
SURFACE COMPUTATIONS WITH DECOUPLED INTRINSIC

GEOMETRY

Randy Shoemaker
Advisor: Dr. Pieter Peers
College of William & Mary

April 2023

Abstract

Many dynamic processes, such as heat flow, take
place on the surface of a shape. Computations
involved in simulating such processes are unnec-
essarily computationally intensive since they are
computed using 3D data whereas a shape’s sur-
face only has two degrees of freedom. The 3D
representation of a shape is its extrinsic geom-
etry, and the 2D representation is called its in-
trinsic geometry. For computing purposes, the
extrinsic geometry of a surface is typically rep-
resented by a mesh, a collection of flat triangles
connecting points in three dimensions. Whereas
intrinsic geometry can be represented by a mesh
of triangles that wrap around the surface, spec-
ified only with edge lengths. We present a fast
algorithm for computing a compact intrinsic tri-
angulation of a given extrinsic shape with far
fewer triangular elements than the extrinsic tri-
angulation. We demonstrate the use of the
simplified mesh for solving Partial Differential
Equations. To the knowledge of the authors,
we present the first intrinsic mesh simplification
algorithm. We demonstrate the robustness and
effectiveness of our algorithm on the benchmark
Thingi10k19 mesh data set. We show the ef-
fect of intrinsic simplification by solving Poisson
equations on our intrinsically simplified meshes
and give a comparison to existing extrinsic sim-
plification methods.

Introduction

Geometric data encountered in the wild are of-
ten “messy” from a geometry processing per-

spective, necessitating the need for robustified
processing methods20,7,15,13,11. Intrinsic trian-
gulation frameworks4,17,6 have been proposed
as an alternative strategy for robust geometry
processing in the wild. Intrinsic triangulations
approach geometry processing from an intrinsic
view where all operations are expressed as com-
binations of atomic operations (e.g., edge flip-
ping, vertex insertion, etc.) defined on distances
between points over the 2D manifold. While,
existing intrinsic triangulation frameworks dif-
fer in data-structure and efficiency of certain
atomic operations, they all share that each “ex-
trinsic” vertex has an immutable counterpart
in the intrinsic triangulation, and consequently,
vertex removal of initial extrinsic vertices is not
supported. Many in-the-wild triangle meshes
are finely triangulated in order to faithfully ap-
proximate curved surfaces in R3 by piecewise
planar surfaces. However, a significant por-
tion of in-the-wild triangle meshes are designed
with CAD tools or are the result of 3D scans
of real-world sur-

faces formed by
combining devel-
opable patches.
Intrinsically, such
developable parts
are isometric to a
plane. For example
consider a cap-less
cylinder which can
be fully modeled
using just two intrinsic triangles (see inset).

Shoemaker 1



However, to faithfully capture the curvature,
thousands of extrinsic triangles are needed in
R3. Not only does blindly embedding a heavily
tessellated developable surface incur significant
overhead, it also impacts the efficiency of many
downstream processing algorithms such as
optimal Delaunay triangulations2 and adaptive
intrinsic mesh refinement17.

We present a topology-preserving method for
simplifying a triangle mesh directly on the in-
trinsic manifold. A key insight is that vertices
with zero Gaussian curvature can be removed
without impacting the accuracy of the metric
defined on the embedding. Moreover, a locally
developable approximation can be obtained by
allowing vertices with small Gaussian curvature
to be removed. However, classic vertex merg-
ing and edge collapse require updating of edge
lengths in the intrinsic setting which can be non-
trivial when removing a vertex with non-zero
curvature. Instead, we introduce a novel in-
trinsic simplification method based on edge flip-
ping, a stable atomic intrinsic operation. For
each vertex we would like to remove, we per-
form edge flips until the vertex has valance 3
(or valance 2 for vertices on the boundary). We
can then remove the vertex if the resulting tri-
angulation remains valid. If the triangulation
becomes invalid, we undo the edge flips in re-
verse order and reschedule the vertex for later
evaluation. We process vertices in a greedy
“intrinsically-flattest-first” order until no more
vertices can be removed. In addition, we keep
track of the intrinsic location of deleted vertices
by their intrinsic barycentric coordinates. Com-
pared to extrinsic simplification which approx-
imates the surface with fewer planar triangles,
intrinsic simplification can be seen as approxi-
mating the surface with developable patches.
We demonstrate and validate the robustness

of our method on the Thingi10k dataset19, and
evaluate the impact of relaxing the Gaussian
curvature threshold at which vertices can be re-
moved.

