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ABSTRACT

Accreting binary white dwarf systems are among the sources expected to emanate gravitational waves that
will be detectable by the Laser Interferometer Space Antenna (LISA). We investigate how well we will be able to
determine astrophysical parameters of accreting binary white dwarf systems from LISA’s measurements of the
gravitational waves emanated by these binaries. We present expressions for the gravitational wave amplitude,
frequency, and frequency derivative in terms of white dwarf parameters (masses, donor radius, etc.), which
we derive using knowledge of mass accreting mechanisms for binaries containing low-mass donors. We then
perform a Fisher analysis to reveal the accuracy of our measurements of these parameters, relying on models
from Modules for Experiments in Stellar Astrophysics (MESA) to obtain realistic mass-radius relations. We
find that with an independent measurement of the luminosity distance, we are likely to be able to determine the
individual masses, donor radius, and a parameter describing the response of the donor to mass loss. Without an
independent measurement of the luminosity distance, we can still use LISA’s measurements to determine the
latter two parameters, but we are no longer able to constrain the individual masses.

1. INTRODUCTION

The first direct detection of gravitational waves (GWs) in
2015 came from the merger of a binary black hole (Abbott
et al. 2016). Since then, the LIGO/Virgo Collaborations have
additionally detected GW signals from numerous other bi-
nary black hole mergers, as well as several binary neutron
star and neutron star-black hole mergers (Abbott et al. 2017,
2019, 2021). While LIGO and other ground-based detectors
are able to detect GWs with frequencies from about 15 Hz
to several kHz (Abbott et al. 2019), the Laser Interferome-
ter Space Antenna (LISA) is a space-based GW detector ex-
pected to launch in the mid-2030s with the ability to detect
GWs in the frequency range of ∼ 10−4 to 10−1Hz. (Amaro-
Seoane et al. 2017). Among the astrophysical sources antici-
pated to emit GWs within this range are binary white dwarfs
(WDs). In fact, for a 4-year observation period, some 12,000
double white dwarfs (DWDs) are expected to be resolvable
with LISA (Lamberts et al. 2019). Because the GW signals
from these DWDs will be sustained for a much longer period
of time than signals of a merger event, we anticipate being
able to extract significant information from not only the GW
frequency, but also the GW frequency “chirp," i.e., change in
frequency over time ( ḟ ) (Shah et al. 2012).

Prospects of measuring astrophysical parameters of de-
tached binary white dwarfs, in particular their individual
masses, are studied in (Wolz et al. 2021). The authors ex-
press the finite-size effects of rotation and tidal effects in the

binary WD gravitational waveform. They then employ uni-
versal relations between the tidal deformability and moment
of inertia, and between the moment of inertia and WD mass,
to express the finite-size effects in terms of the individual
masses. By conducting a Fisher analysis on this waveform
expressed in terms of the masses, the authors show that LISA
will be able to measure the individual masses of DWDs given
an initial frequency of ∼ 0.02Hz and either small binary sep-
aration or relatively large masses.

In this paper, we investigate the possibility of measuring
astrophysical parameters of accreting DWDs given LISA’s
measurements of the amplitude (A), frequency ( f ), and fre-
quency derivative ( ḟ ) of GWs emanated by the DWDs. A
similar analysis was carried out previously in Biscoveanu
et al. (2022), where the authors use f and ḟ to constrain the
strength of tidal coupling between the binary orbit and indi-
vidual WD spin, additionally paving the way for measure-
ments of the synchronization timescale (τ0) and a parameter
indicating the binding energy of the envelope (λ ). We addi-
tionally build on the work of Kaplan et al. (2012), who inves-
tigate the mass-transfer (accretion) processes and evolution
of low-mass WDs that contain large hydrogen envelopes and
accrete onto more massive companions. Kaplan et al. (2012)
highlight the importance of understanding the relative com-
position of hydrogen and helium in these WDs in order to in-
fer the stability and behavior of the binary. On the other hand,
Kremer et al. (2015) study DWD systems in a colder regime,
employing a cold-temperature radius approximation in their
study of mass transfer and tidal effects due to asynchronicity



between the binary orbit and individual WD spins. This anal-
ysis is extended in Kremer et al. (2017), which treats DWDs
undergoing both direct impact and disk accretion, demon-
strating how the negative chirp of these systems allows for
∼ 2700 DWDs to be observable with LISA.

