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Abstract

This paper is concerned with the design of an invariant
extended Kalman filter (IEKF) for aerodynamic model-
free wind estimation using a small, fixed-wing uncrewed
aerial vehicle (UAV). The dynamics and output of the
UAV are shown to be left-invariant and left-equivariant,
respectively, with respect to transformations on the Lie
group SE(3), the space of 3D translations and rotations.
The steps for designing the IEKF for the 6DOF rigid air-
craft are described and the IEKF is implemented on sim-
ulated flight data to obtain wind velocity estimates. The
aircraft is simulated subject to a wind field defined by
von Kármán turbulence. Wind velocity estimates are ob-
tained using both the IEKF and a conventional extended
Kalman filter (EKF) for the aircraft simulated in a non-
accelerated helical turn, where it is shown that the IEKF
provides more accurate estimates of the wind velocity.

1 Introduction

Measurements of the kinematic and thermodynamic state
of the atmospheric boundary layer (ABL) can aid in un-
derstanding the natural flow over complex terrain11, im-
proving numerical weather prediction14, and support low-
altitude aviation missions including urban and advanced
air mobility operations. Ground-based weather stations
and weather balloons equipped with radiosondes are tra-
ditionalmethods of obtaining atmosphericmeasurements.
Still, they do not provide the flexibility and maneuver-
ability of small uncrewed aerial vehicles (UAVs). Small
UAVs are emerging as a promising alternative to con-
ventional atmospheric sensing methods as they offer in-
creased spatial and temporal sampling ability3,14,18,22,24

as low-cost, in-situ ABL sensing platforms. Estimates
of the kinematic state of the ABL, specifically the veloc-
ity of the mean wind over a region, have been obtained
using fixed-wing9,12,16,23 and multi-rotor7,13,17,19 aircraft.
Radio-controlled (RC) helicopters and multirotor UAVs
have also been used to infer the airflow in the wake of
ocean vessels15,21,25.

A small UAV can measure wind velocity directly
by mounting dedicated wind sensors such as sonic
anemometers on the aircraft. Indirect wind velocity mea-
surements are obtained by considering the aircraft mo-
tion in response to wind. Direct measurement can pro-
vide accurate wind estimates but it adds weight and cost
and the obtained measurements are sensitive to the place-
ment of the sensor and base vehicle motion26. Indirect
wind velocity measurements use the standard onboard
sensor suite including a global navigation satellite system
(GNSS) receiver, inertial measurement unit (IMU), mag-
netometer, and pitot tube, along with a vehicle motion
model to estimate the velocity of the wind. Indirect mea-
surements are further classified asmodel-based7,10,13,16,20

where a dynamic model is used in the estimation scheme,
and model-free2,8 where no knowledge of the aerody-
namic model is required.

Indirect wind estimation methods use filters including
the Kalman filter (KF), extended Kalman filter (EKF),
and unscented Kalman filter (UKF). This work focuses
on indirect model-free wind estimation using an invari-
ant extended Kalman filter (IEKF), based on work by
Bonnabel et al. on symmetry-preserving observers5 and
later used for attitude estimation of flying rigid bodies4,6.
The IEKF leverages the symmetries of the dynamic sys-
tem and uses an adapted invariant output error and invari-
ant state error as opposed to the linear output and state er-
ror used in a conventional EKF. This results in constant
state and output matrices on a larger subset of the state
space when compared to the EKF, which in general, pro-
vides stronger convergence guarantees of the IEKF for a
larger family of trajectories.

In this paper, a six degree of freedom (6DOF) fixed-
wing aircraft model is considered where the UAVmotion
is perturbed from its nominal condition by some wind
field. This work is an extension of a previous work where
the IEKF was designed for a 3DOF fixed-wing UAV in
constant altitude horizontal-plane flight1. Here, the full
6DOF kinematics and dynamics of the UAV are consid-
ered and the measurements include GNSS position, atti-
tude, body velocity, and body angular rates. They are
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described in Section 2. In Section 3 it is proven that the
dynamics are invariant, the output is equivariant, and in
Section 4, the IEKF is designed for wind estimation. The
aircraft is simulated in a von Kármńwind field and a com-
parison of wind estimation results using an IEKF and an
EKF are described in Section 5. Conclusions are made in
Section 6.