Related Work

Mesh Simplification

There exists a vast body of work on extrin-
sic mesh simplification, however we will focus
on seminal papers in this area and contrast
them against our intrinsic mesh simplification
method; we refer the reader to8 for a compre-
hensive review. Extrinsic mesh simplification
methods aim to reduce the number of vertices in
the mesh such that some quality metric is best
preserved. The most commonly preserved qual-
ity is the visual appearance of a mesh14,5,12,10,3.
Vertex decimation14 iteratively deletes vertices
according to an extrinsic criterion and the re-
sulting hole is carefully re-triangulated. Our
method of vertex deletion is similar to ver-
tex decimation, except that we employ intrinsic
edge flips until the ring of a vertex is a triangle
which can be removed without retriangulation.
In their seminal work, Garland and Heckbert5

greedily merge vertices to minimize a quadric
error metric (QEM) via edge contraction. We
also follow a greedy approach, but instead of
QEM, we use Gaussian curvature to drive the
simplification.

Recently, Lescoat et al.9 proposed Spectral
Mesh Simplification (SMS), a greedy extrinsic
mesh simplification strategy, that aims to pre-
serve the intrinsic geometry (i.e., minimize the
change in the first k eigenvectors of the Laplace-
Beltrami operator). Spectral mesh simplifica-
tion is able to reduce the number of extrinsic
triangles while minimizing errors when comput-
ing spectral distances. However, spectral mesh
simplification is relatively computationally ex-
pensive and limited to reducing extrinsic sur-
faces. In contrast, intrinsic mesh simplification
is computationally light weight and it is more
efficient in reducing the number of elements in
developable patches while preserving the intrin-
sic geometry.

Intrinsic Triangulations

Intrinsic triangulation frameworks4,17,6 provide
tools and atomic operations to perform geom-
etry processing algorithms that only rely on
intrinsic information directly on the intrinsic

Shoemaker 2



mesh (e.g., geodesic distance16, computing dis-
tortion minimizing homographies18, or algo-
rithms that rely on the Laplace-Beltrami opera-
tor1). All existing intrinsic triangulation frame-
works support edge flipping, and the Signpost17

and Integer Coordinate framework6 support ad-
ditional atomic operations such as adding ver-
tices, repositioning (added) vertices, and com-
puting common subdivisions. However, none of
the existing intrinsic triangulation frameworks
currently support the removal of an extrinsic’s
vertex’s intrinsic counterpart. While we im-
plement our method in the Signpost17 frame-
work to facilitate visualization of the resulting
mesh, our method only relies on edge flipping
to remove vertices, opening the door to possible
adaptation to other current and future intrinsic
triangulation frameworks.

Background

We briefly discuss the information required to
support intrinsic triangulations relevant for in-
troducing our intrinsic simplification method.

The intrinsic geometry of a shape is repre-
sented by a mesh M = {V,E,F}, consisting of
a collection of vertices V, edges E, and trian-
gles F, and additionally the lengths ℓij of the
ij-th edge in E between vertices i and j ∈ V.
The lengths ℓij describe the shape of the trian-
gles. For visualization purposes we also store
signpost angles17 φij which describe the direc-
tion from vertex i to vertex j ∈ V along edge
ij defined in a local polar coordinate system at
i. It can be easily seen that these two pieces of
additional information fully define the intrinsic
geometry. Other relevant intrinsic information
can be directly computed from the edge lengths:

θjki = arccos

(
ℓ2ij + ℓ2ik − ℓ2jk

2ℓijℓik

)
, (1)

Aijk =
√

s(s− ℓij)(s− ℓjk)(s− ℓki), (2)

s = (ℓij + ℓjk + ℓki)/2 (3)

where θjki is the interior angle at i ∈ V in the tri-
angle ijk ∈ F and Aijk is the area of the triangle
ijk ∈ F.