In this paper, we improve previous work by connecting the
non-degenerate regime, in which donor WDs have the linger-
ing hydrogen envelope discussed in Kaplan et al. (2012), with
the later, degenerate regime in which the cold-temperature
radius formula used by Biscoveanu et al. (2022), Kremer
et al. (2015), and Kremer et al. (2017) is valid. We study the
evolution of accreting DWDs through the transition between
these two regimes. Knowledge of the accretion mechanism
for such DWDs allows us to parameterize their gravitational
waveforms in terms of the individual masses and other pa-
rameters of interest. We then perform a Fisher analysis on
this waveform to determine how well we will be able to con-
strain the masses and other parameters given LISA’s detec-
tions of GWs from accreting DWDs.

In this study, we find that with an independent measure-
ment of the luminosity distance of our DWD systems, we are
likely to be able to measure the individual masses, donor ra-
dius, and response of the donor to mass loss given LISA’s
measurements of the GW amplitude, frequency, and fre-
quency derivative. Without an independent measurement of
the luminosity distance, we lose our ability to constrain the
individual masses, but we are still able to measure the other
two parameters.

The paper is organized as follows. In Sec. 2, we introduce
the parameterized gravitational waveform. In Sec. 3, we dis-
cuss how the mass-radius relations of our WDs differ in the
degenerate versus non-degenerate regimes, introducing mod-
els of donors in the non-degenerate regime that we generate
with a stellar evolutionary code. Sec. 4 illustrates the de-
tectability of our DWD systems based on the relative magni-
tude of these systems’ GW strain versus LISA’s noise curve.
Finally, our parameter estimation technique and results are
given in Sec. 5, followed by discussion and conclusions. The
geometric units of c = G = 1 are used in all of our equations,
with the physical dimensions being recoverable through the
conversion 1M⊙ = 1.5km = 4.9×10−6s.

2. GRAVITATIONAL WAVEFORM

The sky-averaged gravitational waveform, h(t), for a DWD
with donor mass md and accretor mass ma is given by

h(t) = Acosφ(t). (1)

A is the amplitude, given by

A =
8M

5D
(πM f )2/3 , (2)

where D is the luminosity distance and M is the chirp mass,

M =
(mdma)

3/5

(md +ma)1/5 . (3)

Assuming a fairly slowly changing GW frequency, so that f̈
and higher derivatives are negligible, the phase φ(t) is given
by (Shah & Nelemans 2014)

φ(t) = φ0 +2π f0δ t +π ḟ0δ t2, (4)

where the subscript 0 indicates the quantity measured at the
initial time of observation, t0, and δ t = t − t0.

Examining Eqs. (2) and (4), it is evident that in order to
write the waveform in terms of our parameters of interest, we
must express f and ḟ in terms of these parameters. We begin
with Kepler’s third law to obtain an expression for f = 2/Porb
in terms of the masses and semi-major axis, a:

f =
1
π

√
M
a3 , (5)

where M is the total mass, M = md + ma. The accreting
DWDs we are interested in undergo mass transfer via Roche
lobe overflow. In this overflow process, the donor radius, rd ,
is related to a via the expression

a = rd/rL (6)

with rL being the Roche-lobe of the donor, given approxi-
mately as (Eggleton 1983)

rL =
0.49q2/3

0.6q2/3 + ln(1+q1/3)
, q =

md

ma
. (7)

In total, then, Eq. (5) gives f in terms of the two masses and
the donor radius, i.e.,

f =
1
π

√
M

(rd/rL)3 . (8)

We differentiate Eq. (8) with respect to time to obtain an
expression for ḟ in terms of our parameters of interest. This
differentiation leaves us with an ȧ/a term that can be ex-
pressed in terms of our parameters of interest as follows.

We begin by assuming a circular orbit, giving total orbital
angular momentum

J = mdma

( a
M

)1/2
. (9)

Differentiating this quantity with respect to time gives

J̇
J
=

ṁd

md

(
1+(F −1)

md

ma
− Fmd

2M

)
+

ȧ
2a

, (10)
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The mass-loss fraction, F , defined such that ṁa = −(1 −
F)ṁd , indicates whether mass transfer is conservative or not.
When F = 0, all mass lost by the donor is gained by the ac-
cretor, and there is no overall loss of mass from the binary;
when F = 1, the accreted material is lost by the binary due to
stellar winds, classical novae, etc.