2 Aircraft Motion and Measurement Models

A 6DOF aircraft in wind is considered in this paper where
the goal is to estimate the wind velocity affecting the air-
craft’s motion. A description of aircraft kinematics and
dynamics requires defining the relevant reference frames.
We consider the two-dimensional inertial and body-fixed
frames:

• The inertial reference frame is given by the or-
thonormal triad (iX , iY , iZ). The origin of the in-
ertial frame is fixed and its orientation has been cho-
sen such that the positive iX axis points towards ge-
ographic North, the positive iY axis points East, and
the positive iZ axis points down completing the or-
thonormal frame. The location of the origin of the
inertial reference frame is arbitrary.

• The body-fixed reference frame is given by the or-
thonormal triad (bx, by, bz). The origin of the body-
fixed reference frame is the aircraft’s center of grav-
ity. The positive bx axis points forward through the
nose of the aircraft. The positive by axis points to
the right, as viewed from above. The positive bz
axis points down through the underside of the air-
craft.

The attitude kinematics and dynamics of a UAV flying in
wind are

Ẋ = RIBvr + Vw (1a)
ṘIB = RIBω

× (1b)
v̇r = vr × ω + fA +RT

IBg (1c)
ω̇ = I−1 (Iω × ω) +mA (1d)
V̇w = 0 (1e)

where X = (X,Y, Z)T ∈ R3 denotes the inertial
position of the UAV, vr = (vr,x, vr,y, vr,z)

T ∈ R3 is
the air-relative velocity vector expressed in the body-
fixed reference frame, ω = (p, q, r)T ∈ R3 is the an-
gular velocity expressed in the body frame, and Vw =
(Vw,x, Vw,y, Vw,z)

T ∈ R3 is the wind velocity expressed
in the inertial frame. The rotation matrix RIB ∈ SO(3)
maps free vectors expressed in the body-fixed frame
to the inertial frame. The matrix RBI that maps vec-
tors from the inertial frame to the body-fixed frame is
RBI = R−1

IB = RT
IB. The notation (·)× denotes the

cross-product equivalent matrix satisfying a×b = a× b
for 3× 1 vectors a and b. For the vector ω, for example,
we have

ω× =

 0 −r q
r 0 −p
−q p 0


The term fA in (1c) represents the specific force – force
divided by mass – acting on the aircraft due to aerody-
namic effects such as thrust, drag, side force, and lift.
Similarly, mA in (1d) represents the specific moment –
moment premultiplied by inverse inertia – due to aero-
dynamic effects such as pitch stiffness and yaw damp-
ing. The vector g = (0, 0, g)T is the specific force due to
gravity, where g is the magnitude of gravitational accel-
eration.
The system (1) can be written in first-order form as

ẋ = f(x,u) =


RIBvr + Vw

RIBω
×

vr × ω + fA +RT
IBg

I−1 (Iω × ω) +mA
0

 (2)

where the state x ∈ Rn=15 and input u ∈ Rp=6 are

x =


X
RIB
vr
ω
Vw

 and u =

(
fA
mA

)
(3)

We assume that the UAV is equipped with a GNSS re-
ceiver, IMU, magnetometer, and 5-hole probe. The mea-
surement equation y ∈ Rq=18 is

y = h(x,u) =


X
RIB
vr
ω

 (4)

Note that the problem formulation assumes that fA and
mA can be directly measured, e.g., using linear and an-
gular accelerometers, so that aerodynamic force and mo-
ment models are not required.

3 Proof of Invariant Dynamics and Equivariant Output

The invariance of the dynamics (1) and equivariance of
the measurements (4) are established with respect to the
Lie group SE(3) in this section. The Lie group SE(3) is
the space of 3D translations and rotations, which is the
configuration manifold for the fixed-wing UAV where
we assume planar motion. Let g = (Xg,Rg) ∈ G =
SE(3) where Xg ∈ R3 denotes the position of the air-
craft and where Rg ∈ SO(3) is parameterized by the
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Euler angles (ϕg, θg, ψg).

Definition 1. (Adapted from Bonnabel et al.5). Given a
Lie group G, the system

ẋ = f(x,u)

y = h(x,u)

has G-invariant dynamics and G-equivariant output if
there exist transformationsϕg(x(t)) andψg(u(t)) on the
state and input, respectively, such that

Dϕg(x) · f(x,u) = f(ϕg(x),ψg(u)) (5a)
ρg(y) = h(ϕg(x),ψg(u)) (5b)

for all g ∈ G,x, and u. The invariance property also
reads d

dtX = f(X ,ψg(u)) for X = ϕg(x).

This work considers the left action of G = SE(3) on
the state and input of the aircraft, i.e., the state and input
transformations ϕg andψg represent transformations un-
der the left action of G = SE(3). To fix notation, we
let g = (Xg,Rg) ∈ G = SE(3) where Xg ∈ R3 and
Rg ∈ SO(3).

