
ilarly, while the upper bound on w was chosen to be
less than half the hover inflow velocity in order to
avoid vortex ring state [27]. The bounds on the ro-
tor speeds were chosen from the advance ratio limits
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of the simulation wind tunnel lookup tables. Using

Table 1: Explanatory variable ranges

Factor(s) Units Minimum Maximum
u, v ft/s -60 +60
w ft/s -30 +5
p, q deg/s -720 +720
r deg/s -360 +360

Ω1,Ω2,Ω3,Ω4 rad/s 200 700

the queried simulation data from the response surface
experiment design, least squares parameter estimates
were found for Model (22). A two step approach
was used in which least squares regression was first
performed independently for each force and moment
equation to evaluate the relative importance of terms
in the model. Next, a multivariate multiple regres-
sion (MMR) approach was used to obtain weighted
least-squares parameter estimates for the complete
model [28, Ch. 6].

5.1 Regressor Ordering

First, the equation-error ordinary least-squares ap-
proach was used to estimate the model parameters for
each force and moment equation independently (see
[8, Ch. 5] and [28, Ch. 6]). The vector of N outputs
for the ith force/moment equation is

yi = Xiθi, i ∈ {1, · · · , 6} (23)

where θi ∈ Rpi is the vector of unknown parameters
that appear in the ith equation and Xi ∈ RN×pi is
the matrix of model regressors. Let zi be the vec-
tor of “measured” outputs from the simulation data
for the ith force/moment component. While the out-
puts at the test points are obtained without error, the
underlying wind tunnel data contains random errors
which are transferred into zi in a nonlinear manner.
We also recognize there is deterministic residual error
between yi and zi due to unmodeled aerodynamics.
For these reasons, the least-squares solution is not
necessarily a minimum mean squared error or maxi-
mum likelihood estimate in the statistical sense.
Thus, the coefficient of determination, R2, was

used as the metric in a stepwise regression-like pro-
cedure to incrementally add all terms to the model
in order of their contribution. Specifically, consider
a model with p candidate regressors and let C =
{x1, . . . ,xp}, where each xj represents a column of
Xi in Eq. (23). We begin by considering a model with
only one regressor and denote I (initially the empty
set, ∅) as the ordered set of regressors already added
to the model. Linear regression is performed for each
of the candidate regressors in C. The coefficients of

determination are computed for each candidate re-
gressor, and are denoted R2(I ∪{xi}). The regressor
that yields the highest R2 value, is then added to I
and removed from C. This process is repeated until
all p terms are included in I. This forward selection
ordering algorithm (FSOA), is given in Algorithm 1.

Algorithm 1: FSOA

Input : C = {x1, . . . ,xp}
Output: I
I ← ∅;
while C ̸= ∅ do

m← argmax
x∈C

R2 (I ∪ {x});

I ← I ∪ {m};
C ← C \ {m};

end

The FSOA results for Fx and Fz are given in Ta-
bles 2 and 3, respectively, as representative examples
of the approach. The boldface values indicate the
term that yields the highest R2 value. For the models
containing all regressors, the estimated model resid-
ual variances, σ̂2

i = 1
N−1

∑N
k=1(zi(k) − ŷi(k))

2, were
also computed to inform the next step of regression.

Table 2: Fx FSOA results

R2 [%]
Iter. CHµb

CHµb,µ0
CHµb,µw

1 95.6 98.0 49.4
2 98.6 – 98.7
3 99.3 – –

σ̂2 = 3.70× 10−2

Table 3: Fz FSOA results

R2 [%]
Iter. CT0 CTµ0

Czµ CTµw

1 24.9 18.9 −6.9 −93.3
2 – 25.9 24.9 96.8
3 – 96.8 97.4 –
4 – 97.5 – –

σ̂2 = 1.40

Using these results, we can relate each term back to
the parameter definitions in Eq. (8) to obtain insight
into the predominant physical effects of the model.
In the Fx and Fy force components, the most in-
fluential model parameter is CHµb,µ0

, which is the
lumped effect composed of drag due to induced in-
flow and the isolated airframe drag. In the Zr force
equation, the dominant term is CT0

δ2t, which comes
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from the blade-element lift due to propeller speed. In
the rolling and pitching moment equations, the most
important term is CT0

δ2{a, e}, which comes from the
difference in lift due to the difference in rotor speeds.
Finally, the primary effect in the yawing moment is
CQ0δ

2r, which models the rotor profile drag due to
the difference in rotor speeds.

5.2 Multivariate Multiple Regression

Recognizing that parameters appear across force
and moment components, the estimates in Section 5.1
are not obtained using all possible data. For example,
the parameter CHµb

appears in all but the Fz equa-
tion, but is estimated five separate times. By using
the results from the previous section, we can intel-
ligently include data from all force/moment axes to
simultaneously estimate these parameters which has
three main benefits. First, the independent models
for each axis may be overfit. This approach greatly
reduces the total number of parameters to be iden-
tified. Second, all data are used to estimate the set
of parameters. For example, CHµb

can be estimated
using five times as many measurements. Third, as
will be detailed shortly, the residuals of the initial
regression in Section 5.1 can justify a statistical in-
terpretation of the final parameter estimates.