We can further relate ṁd and ȧ. Given Eqs. (6) and (7), it
can be shown that

ȧ
a
=

ṁd

md

[
ηd −ζrL

]
, (11)

where ζrL is the ratio between ṙL
rL

and ṁd
md

,

ζrL =
ṙL

rL

md

ṁd

=
(

q(1−F)+1
) 2(1+q1/3)ln(1+q1/3)−q1/3

3(1+q1/3)(0.6q2/3 + ln(1+q2/3))
,

(12)
and ηd is a parameter that defines the response of the donor
to mass loss,

ηd =
dlnrd

dlnmd
. (13)

If ηd > 0, the donor WD shrinks as it loses mass; if ηd < 0,
as is the case for a completely degenerate WD, the donor
WD’s radius increases as it loses mass. With Eq. (11), we
can eliminate ṁd/md in Eq. (10) and express the total orbital
angular momentum loss in terms of just ȧ/a.

On the other hand, the change in orbital angular momen-
tum is dominated by two processes. The first of these pro-
cesses is the emission of gravitational waves, which yields

J̇gr

J
=−32

5
Mmdma

a4 . (14)

Angular momentum can also be lost by the binary when ac-
creted material impacts the companion star directly, rather
than forming an accretion disk around the companion. The
resultant “accretion torque," which occurs at small orbits,
leads to a change in angular momentum given by

J̇acc

J
=

ṁd

md

√
rh

(
1+

md

ma

)
, (15)

where rh is the effective radius of material orbiting the accret-
ing companion. We use a fitting formula for rh that depends
only on the mass ratio, q = md/ma (Verbunt & Rappaport
1988).

When we set J̇/J = J̇gr/J + J̇acc/J, we arrive at an expres-
sion for ȧ/a,

ȧ
a
=

(
−32

5
Mmdma

a4

)
×

ηd −ζrL

1+q(F −1)−F md
2m − r1/2

h (1+q)1/2 +
ηd−ζrL

2

.
(16)

(In most regions of parameter space, the orbit is wide enough
for an accretion disk to form; in these regions, we exclude
the accretion torque term in Eq. (15), so that the quan-
tity −r1/2

h (1+q)1/2 does not appear in the denominator of
Eq. (16).) With this expression for ȧ

a , we can write ḟ in terms
of the parameters md ,ma,rd and ηd . Revisiting Eqs. (2), (4),
(8), and (16), we have a gravitational waveform in terms of
the six parameters φ0,md ,ma,rd ,ηd and D. It is this wave-
form that we use in our Fisher analysis to determine the mea-
surability of each of our parameters of interest.

3. MASS-RADIUS RELATIONS

The way in which the donor WD responds to mass loss
depends significantly on the composition of the donor. For
cold, degenerate WDs, we can use P.P. Eggleton’s analytic
formula to obtain rd in terms of md (Verbunt & Rappaport
1988). ηd in this cold temperature regime comes out to be
about ηd ∼−1/3 for a range of md values.

If the donor WD is not degenerate, rd does not vary with
md in such a predictable manner. To reach this conclusion,
we used Modules for Experiments in Stellar Astrophysics
(MESA; Paxton et al. (2011)) to model mass loss from
dozens of donor WDs containing a range of core and enve-
lope masses. One of the longest lasting models we obtained
is given in Fig 1. To construct this model, we used MESA to
simulate the growth of a 0.153M⊙-helium core in the center
of a pre-main sequence star. MESA then models the removal
of the outer layers of hydrogen in this star via stellar winds,
leaving only about 0.006M⊙ of a remaining hydrogen enve-
lope. The graph of |ηd | shown in Fig 1 begins at this point of
the simulation; the initial large positive value of ηd reflects
the lingering hydrogen envelope surrounding the donor WD.
We then simulate mass loss from the donor, causing the WD
to become increasingly degenerate as hydrogen is transferred
away, resulting in a decreasing ηd function. Eventually, ηd
passes through zero (seen in the cusp around 0.055M⊙ of
stripped mass). After this point, the donor increases in size
as it loses mass, causing the orbital separation of the binary
to increase.