Proposition 1. The dynamics (2) are invariant under the
left action ofSE(3) on the state and input as given below:

ϕg(x) =


Xg +X
RIBR

T
g

Rgvr
Rgω
Vw

 (6)

and

ψg(u) =

(
RgfA
RgmA

)
(7)

Proof. According to (5a) in Definition 1 with state and
input transformations (6) and (7), respectively, the sys-
tem is invariant if it satisfies the condition d

dt (ϕg(x)) =
f(ϕg(x),ψg(u)) for all g ∈ G and for all x and
u. Differentiating (6) on the left and evaluating
f(ϕg(x),ψg(u)) on the right where f is given in (2)
gives

d

dt


X +Xg

RIBR
T
g

Rgvr
Rgω
Vw



=


RIBR

T
gRgvr + Vw

RIBR
T
gRgω

×RT
g

Rgvr ×Rgω +RgfA +RgR
T
IBg

RgI
−1RT

g

(
RgIR

T
gRgω ×Rgω

)
+RgmA

0



or 
Ẋ

ṘIBR
T
g

Rgv̇r
Rgω̇

V̇w

 =


RIBvr + Vw

RIBω
×RT

g

Rg(vr × ω + fA +RT
IBg)

Rg(I
−1(Iω × ω) +mA)

0


The dynamics under the transformations ϕg and ψg sat-
isfy the condition (5a), thus the system described by
Eqs. (1a)−(1e) is invariant under the transformations (6)
and (7).

Proposition 2. The output (4) is equivariant under the
left action of SE(3) with state and input transformations
ϕg(x) and ψg(u), respectively, with output transforma-
tion

ρg(y) =


X +Xg

RIBR
T
g

Rgvr
Rgω

 (8)

Proof. Using the defined output transformation (8) we
show that condition (5b) is satisfied for the outputy given
in (4).

ρg(y) = y(ϕg(x),ψg(u))
X +Xg

RIBR
T
g

Rgvr
Rgω

 =


X +Xg

RIBR
T
g

Rgvr
Rgω


The transformed output satisfies the condition (5b), thus
the output equation (4) is SE(3)-equivariant.

It has been shown that a fixed-wing UAV flying in
a constant wind field is invariant under the left ac-
tion of SE(3) and the given measurements are SE(3)-
equivariant. In the following section, the SE(3)-
invariant dynamics and SE(3)-equivariant output are
used to design the invariant EKF.

4 The Invariant Extended Kalman Filter

The IEKF for the fixed-wing UAV is designed using the
G-invariant dynamics and G-equivariant measurements
from Section 3. In developing the IEKF for a fixed-wing
aircraft, we first rewrite the attitude kinematics in the ma-
trix differential equation (1b) in the vector form:

Θ̇ =

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ


︸ ︷︷ ︸

LIB(Θ)

ω (9)
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where Θ = (ϕ, θ, ψ)T ∈ R3 contains the roll, pitch, and
yaw angles that parameterize the rotation matrix RIB as
follows:

RIB(Θ) =

 cθcψ cψsθsϕ− cϕsψ cψsθcϕ+ sϕsψ
cθsψ sϕsθsψ + cϕcψ sθcϕsψ − sϕcψ
−sθ cθsϕ cθcϕ


(10)

The design of the IEKF is summarized by the follow-
ing steps5:

1. Solve the normalization equations.

2. Build an invariant output error and a set of scalar
invariants.

3. Build the invariant frame.

4. Define an invariant state estimate error and then, us-
ing the pre-observer defined in Bonnabel et al.5, de-
termine the invariant state error dynamics.

5. Design the IEKF by linearizing the invariant state
error dynamics and invariant output error about zero
state error.

A detailed description of the five steps and application
to a fixed-wing UAV in horizontal-plane flight can be
found in Ahmed and Woolsey1. The dynamic and mea-
surement models have been modified for this paper to in-
clude the full 6DOF motion of the UAV. The completion
of the above steps using the modified dynamic and mea-
surement equations (1) and (4), respectively, is left as an
exercise for the reader. The state matrix for the IEKF is
given in (11). where 03 denotes a 3 × 3 matrix of zeros.
We also obtain the output matrix

Hk =
∂E

∂η

∣∣∣∣
η=0

=


I3 03 03 03 03

03 I3 03 03 03

03 03 I3 03 03

03 03 03 I3 03

 (12)

The iterative sequence of the IEKF algorithm is provided
in Ahmed and Woolsey1. The IEKF is obtained by
augmenting the symmetry-preserving pre-observer with
zero-mean Gaussian white process noise w̃ with covari-
ance matrix Q and augmenting the measurement with

zero-mean Gaussian white measurement noise ṽ with co-
variance matrixR.