Intrinsic Simplification By
Edge Flipping

Our goal is to remove intrinsic vertices that are
part of a (near) developable patch in the cor-
responding extrinsic mesh. Removing such ver-
tices will not alter the intrinsic geometry since a
developable patch is isometric to a planar neigh-
borhood. A surface is developable around a ver-
tex i if it has zero Gaussian curvature: κi =
2π − αi, where αi =

∑
ijk θ

jk
i is the cone angle.

Ideally, only vertices with zero Gaussian curva-
ture should be removed such that the intrinsic
geometry is not changed. However, developable
surfaces are often highly tessellated for accu-
rate approximation in R3. Depending on the
exact triangulation and/or numerical round-off
errors, an exact zero Gaussian curvature might
not be reached. Therefore, in practice we try to
remove all vertices with a Gaussian curvature
less than some predetermined threshold κmax.
Setting κmax to a larger threshold, allows us
to obtain an intrinsic approximation where por-
tions of the triangulation are replaced with de-
velopable patches.

Although not strictly necessary, we start by
performing an intrinsic Delaunay retriangula-
tion to ensure a well behaved mesh. Next, we
sort all vertices by their Gaussian curvature in
a queue P by smallest Gaussian curvature first,
and process the vertices in P until no vertices
with a Gaussian curvature less than κmax can
be removed anymore. For each vertex, we per-
form edge flips on all incident edges until the
desired valence (three for interior vertices or
two for vertices on boundaries) is reached. We
record each edge flip in a FIFO queue Q for
additional post-processing detailed below. For
vertices with zero Gaussian curvature, we are
guaranteed to reach this goal16. For vertices
with non-zero curvature the desired valence is
not guaranteed. In practice we found that we
usually can achieve the desired valance for small
non-zero Gaussian curvature. When the desired
valence is reached, simplification can be easily
achieved by removing the vertex i and all inci-
dent edges ij, ik and il, and that the resulting
triangle jkl forms a developable approximation

Shoemaker 3



l

j

ki

initially edge flip edge flip remove
(valence 5) (valence 4) (valence 3)

initially edge flip edge flip remove
(valence 4) (valence 3) (valence 2)

Figure 1: Illustration of intrinsic vertex removal
by edge flipping for an interior (top) and a
boundary (bottom) vertex.

(Figure 1). However, depending on the config-
uration of the 1-ring, removing the vertex can
lead to an invalid triangulation. We therefore
only remove vertices if the resulting triangle jkl
strictly adheres to the triangle inequality.
When we are unable to reach the desired va-

lence or if the triangle inequality is violated, we
undo the edge flips recorded in Q in reverse or-
der to restore the triangulation. It is possible
that after removing more vertices, the triangu-
lation is more favorable for removing the ver-
tex. Therefore, we re-queue the vertex for re-
processing after all outstanding vertices with a
Gaussian curvature less than κmax have been
processed.
If a vertex i can be successfully removed (i.e.,

it has the desired valence after edge flipping,
and the containing triangle is valid), then we
perform the following steps:

• We update the Gaussian curvature of the
vertices of jkl in the processing queue P
(either by updating the order if j, k, or l
was in the queue, or by adding the vertex
if not yet queued).

• During edge flipping to achieve the desired
valence, it is sometimes possible to cre-
ate degenerate triangles. Instead of try-
ing to figure out a safe flipping order, we
instead ’repair’ the triangulation after ver-
tex removal. For each edge recorded in Q,
we check (in reverse order) if the resulting

initially edge flip edge flip remove

Figure 2: Applying extrinsic edge flips for ver-
tex removal can result in degraded geometry.
In contrast to an intrinsic edge flip producing
an edge that ‘rides’ the surface, an an extrinsic
edge flip changes the intrinsic geometry by al-
tering distances along the surface.

edges are Delaunay. If not, then we flip the
edge, and add the four edges of the result-
ing triangles to Q. We repeat this process
until Q is empty and the resulting triangu-
lation meets the intrinsic Delaunay prop-
erty again.