We used MESA to model many such systems, with the
hope of finding patterns between the evolution of md and rd
that would hold for a range of core and envelope masses.
This would allow us to perform a Fisher analysis on only
the parameters θi = (φ0,md ,ma), as we could take rd and ηd
to be determined by md . However, the vast majority of our
models reached significant numerical noise long before ηd
even crossed through zero. We therefore treat rd and ηd as
unknown and include them as Fisher parameters in our pa-
rameter estimation, using the MESA model shown in Fig 1
merely to obtain fiducial rd and ηd values as we vary md and
ma.
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Figure 1. Plot of |ηd | vs. stripped mass for a MESA model of a donor WD with a predominantly helium core of 0.153M⊙ and surrounding
hydrogen envelope of 0.006M⊙. Numerical noise halted the model after about 0.07M⊙ of mass had been stripped from the donor.

4. GW STRAIN VS. LISA’S NOISE CURVE

In Fig 2, we present plots of the GW strain compared to
LISA’s noise curve over a range of GW frequencies. We see
that in both the early (dashed) and late (solid) stages of evolu-
tion of these binaries, the GW strain (plotted as A×(Tobs)

1/2,
where Tobs is the observation time that we take to be 4 years)
is several orders of magnitude higher than LISA’s noise curve
(Sn( f ); Robson et al. (2019)). This indicates that we are
likely to be able to detect GW signals from the DWD sys-
tems using LISA. The dashed plots model the GW strain
during an earlier stage of DWD evolution, when the donor
has a significant remnant of hydrogen envelope surrounding
its degenerate helium core. We construct these plots using
Eqs. (2) and (8), along with the mass-radius relation from
the MESA model shown in Fig 1. In this early stage of evo-
lution, the frequency first increases, reflecting the shrinking
of the binary orbit due to GW radiation. As the WDs ap-
proach each other, mass transfer is initiated, and eventually
the majority of the hydrogen surrounding the donor is de-
pleted, leaving the donor largely degenerate. This causes the
donor’s radius to increase as it continues losing mass, which
in turn causes the orbital separation to grow (i.e., f begins
to decrease again). The solid lines show the GW strain at
a much later stage of evolution, when the donor is fully de-
generate and f is steadily decreasing toward the bottom left-
hand corner of the plot. To construct the solid-line plots, we
use Eggleton’s cold-temperature mass-radius formula (Ver-
bunt & Rappaport 1988).

Fig 2 also shows a plot of the signal-to-noise ratio (SNR) at
a luminosity distance of 1kpc. As an SNR of ∼ 8 is generally
taken as the minimum SNR for detectability, this plot con-
firms that LISA should be able to detect the DWDs discussed
here.

5. ASTROPHYSICAL PARAMETER INFERENCE

5.1. Fisher Method

Given our gravitational waveform derived in Sec. 2, we can
estimate the error on each of our parameters of interest using

a Fisher information matrix (FIM) (Cutler 1998; Shah et al.
2012; Shah & Nelemans 2014). This method of parameter
estimation assumes stationary and Gaussian detector noise.

The FIM is defined as

Γi j =

(
∂h
∂θ i

∣∣∣∣ ∂h
∂θ j

)
, (17)

where the partial derivatives of the waveform, h, are taken
with respect to the parameters of interest described in the pre-
vious section,

θ
i = (φ0,md ,ma,rd ,ηd ,D). (18)

The inner product in Eq. (17) is given by

(a|b) = 4
∫

∞

0

ã∗( f )b̃( f )
Sn( f )

d f ≈ 2
Sn( f0)

∫ T

0
a(t)b(t)dt , (19)

with spectral noise density Sn and observation time T . Tildes
indicate Fourier components, and the asterisk denotes the
complex conjugate of ã( f ). We take LISA’s Sn from Rob-
son et al. (2019) (

√
Sn(0.02Hz) = 1.43×10−20 Hz−1/2). The

monochromatic nature of DWD signals is assumed in our ap-
proximation, Sn( f )≈ Sn( f0), and we use Parseval’s theorem
to convert the inner product defined in the frequency domain
to an integral in the time domain.