5 Simulation Results and Discussion

Fixed-wing UAV motion was simulated for a non-
accelerated helical turn. The flight dynamic model struc-
ture and parameter values are given in Appendix A. In
all simulations, the nominal airspeed is Vt = ||vr|| = 20
m/s but a 1D von Kármán wind field is superimposed so
that the aircraft is continually perturbed from its nominal
state of motion.
The 1D von Kármán turbulence model is characterized

by power spectral density functions of spatial frequen-
cies Ω. Assuming that the nominal aircraft motion is due
North, the gust spectrum components in the North, East,
and down directions are, respectively,

Φ11(Ω) =
Lσ2

π

1

(1 + (1.339LΩ)2)5/6
(13a)

Φ22(Ω) =
Lσ2

2π

1 + 8
3 (1.339LΩ)

2

(1 + (1.339LΩ)2)11/6
(13b)

Φ33(Ω) =
Lσ2

2π

1 + 8
3 (1.339LΩ)

2

(1 + (1.339LΩ)2)11/6
(13c)

where L is the turbulence length scale in feet, σ is the
turbulence intensity in feet per second, andΩ has units of
radians per foot. The simulated wind conditions were for
the turbulence length scale L = 20 ft, turbulence inten-
sity σ = 10 ft/s, and over spatial frequencies Ω ranging
from 10−4 to 1 rad/ft.
For the turning motion shown in Fig. 1, the simula-

tion begins with a transition from constant altitude, wings
level flight to helical descending flight. The helical path
was chosen to demonstrate the robustness of the invariant
EKF over the conventional EKF.
Process noise was superposed on the dynamics with

covariance matrixQ = diag(03,03, σ
2
vr I3, σ

2
ωI3, σ2

Vw
I3)

where σvr = 0.01, σω = 0.001, and σVw = 0.05 (with
commensurate units). Measurement noise with covari-
ance matrixR = σ2

vI18 with σv = 0.01 was superposed
on the output equation.
The invariant EKF was used to estimate the iner-

Ak =
∂fη
∂η

∣∣∣∣
η=0

=



03 03 R̂IBRγ(x̂) 03 I3
03 03 03 L̂IBRγ(x̂) 03

03 03 −ω×(Rγ(x̂) + I3) v×r Rγ(x̂) 03

03 03 03

−ω× − I−1ω×IRT
γ(x̂)

+I−1(Iω)×RT
γ(x̂)

03

03 03 03 03 03

 (11)
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Figure 1: Trajectory of the fixed-wing UAV in a non-
accelerated helical turn subject to a 1D von Kármán wind
field.

tial position, orientation, body velocity, and body an-
gular rate of the aircraft as well as the velocity of the
wind. To initialize the filter, the initial state estimate
x̂(0) = (XT

0 ,Θ
T
0,v

T
0 ,ω

T
0 ,V

T
w0

)T was defined by choos-
ing X0 = (0, 0,−200)Tm, Θ0 = ( 4π3 ,

5π
4 ,

7π
6 )T rad,

v0 = (−20, 5, 50)Tm/s, ω0 = (5,−5, 1)T rad/s, and
Vw0

= (−25,−10, 15)Tm/s. The filter was intention-
ally initialized using an initial condition far from the ac-
tual initial state of the simulated flight to illustrate con-
vergence from nonzero initial error. The initial state error
covariance matrix was set to P (0) = I15. The IEKF esti-
mates are compared to estimates obtained using a conven-
tional EKF. Figure 2a shows the wind estimates obtained
using the IEKF and the EKF for the two simulated trajec-
tories. The EKF and invariant EKF were tuned using the
same values for process and measurement noise covari-
ance. A 10-second window of the wind estimation results
is presented in Fig. 2b. These results show that both the
EKF and the invariant EKF provide accurate estimates of
wind velocity, however, the invariant EKF outperforms
the conventional EKF.
Figure 3 shows root mean square (RMS) error of wind

velocity estimates obtained using the invariant EKF and a
conventional EKF in the two simulated flight conditions.
The invariant EKF wind estimates have lower RMS error
when compared to the EKF wind estimates.