Discussion

The above edge flipping strategy reduces the 1-
ring polygon around each candidate vertex for
removal to the trivial re-triangulation case; i.e.,
such that no re-triangulation is needed. We can
apply this strategy only on the intrinsic trian-
gulation, not in an extrinsic setting where it can
significantly alter the shape (Figure 2).
Furthermore, only the actual intrinsic vertex

removal step alters the Gaussian curvature at
the vertex (if not zero); Gaussian curvature re-
mains unchanged under intrinsic edge flipping.
Vice versa, while retriangulation is necessary in
the extrinsic setting, it is unclear in the intrin-
sic domain how to compute the edge lengths
when the Gaussian curvature is not zero. First,
the 1-ring polygon needs to be projected to a
developable surface, which can possibly entail
changes to the intrinsic mesh beyond the poly-
gon. Second, it is unclear what the updated
edge lengths should be (i.e., the candidate ver-
tex needs to be projected onto the developable
approximation).
An additional benefit of our simplification al-

gorithm is that it preserves the Euler charac-
teristic (V-E+F) of the mesh. For a closed
mesh (without boundary), each vertex removal
step results in a deletion of 1 vertex, 3 edges,

Shoemaker 4



and 3 faces, while adding 1 new face (∆Euler:
−1+3−3+1 = 0). In case there is a boundary,
we remove 1 vertex, 2 edges and 1 face (∆Euler:
−1+2−1 = 0). By virtue of the Gauss-Bonnet
theorem, we know that since the Euler charac-
teristic is preserved, the sum of the Gaussian
curvature is unchanged. Thus deleting a ver-
tex i implies that its Gaussian curvature is re-
distributed to its neighbors. This also justifies
why after each vertex removal, we update the
Gaussian curvature sorted processing queue P.

Intrinsic-Extrinsic Correspondence

Similar to the Signpost data structure, we keep
track of the correspondences between intrinsic
and extrinsic vertices. Special care needs to be
taken for tracking the correspondence of deleted
vertices. This is achieved by maintaining in-
trinsic barycentric coordinates for each extrin-
sic vertex deleted from the intrinsic triangula-
tion. There are three scenarios to consider:

1. Defining the barycentric coordinate
(cji , c

k
i , c

l
i) of a deleted vertex i inside a

triangle jkl. When the threshold κmax

is not zero, the vertex is ’projected’
onto a developable approximation. Since
this projection is an approximation, a
number of viable options exist. In our
implementation, we opt for maintain-
ing the relative ratio of triangle areas:
cji = Aikl/(Aikl+Ailj+Aijk), and similarly
for cki and cli. When the threshold is set
to zero, these correspond to the regular
barycentric coordinates.

2. Updating the barycentric coordinates of a
vertex v that depends on a deleted vertex
i. When a vertex is deleted, it is possible
that a previously deleted vertex’s barycen-
tric coordinates depends on it. Because
our vertex deletion is only performed af-
ter the vertex has the desired valance, it
follows that the dependent vertex must lie
in one of the faces that will be merged.
Hence, both the barycentric coordinates of
the deleted and dependent vertex will de-
pend on the same corner vertices after dele-
tion. Thus, we can easily substitute the

barycentric coordinates of the deleted ver-
tex. For example, if v ∈ ijk, and i is
deleted, then the updated coordinates are:
(cjv + civc

j
i , c

k
v + civc

k
i , c

i
vc

l
i).

3. Updating the barycentric coordinate if the
vertex is contained in a triangle whose edge
is flipped. In this case, we recompute the
barycentric coordinates as ratios of the 2D
areas after unfolding both the triangles in
a local plane.

Results and Evaluation

We have implemented our intrinsic simplifica-
tion method in C++ using the Signpost data
structure and a half-edge extrinsic mesh rep-
resentation. We have validated our method
on a subset of the Thingi10k19 dataset con-
taining all valid manifold and oriented triangle
meshes. Processing all 7,129 triangle meshes
takes approximately 4.25 hours to run the whole
algorithm for 4 thresholds values: κmax =
{10−9, 10−6, 10−4, 10−2} (in radians) on a Intel
i5-8265U (1.60GHz) CPU with 16GB of mem-
ory (using a single core).