By inverting the FIM defined in Eq. (17), we obtain the
1-σ uncertainty on each of the parameters:

∆θi =
√
(Γ−1)ii. (20)

We further impose Gaussian priors on md and ma, with the
priors σθ i defined such that (Poisson & Will 1995; Cutler &
Flanagan 1994; Carson & Yagi 2020)

∆θi =

√
(Γ̃−1)ii , Γ̃i j = Γi j +

1
σ2

θ i

δi j. (21)

Because we are only considering DWD systems with low
mass donors (md ≲ 0.2M⊙), we set the prior on the donor to
σmd = 0.2M⊙. Requiring the accretor WD to have a larger
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Figure 2. Left: GW strain (A× (Tobs)
1/2; red, green, blue) and LISA’s noise curve (black) vs. GW frequency for degenerate (solid) and non-

degenerate (dashed) DWD systems at a luminosity distance of 1kpc. Arrows show the direction of evolution. The frequency ranges correspond
to donor mass ranges of 0.040− 0.100M⊙ and 0.085− 0.155M⊙ for the solid and dashed lines, respectively. Right: the signal-to-noise ratio
(SNR) computed for a DWD system with a donor modeled by MESA. Based on these plots, we expect GWs from the DWDs we study to be
detectable at distances around 1kpc.

mass than the donor WD, we set the prior on the accretor
to σma = 0.8M⊙, as WDs are generally not observed with
masses much higher than ∼ 1.0M⊙.

For fiducial values, we take φ0 = 3.666 rad and D = 1kpc
unless otherwise stated, and vary (md ,ma). By virtue of the
mass-radius relations introduced in Sec. 3, varying md also
varies the parameters rd and ηd . Our results are shown for an
observation time of Tobs = 4 years.

5.2. Dynamical Stability for the DWD systems

The mass transfer process for the DWDs considered here is
expected to be unstable for certain mass ratios. Such unstable
mass transfer causes dynamical instability of the binary and
ultimately results in short-lived DWDs that we do not expect
to observe with LISA. We follow Rappaport et al. (1982) in
taking mass transfer to be stable when ṁd < 0. Revisiting
Eqs. (11) and (16), we arrive at the following criterion for
dynamical stability of the binary:

1+q(F −1)−F
md

2m
− r1/2

h (1+q)1/2+

ηd −ζrL

2
> 0.

(22)

From this expression, it is evident that dynamical stability
is dependent on the value of the mass-loss fraction, F . F
is determined by whether or not the accreted material can be
burned stably. We take the criterion for stable hydrogen burn-
ing from Kaplan et al. (2012). This criterion, which takes
into account the reduced metallicity of the accreting WD, is
ṁ> 10−7(ma/M⊙−0.5357)M⊙yr−1. For mass transfer rates
lower than this, we assume unstable hydrogen burning and
set F = 1. For mass transfer rates above the critical mass
loss rate, we assume stable hydrogen burning and set F = 0.

As mentioned previously, there are large regions of param-
eter space in which the orbit is wide enough for an accre-

tion disk to form. In such cases, we again exclude the accre-
tion torque term −r1/2

h (1+q)1/2, leading to greater dynami-
cal stability (i.e., more regions in which the left-hand side of
Eq. (22) is greater than zero).

5.3. Results: Gravitational-wave Observations Alone

We now present the results of our Fisher analysis that we
obtain if there is no way to independently constrain the lumi-
nosity distance, D. In this case, we include D in our parame-
ter set:

θ
i = (φ0,md ,ma,rd ,ηd ,D) (23)

Plots of the error on the parameters ηd ,rd , and D are given
in Fig 3. Unfortunately, in this case, we find that our
Fisher analysis merely returns the priors we impose on the
masses, i.e., we gain no additional constraints on the individ-
ual masses of the donor and accretor WDs.

Although we appear to be unable to constrain the individ-
ual masses without an independent measurement of D, there
are large regions of parameter space in which the fractional
error on rd is smaller than is required for the measurability
threshold, ∆rd/rd = 1. The same cannot be said for D; our
Fisher analysis does not assist us in constraining the lumi-
nosity distance.

For ηd , we plot just the error rather than the fractional error
because the smallness of ηd itself as the donor WD becomes
degenerate causes the fractional error on this parameter to be
very large, giving a false sense of an inability to constrain the
parameter. In reality, there is a large region of the parameter
space in which the error on ηd is very small. In the plot of
∆ηd , we see a discontinuity around ma ≈ 0.6M⊙. This line
separates the region of parameter space in which the mass
loss fraction, F , equals 0 (lower portion of the plot) from
the region in which F = 1 (upper portion). In other words,
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Figure 3. Error on ηd and fractional error on rd and D, calculated via our Fisher analysis including D as a Fisher parameter. Since inverting
the FIM merely returns the priors on the individual masses, giving no new constraints on the mass values, we do not show plots for these
parameters.

accreted hydrogen burns stably on the accreting companion
only in the lower region of parameter space.