Considering all force and moment compo-
nents as the output, we have the measurement
model y(k) = H(v(k),ω(k),Ω(k))θ, where
θ ∈ Rnθ is the vector of proposed parameters
and H : R3 × R3 × RNr → R6×nθ is the regressor
function for the model. The “measured” output
of this model is z(k) = y(k) + w(k), where each
w(k) is assumed to be independently sampled from
a Gaussian distribution. Let w̃(k) = ŷ(k) − z(k)
where ŷ(k) = [ŷ1(k) · · · ŷ6(k)]

T was computed
through the initial regression in Section 5.1.
The covariance of w(k) is then approximated by

R ≈ 1
N−1

∑N
j=1 w̃(j)w̃T(j). The diagonal elements

of R for Model (22) are the estimated residual
variances from the FSOA results. The validity of the
Gaussian assumption is qualitatively evaluated by
fitting a Gaussian probability density function to the
histogram of residual data (Figure 3) and evaluating
the linearity of the inverse cumulative distribution
function (ICDF) with respect to the ordered model
residuals. The model residuals appear to follow the
shape of a normal distribution (shown as the red line
in Figure 3), and the ordered residuals are largely
linear with respect to the ICDF. Together, these
results indicate that normality of the residuals is a
reasonable assumption.

With the measurement model determined and ran-
dom measurement errors characterized, statistical es-
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Figure 3: Probability density of residuals

timates of the model parameters were obtained us-
ing multivariate multiple regression [28, Ch. 6]. Let

Z = [z(1) · · · z(N)]
T
, and let H and W be defined

similarly by vertically stacking the regressor functions
and noise vectors. The stacked vector of model out-
puts is given by Z = Hθ +W , and the stacked co-
variance matrix for W is R = R ⊗ IN , where ⊗ is
the Kronecker product and IN is the N ×N identity
matrix. Then, the parameter estimates are given by
the weighted least squares solution

θ̂ = (HTR−1H)−1HTR−1Z (24)

Because each w(k) was assumed to be indepen-
dently sampled from a zero-mean, Gaussian distri-
bution, these parameter estimates are both mini-
mum mean square error and maximum likelihood es-
timates. To evaluate model fit, both normalized root-
mean square error (NRMSE) and Theil’s inequality
coefficient (TIC) were used [28, Ch. 11].

The overall MMR results for Model (22) are tab-
ulated in Table 4. The R2 and NRMSE values of
the weighted least squared regression were 95.5% and
3.41%, respectively. The fit of the Fy model to the
data is significantly worse than Fx. This is not the
case, however when the airframe wind tunnel data
is excluded from the study. This is perhaps an ar-
tifact of how the airframe side force was measured
compared to the axial drag force.

The statistical significance of each of the iden-
tified parameters is evaluated using the t-statistic,
t0j = θ̂j/σ(θ̂j), where σ(θ̂j) is the estimated stan-

dard deviation of the θ̂j . The null hypothesis,
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Table 4: Model (22) MMR results

Component NRMSE [%] TIC
Fx 3.75 0.058
Fy 10.60 0.197
Fz 3.87 0.039
Mx 4.59 0.046
My 3.46 0.035
Mz 11.13 0.111

H0 : θ̂j = 0, is rejected with a significance level of α
if |t0j | > t(α/2, N − nθ), and the alternate hypothe-

sis, H1 : θ̂j ̸= 0, is accepted. Here, t(α/2, N − nθ) is
the sample of a one-tail t-distribution with confidence
α/2 andN−nθ degrees of freedom. Alternatively, the
P-value can be used to give the probability of the null
hypothesis, H0. In other words, it is the smallest sig-
nificance level that results in the rejection of H0. If
P {H0} < α, then H0 is rejected and θj is statistically
different from zero.

The parameter estimates (θ̂) computed using
Eq. (24) are given in Table 5 along with their stan-
dard deviation (σ), t-statistic, and P-value (given to
double precision). It can be seen that most parame-
ter standard deviations are at least an order of mag-
nitude less than their estimates. The notable excep-
tions are CQµ0

, CQµw
, and CQµ2

w
. This is also seen in

their t-statistics and P-values. While the underlying
physics indicates the presence of these terms, their
statistical significance is low for the simulation data.
This result does not indicate these terms should be
excluded, but rather their unique contribution to the
yawing moment may be challenging to identify.

Table 5: Model (22) MMR parameter estimates

θ̂ × 102 σ × 102 |t0| P-value
CHµb

0.455 0.018 24.8 0.00

CHµb,µ0
21.4 0.489 43.8 0.00

CHµb,µw
1.81 0.094 19.2 1.17× 10−79

CT0
1.54 0.028 55.2 0.00

CTµ0
3.11 0.752 4.1 3.67× 10−5

Czµ −2.14 0.350 −6.1 1.14× 10−9

CTµw
8.76 0.085 103.1 0.00

CRµb
−1.12 0.111 −10.1 6.04× 10−24

CQ0
−0.136 0.039 −3.5 5.25× 10−4

CQµ0
0.673 1.17 0.6 5.64× 10−1

CQµw
−0.031 0.118 −0.3 7.95× 10−1

CQµ2
w

−5.28 16.0 −0.3 7.42× 10−1

6 Conclusions

Multirotor flight dynamic models for control and
estimation have typically been limited to a small op-
erating domain. This is, to some extent, due to
the difficulty in connecting the well-established ro-
tor aerodynamic theory to models that can be iden-
tified from experimental data. The results of this pa-
per bridge the gap between rotor aerodynamic theory
and flight dynamic modeling for control and estima-
tion. By building up from blade-element and mo-
mentum theory, we are able to obtain a compact but
accurate nonlinear flight dynamic model. Finally, a
high-fidelity simulation study was used to evaluate re-
gressor importance and estimate the proposed model
parameters. This two-step approach can be readily
extended to system identification of multirotor air-
craft from flight data – a topic of future work.
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