Figure 3 shows a selection of 3 meshes
from the test set. For each mesh we show
the original mesh, and 3 thresholds κmax =
{10−6, 10−4, 10−2}. The visualizations of the
simplified meshes are projected on the original
extrinsic mesh, and thus any deformations due
to non-zero Gaussian vertex deletion are not vi-
sualized. Note how our method simplifies most
in regions that are developable or approximately
developable. For example, in the Fan Blades ex-
ample, we can see that significant simplification
takes place on the backside of the fan blades
and on the base in between the blades. The
feet of the Robot consists of nearly developable
surfaces, and thus show a significant reduction
in intrinsic triangles. Note how some of the sim-
plified intrinsic triangles form a curved surface
in R3. Finally, the Rods example shows most
simplification on the sides of the rods. As ex-
pected, for each example, a higher threshold re-
moves move vertices.

Shoemaker 5



Table 1: Mesh simplification statistics over a subset of 7,129 manifold and oriented triangle meshes
in the Thingi10K dataset comparing the percentage of vertices with a Gaussian curvature less then
κmax versus the percentage removed after simplification.

Removable Successfully Removed Mean Time (s)

κmax mean std. dev. mean std. dev. remove track total

10−9 5.55% 13.81 99.54% 4.97 0.16s 0.13s 0.28s
10−6 7.46% 16.16 99.32% 5.39 0.18s 0.18s 0.36s
10−4 12.67% 20.24 96.92% 7.36 0.26s 0.30s 0.56s
10−2 34.08% 33.55 93.66% 9.12 0.53s 0.42s 0.96s

To gain further insight in the efficacy of our
intrinsic simplification method, Figure 1 re-
ports the mean percentage and standard devi-
ation of ideally removable vertices (i.e., those
with a Gaussian curvature less than κmax) and
the mean percentage (and standard deviation)
of actually removed vertices for four different
thresholds κmax = {10−9, 10−6, 10−4, 10−2}. As
expected with an increasing threshold, more
vertices can be removed, and in general vertex
removal succeeds for almost all candidate ver-
tices. In addition, we also report the mean run-
ning time (excluding data IO); vertex removal
and updating the intrinsic barycentric coordi-
nates take about the same amount of compute
time.

To demonstrate the impact of removing non-
zero Gaussian curvature vertices, we visualize
the solution to a Poisson equation with a single
source term centered on a chosen vertex on 2 se-
lected meshes for 3 κmax thresholds (Figure 4);
we report the number of vertices and MSE er-
ror over the Poisson solution for each of the ver-
tices in the original mesh (possible interpolated
based on the intrinsic barycentric coordinates).
We deliberately did not apply any refinement
and directly solve the equation on the simpli-
fied mesh to better illustrate the impact of the
simplification. In the first example, we deliber-
ately placed the source term on a vertex with
low Gaussian curvature. As expected, as the
threshold κmax increases, so does the error. In
the second example, we placed the source term
on a vertex with high Gaussian curvature, which
results in a smaller increase in error because

most intrinsic triangles around the source term
will not be simplified. In a practice, for maxi-
mal accuracy, we would first apply optimal in-
trinsic Delaunay triangulation17 or adaptive in-
trinsic mesh refinement17. While both method
will again increase the number of intrinsic ver-
tices, both methods would not be encumbered
by suboptimally placed intrinsic vertices from
the original mesh.