In general, we find that the fractional error on rd (exclud-
ing correlations between parameters) scales with the signal-
to-noise ratio (SNR) times d f

drd
× rd . This is intuitive; we see

from Eq. (8) that f depends significantly on rd through the or-
bital separation, and the error should of course decrease with
a larger SNR. The extra factor of rd accounts for the fact that
want to compare the derivative against our plots of fractional
error (i.e., ∆rd divided by a factor of rd). In a similar manner,
we find that the error on ηd scales with SNR × d ḟ

dηd
, which

is sensible, as ηd only appears in ḟ and not the amplitude or
other parts of the phase. Finally, we find that the error on D
scales with SNR × dA

dD ×D. This is also as we expect; the only
place luminosity distance appears in our parameterized grav-
itational waveform is through the amplitude (Eq. (2)). For

plots and more discussion on the scaling of parameter error
with various derivatives of the waveform, see App. B.

To summarize, in the absence of an electromagnetic coun-
terpart to LISA’s measurements of accreting DWDs, our
Fisher analysis suggests that we will only likely be able to
constrain rd and possibly ηd out of the six parameters ap-
pearing in our gravitational waveform.

5.4. Results: Gravitational-wave Observations with
Electromagnetic Counterparts

A recent paper has shown that at least ∼ 60 DWDs with
helium-rich donors are expected to be observable by both
LISA and GAIA (Breivik et al. 2018). For these DWD sys-
tems, we can obtain an independent measurement of the lu-
minosity distance, D, from GAIA. This reduces the number
of unknown parameters by one, leaving us with the parameter
set
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Figure 4. Top row: Fractional error on the individual masses as determined via Fisher analysis. Bottom row, left to right: Error on ηd and
fractional error on rd given by the Fisher analysis. Fiducial values for ηd and rd were obtained from the MESA mass-radius relation given in
Fig 1.

θ
i = (φ0,md ,ma,rd ,ηd). (24)

It turns out that our ability to constrain the individual
masses of accreting DWD systems is considerably enhanced
if we do not need to include D as a Fisher parameter.

Figure 4 shows the measurement uncertainties calculated
for the parameters md , ma, ηd , and rd , as determined via
Fisher analysis excluding D as a parameter. In total, we see
that if we have an independent measurement of D, we can
anticipate being able to constrain each of our parameters of
interest, including md and ma, which we were unable to do
without the complementary measurement of D. The measur-
ability of rd is also considerably enhanced when we perform
the Fisher analysis on only five parameters.

Once again, we find that the error (without correlations)
on rd and ηd scale with SNR × d f

drd
× rd and SNR × d ḟ

dηd
, re-

spectively. The errors on md and ma do not follow such a

simple scaling because of the additional priors that we im-
pose on these parameters. Instead, we find that the error on
ma is mainly dominated by the prior with a slight improve-
ment that comes from the amplitude. On the other hand, the
error on md is determined both from the amplitude and phase.

For the results shown in both Sec. 5.3 and Sec 5.4, we note
that the error on md , ma, and rd does not change significantly
when we use different mass-radius relations for fiducial val-
ues of rd and ηd . The error on ηd decreases by almost two or-
ders of magnitude when we use Eggleton’s cold-temperature
mass-radius relation instead of a MESA model for fiducial
values.

We also note that although the error without correlations
increases by an order of magnitude when we study DWD sys-
tems at 10kpc instead of 1kpc, the full error on md , ma, and rd
is heavily dependent enough upon the priors and upon corre-
lations between parameters to not change significantly when
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we increase the fiducial luminosity distance to 10kpc. The
error on ηd , on the other hand, increases by a little over an
order of magnitude. At 10kpc, the SNR plotted in Fig 2 de-
creases by a factor of 10, so that there is only a small region
of parameter space (red region of the plot) in which GWs
from DWD systems should be above the detectability thresh-
old (SNR∼ 8).