6 Conclusions

This work presented the results of wind estimation for a
small, fixed-wing UAV using the invariant EKF. The dy-
namics of the UAV were proven to be invariant under the
action of the Lie groupG = SE(3) and the chosen output
is G-equivariant. The design of the IEKF is described in
five steps. The invariant EKF has stronger convergence
guarantees over a larger subset of the state space as the

(a)

(b)

Figure 2: Wind estimation results using both the invariant
EKF (denoted IEKF) and the conventional EKF (denoted
EKF) compared to the actual simulated wind velocity val-
ues in flight corresponding a non-accelerated helical turn
where in (a) the results are shown for the full simulation
time and in (b) a 10-second window of the estimates is
shown.
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Figure 3: Root mean square error plots of wind estimates
obtained using the invariant EKF and a conventional EKF
for a non-accelerated helical turn.

Jacobian matrices defining the linearization remain rela-
tively constant. Simulated flight data was generated for
a non-accelerated helical turn where the nominal motion
of the small, fixed-wing UAV was disturbed by 1D von
Kŕmń turbulence. Wind estimates obtained using the in-
variant EKF were more accurate than those using the con-
ventional EKF. Time histories of the true and estimated
wind velocity clearly show better tracking by the invari-
ant EKF supported quantitatively by the lower RMS error
when compared to the EKF.
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A Example Aircraft Parameters

The small, fixed-wing aircraft model used in simulation
was the following MTD2 aircraft model identified by the
Nonlinear Systems Laboratory (NSL) at Virginia Tech? .
The mass and geometric properties of the MTD2 are pro-
vided in Table 1.

Table 1: MTD2 aircraft mass and geometric properties.

Parameter Symbol Value
Mass m 3.311 kg

Moments of inertia

Ixx
Iyy
Izz
Ixz

0.319 kg-m2

0.267 kg-m2

0.471 kg-m2

0.024 kg-m2

Wing span
Mean aerodynamic
chord
Wing surface area
Propeller diameter
Number of propellers

b
c
S
D
ηn

1.80m
0.254m
0.457m2

0.254m
2

Propeller Efficiency ηe 90%

An identified aerodynamic model of the aircraft was
used to simulate its flight. The model was identified from
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flight data by other members of the NSL. The models
identified for the aerodynamic force and moment are

FA =
1

2
ρ∥v∥2S

CX(v,ω, δ)
CY (v,ω, δ)
CZ(v,ω, δ)

+ ξ

CJ(δ)
0
0


(14)

MA =
1

2
ρ∥v∥2S

 bCl(v,ω, δ)
cCm(v,ω, δ)
bCn(v,ω, δ)

 (15)

where ξ = D4ρηeηnδ
2
rps and δ = [δa, δe, δr, δrps]

T are the
control inputs corresponding to aileron, elevator, rudder,
and thrust commands, c is the mean aerodynamic chord,
b is the wingspan, S is the aircraft wing surface area, ρ is
the air density,D is the diameter of the propeller, ηe is the
propeller efficiency, and ηn is the number of propellers.
The non-dimensional thrust, force, and moment models
are

CJ = CJ0
+ CJJ + CJ2J2 (16a)

CX = CX0 + CXδe
δe + CXαα+ CX2

α
α2 (16b)

CY = CYp
p̂+ CYr r̂ + CYδa

δa + CYδr
δr + CYβ

β
(16c)

CZ = CZ0
+ CZq

q̂ + CZα
α (16d)

Cl = Clp p̂+ Clδa
δa + Clββ (16e)

Cm = Cm0
+ Cmq

q̂ + Cmδe
δe + Cmα

α+ Cmα̇
α̇
(16f)

Cn = Cnr r̂ + Cnδa
δa + Cnδr

δr + Cnβ
β (16g)

where the non-dimensional terms in Eqn. (16) are

α = tan−1
(w
u

)
β = sin−1

(
v

∥v∥

)
p̂ =

pb

2∥v∥

q̂ =
qc

2∥v∥
r̂ =

rb

2∥v∥
J =

∥v∥
δrpsD

Table 2 provides the identified force and moment coeffi-
cients.

Table 2: Aerodynamic force and moment coefficients for
the MTD2.

Coefficient Value Coefficient Value
CJ0 -0.131 CYp 0.221
CJ -0.040 CYr

0.230
CJ2 0.116 CYδa

0.118
CX0

-0.428 CYδr
0.136

CXδe
0.051 CYβ

-0.525
CXα 0.282
CXα2 3.292

Coefficient Value Coefficient Value
CZ0 -0.225 Cm0 0.008
CZq

-12.54 Cmq
-14.02

CZα
-4.451 Cmδe

-0.415
Cmα

-0.471
Cmα̇

0.550
Coefficient Value Coefficient Value

Clp -0.386 Cnr -0.119
Clδa

-0.137 Cnδa
0.013

Clβ -0.039 Cnδr
-0.068

Cnβ
0.103
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