A key advantage of simplifying the intrinsic
representation compared to first simplifying an
extrinsic mesh and then constructing an intrin-
sic representation is that we can produce simpli-
fied triangles with “bend” edges, and thus bet-
ter maintain the metric over the surface. To bet-
ter understand the differences between different
simplification methods, Figure 5 compares in-
trinsic mesh simplification with two extrinsic
simplifications methods: QEM5 and Spectral
Mesh Simplification9. For each method, we per-
form an equal-vertex-count comparison (simpli-
fied from 14,290 to 1,715 vertices for the Bunny,
and from 23,356 to 4,440 vertices for the Frog)
to our intrinsic simplified mesh, and highlight
the differences between all methods by visual-
izing the solution to a Poisson equation com-
puted directly on the “raw” mesh with a source
term placed at a low and high Gaussian curva-
ture vertex. Note that Spectral Mesh Simplifi-
cation optimizes for the intrinsic qualities of the
mesh when removing vertices, and as such on
average the solution to the Poisson equation is
more accurate, albeit at a much higher compu-
tation cost (35 minutes versus 0.62 seconds for
our method on the Bunny ; for reference QEM

Shoemaker 6



took 7.6 second seconds versus 0.85 seconds for
our method on the Frog). However, as noted be-
fore, intrinsic mesh simplification is intended as
a preprocessing step, and in practice we would
apply an adaptive refinement or optimal De-
launay triangulation before solving the Poisson
equation.

Future Work

Currently our simplification method utilizes
signposts to encode directions along the sur-
face of a mesh, which enables us to visualize
the simplified mesh ‘projected’ on the extrinsic
mesh. However when the threshold κmax be-
comes large the signposts are no longer valid.
A method for robustly updating the signposts
in the presence of large κmax would open the
door to more downstream algorithms, such as
vector field processing17.

Understanding the effect of our simplification
algorithm or a larger class of downstream ap-
plications and algorithms is crucial for building
upon our framework and is a current area of re-
search. Furthermore, giving users finer control
over the speed/accuracy trade off inherent to
all simplification methods (though less extreme
in the intrinsic setting) is also a goal of future
research.
Finally we think that adapting other extrinsic

simplification methods, such as edge collapse5,
to the intrinsic setting could provide interesting
avenues of future research.

Conclusion

We presented, to the best of our knowledge, the
first intrinsic mesh simplification method. Our
method leverages the benefits of intrinsic edge
flipping to significantly simplify vertex deletion
to two canonical cases (i.e., valence three for an
internal vertex, and valence two for a boundary
vertex). We use Gaussian curvature as the dele-
tion criterion, which effectively projects vertices
onto a locally developable approximation. We
demonstrated the robustness and effectiveness
of our method on the Thingi10k dataset.

Acknowledgements

I would like to thank my Ph.D advisor Pieter
Peers for all of his guidance. Many thanks go
to my lab mate Sam Sartor for generating the
beautiful images used in this manuscript. Fi-
nally, I would like to thank the Virginia Space
Grant Consortium for supporting this research.

References

[1] M. Botsch et al. Polygon Mesh Processing.
2010. isbn: 9781439865316.

[2] Long Chen and Jinchao Xu. “Optimal
Delaunay triangulations”. In: Journal of
Computational Mathematics 22.2 (Mar.
2004), pp. 299–308.

[3] David Cohen-Steiner, Pierre Alliez, and
Mathieu Desbrun. “Variational Shape
Approximation”. In: ACM Trans. Graph.
23.3 (2004), 905–914.

[4] Matthew Fisher et al. “An algorithm for
the construction of intrinsic Delaunay tri-
angulations with applications to digital
geometry processing”. In: Computing 81.2
(2007), pp. 199–213.

[5] Michael Garland and Paul S. Heckbert.
“Surface Simplification Using Quadric Er-
ror Metrics”. In: Proceedings of the 24th
Annual Conference on Computer Graph-
ics and Interactive Techniques. SIG-
GRAPH ’97. 1997, 209–216.

[6] Mark Gillespie, Nicholas Sharp, and
Keenan Crane. “Integer coordinates for
intrinsic geometry processing”. In: ACM
Trans. Graph. 40.6 (2021).

[7] Yixin Hu et al. “Tetrahedral Meshing in
the Wild”. In: ACM Trans. Graph. 37.4
(2018).

[8] Dawar Khan et al. “Surface remeshing:
A systematic literature review of methods
and research directions”. In: IEEE TVCG
28.3 (2020), pp. 1680–1713.