6. CONCLUSIONS

We parameterize the GWs that we expect LISA to detect
from accreting DWD systems in terms of the parameters
θi = (φ0,md ,ma,ηd ,rd ,D). We perform a Fisher analysis
on the parameterized waveform, imposing Gaussian priors
on the individual masses based on properties of the DWDs
we expect to be generating the GWs. We find from our
Fisher analysis that if we can obtain simultaneous, inde-
pendent measurements of D (from a separate detector like

GAIA), then we are likely to be able to constrain not only
the individual masses, md and ma, but also the parameters
ηd and rd . However, if we do not have an independent mea-
surement of D, then although our Fisher analysis still reveals
reasonable measurability of ηd and rd , we lose our ability to
constrain the individual masses. For future work, it would
be interesting to confirm and generalize our findings using a
full Bayesian Markov-chain Monte-Carlo analysis (Cornish
& Littenberg 2007).
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APPENDIX

A. CORROBORATION OF THE MD −F RELATION FOR NEGATIVELY CHIRPING DWD SYSTEMS

In a previous work, Breivik et al. (2018) report nearly identical evolutionary tracks of md versus f in their simulations of
several thousand negatively chirping DWDs containing low-mass helium core donors. They fit the relation between md and f to a
fourth-order polynomial shown in Fig 5. In the same figure, we plot tracks of md versus f calculated via Eq. 8, using Eggleton’s
cold-temperature mass-radius relation to obtain donor radius values (Verbunt & Rappaport 1988). It is evident that despite the
accretor mass appearing in the total mass in Eq. 8, the evolution of f with md is largely insensitive to the mass of the accreting
companion in the negatively chirping (i.e., cold temperature) regime. For DWDs containing low-mass degenerate donors, our
analytic calculation of f agrees excellently with the analytic fit in Eq. (1) of Verbunt & Rappaport (1988).
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Figure 5. Our evolutionary tracks of md vs. f for low-mass degenerate WDs, plotted against the analytic fit for similar DWD systems studied
in Verbunt & Rappaport (1988).
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B. IDENTIFICATION OF PARAMETER ERROR WITH DIFFERENT PIECES OF THE WAVEFORM

In Sec. 5.3 and Sec. 5.4, we mention the scaling of the error on rd and ηd with the SNR times d f/drd and d ḟ/dηd , respectively.
In Sec. 5.3, we additionally find that the error on D scales with SNR×dA/dD. To illustrate this point, we plot the error on each
of these parameters (without correlations) alongside the partial derivative of the waveform with which the error scales. We show
plots for just the six-parameter case (i.e., including D as a Fisher parameter), as the scaling of the error on ηd and rd works much
the same way for both the five- and six-parameter cases.

Based on Fig 6, we see that rd is largely determined by f , ηd is determined by ḟ , and D is determined by A. The latter two
statements are not surprising; ηd and D only appear in the waveform through ḟ and A, respectively, so we would not expect the
error on these parameters to be affected by anything else (other than the SNR). The clear scaling of rd with f is slightly less
trivial, since rd technically appears in all three pieces of the waveform, A, f , and ḟ . However, since rd only enters the amplitude
and ḟ through f , we should not ultimately be surprised that rd scales most strongly with just the GW frequency (and SNR).
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Figure 6. Plots showing how the error on rd , ηd , and D is determined by different pieces of the waveform.

Yi 9



REFERENCES

Abbott, B. P., et al. 2016, Phys. Rev. Lett., 116, 061102,

doi: 10.1103/PhysRevLett.116.061102

—. 2017, Phys. Rev. Lett., 119, 161101,

doi: 10.1103/PhysRevLett.119.161101

—. 2019, Phys. Rev., X9, 031040,

doi: 10.1103/PhysRevX.9.031040

Abbott, R., et al. 2021, Astrophys. J. Lett., 915, L5,

doi: 10.3847/2041-8213/ac082e

Amaro-Seoane, P., et al. 2017. https://arxiv.org/abs/1702.00786

Biscoveanu, S., Kremer, K., & Thrane, E. 2022, arXiv e-prints,

arXiv:2206.15390, doi: 10.48550/arXiv.2206.15390

Breivik, K., Kremer, K., Bueno, M., et al. 2018, Astrophys. J. Lett.,

854, L1, doi: 10.3847/2041-8213/aaaa23

Carson, Z., & Yagi, K. 2020, Phys. Rev., D101, 044047,

doi: 10.1103/PhysRevD.101.044047

Cornish, N. J., & Littenberg, T. B. 2007, Phys. Rev., D76, 083006,

doi: 10.1103/PhysRevD.76.083006

Cutler, C. 1998, Phys. Rev., D57, 7089,

doi: 10.1103/PhysRevD.57.7089

Cutler, C., & Flanagan, É. E. 1994, PhRvD, 49, 2658,

doi: 10.1103/PhysRevD.49.2658

Eggleton, P. P. 1983, Astrophys. J., 268, 368, doi: 10.1086/160960

Kaplan, D. L., Bildsten, L., & Steinfadt, J. D. R. 2012, Astrophys.
J., 758, 64, doi: 10.1088/0004-637X/758/1/64

Kremer, K., Breivik, K., Larson, S. L., & Kalogera, V. 2017, ApJ,
846, 95, doi: 10.3847/1538-4357/aa8557

Kremer, K., Sepinsky, J., & Kalogera, V. 2015, ApJ, 806, 76,
doi: 10.1088/0004-637X/806/1/76

Lamberts, A., Blunt, S., Littenberg, T. B., et al. 2019, Mon. Not.
Roy. Astron. Soc., 490, 5888, doi: 10.1093/mnras/stz2834

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, Astrophys. J.
Suppl., 192, 3, doi: 10.1088/0067-0049/192/1/3

Poisson, E., & Will, C. M. 1995, Phys. Rev., D52, 848,
doi: 10.1103/PhysRevD.52.848

Rappaport, S., Joss, P., & Webbink, R. 1982, Astrophys. J., 254,
616, doi: 10.1086/159772

Robson, T., Cornish, N. J., & Liu, C. 2019, Class. Quant. Grav., 36,
105011, doi: 10.1088/1361-6382/ab1101

Shah, S., & Nelemans, G. 2014, Astrophys. J., 791, 76,
doi: 10.1088/0004-637X/791/2/76

Shah, S., van der Sluys, M., & Nelemans, G. 2012, A&A, 544,
A153, doi: 10.1051/0004-6361/201219309

Verbunt, F., & Rappaport, S. 1988, Astrophys. J., 332, 193,
doi: 10.1086/166645

Wolz, A., Yagi, K., Anderson, N., & Taylor, A. J. 2021, MNRAS,
500, L52, doi: 10.1093/mnrasl/slaa183

Yi 10

http://doi.org/10.1103/PhysRevLett.116.061102
http://doi.org/10.1103/PhysRevLett.119.161101
http://doi.org/10.1103/PhysRevX.9.031040
http://doi.org/10.3847/2041-8213/ac082e
https://arxiv.org/abs/1702.00786
http://doi.org/10.48550/arXiv.2206.15390
http://doi.org/10.3847/2041-8213/aaaa23
http://doi.org/10.1103/PhysRevD.101.044047
http://doi.org/10.1103/PhysRevD.76.083006
http://doi.org/10.1103/PhysRevD.57.7089
http://doi.org/10.1103/PhysRevD.49.2658
http://doi.org/10.1086/160960
http://doi.org/10.1088/0004-637X/758/1/64
http://doi.org/10.3847/1538-4357/aa8557
http://doi.org/10.1088/0004-637X/806/1/76
http://doi.org/10.1093/mnras/stz2834
http://doi.org/10.1088/0067-0049/192/1/3
http://doi.org/10.1103/PhysRevD.52.848
http://doi.org/10.1086/159772
http://doi.org/10.1088/1361-6382/ab1101
http://doi.org/10.1088/0004-637X/791/2/76
http://doi.org/10.1051/0004-6361/201219309
http://doi.org/10.1086/166645
http://doi.org/10.1093/mnrasl/slaa183

	Introduction
	Gravitational Waveform
	Mass-Radius Relations
	GW strain vs. LISA's Noise Curve
	Astrophysical Parameter Inference
	Fisher Method
	Dynamical Stability for the DWD systems
	Results: Gravitational-wave Observations Alone
	Results: Gravitational-wave Observations with Electromagnetic Counterparts

	Conclusions
	Corroboration of the md-f relation for negatively chirping DWD systems
	Identification of Parameter Error with different pieces of the waveform