Shoemaker 7



[9] Thibault Lescoat et al. “Spectral mesh
simplification”. In: Comp. Graph. Forum.
Vol. 39. 2. 2020, pp. 315–324.

[10] Jovan Popović and Hugues Hoppe. “Pro-
gressive Simplicial Complexes”. In: Pro-
ceedings of the 24th Annual Conference on
Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’97. 1997, 217–224.

[11] Yang Qi et al. “A bidirectional formu-
lation for Walk on Spheres”. In: Comp.
Graph. Forum 41.4 (2022), pp. 51–62.

[12] Jarek Rossignac and Paul Borrel. “Multi-
resolution 3D approximations for render-
ing complex scenes”. In: Modeling in com-
puter graphics. Springer, 1993, pp. 455–
465.

[13] Rohan Sawhney and Keenan Crane.
“Monte Carlo Geometry Processing: A
Grid-Free Approach to PDE-Based Meth-
ods on Volumetric Domains”. In: ACM
Trans. Graph. 39.4 (2020).

[14] William J Schroeder, Jonathan A Zarge,
and William E Lorensen. “Decimation
of triangle meshes”. In: Proceedings of
the 19th annual conference on Computer
graphics and interactive techniques. 1992,
pp. 65–70.

[15] Silvia Sellén et al. “Solid Geometry
Processing on Deconstructed Domains”.
In: Comp. Graph. Forum 38.1 (2019),
pp. 564–579.

[16] Nicholas Sharp and Keenan Crane. “You
Can Find Geodesic Paths in Triangle
Meshes by Just Flipping Edges”. In: ACM
Trans. Graph. 39.6 (2020).

[17] Nicholas Sharp, Yousuf Soliman, and
Keenan Crane. “Navigating intrinsic tri-
angulations”. In: ACM Trans. Graph. 38.4
(2019).

[18] Kenshi Takayama. “Compatible Intrinsic
Triangulations”. In: ACM Trans. Graph.
41.4 (2022).

[19] Qingnan Zhou and Alec Jacobson.
“Thingi10K: A Dataset of 10,000 3D-
Printing Models”. In: arXiv preprint
arXiv:1605.04797 (2016).

[20] Qingnan Zhou et al. “Mesh Arrangements
for Solid Geometry”. In: ACM Trans.
Graph. 35.4 (2016).

Shoemaker 8



20 678 vertices 52 151 vertices 3305 vertices

κmax = 10−6 κmax = 10−4 κmax = 10−2

20 472 vertices 5809 vertices 2526 vertices

32 430 vertices 20 465 vertices 7379 vertices

2121 vertices 1827 vertices 544 vertices

Figure 3: Intrinsic mesh simplification results on three meshes for different thresholds κmax. Note
that the simplified intrinsic mesh is projected on the original mesh, thus any deformations due to
removal of intrinsic vertices with non-zero Gaussian curvature are not visualized.

Shoemaker 9



Original κmax = 10−4 κmax = 10−3 κmax = 10−2

1 009 118 vertices 964 173 vertices 798 697 vertices 355 654 vertices
MSE = 6.01× 10−6 MSE = 5.76× 10−4 MSE = 8.93× 10−3

Original κmax = 10−4 κmax = 10−3 κmax = 10−2

34 999 vertices 34 855 vertices 33 140 vertices 14 633 vertices
MSE = 6.77× 10−8 MSE = 2.49× 10−7 MSE = 2.05× 10−6

Figure 4: Visualizations of the solution of a Poisson equation with the source placed on a near-
developable vertex (top) or on a vertex with high curvature (bottom). The equation is solved
directly on the “raw” simplified mesh to better show the impact of simplification.

Intrinsic (Ours) SMS Intrinsic (Ours) SMS

Intrinsic (Ours) QEM Intrinsic (Ours) QEM

Figure 5: Solutions of a Poisson equation computed on simplified meshes obtained with our intrinsic
simplification algorithm, Spectral Mesh Simplification (SMS), and Quatric Error Metrics (QEM).
All solution are computed on the “raw” simplified mesh to better show the impact of simplification.

Shoemaker 10


