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Abstract

As the use of unmanned aerial vehicles (UAVs),
or drones, continues to increase, the need for
effective and efficient control techniques in-
creases. Many human-computer interactive
control methods have been explored, but one
control technique in development is the use of
gaze. We propose a proximity-based control
scheme using eye-tracking. In our method, we
use gaze extracted from an eye-tracker, allow-
ing the operator to navigate the drone to des-
ignated checkpoints. We navigated the drone
through a series of waypoints and compared the
results to traditional, joystick controls. Ulti-
mately, we found that gaze is a feasible con-
trol method for drone navigation. We plan to
extend this work to a remote-controlled nav-
igation scheme that uses the object detection
model You Only Look Once (YOLO).

Introduction

UAVs or drones are used in various domains
and applications, including, but not limited to,
military usage, search and rescue, transporta-
tion of goods, farming, and building inspection.
It is anticipated that the UAV market will ex-
ceed $92 billion, surpassing the 2020 value of
$9.5 billion [5].

As drones become increasingly popular for
everyday use, the number of user interactive
methods increases with different types of con-
trol methods, such as hand gestures, voice con-
trol, and even brain control [21]. A type of
control method that is still in development is
gaze-augmented control. Gaze-based interac-
tions have a variety of uses such as aiding
those with disabilities [14, 24], search and res-
cue [16], driving [20], programming [22], gam-
ing [13], and simulation [12, 19]. Unlike
traditional control mechanisms that use hand-
held controls, gaze-augmented navigation of-
fers users additional mobility. Moreover, com-
bining autonomous control can prevent poten-
tial user errors such as overshooting and under-
shooting, often associated with traditional con-
trollers.

Related Work

In the context of gaze-based drone navigation,
eye-tracking is commonly used as a companion
input to another input method or requires addi-
tional work to navigate the drone [17]. Gaze-
based control follows the same principle of
looking in the direction of movement [12]. This
creates problems as the user is essentially look-
ing at two places at once; the user must look at
the area to navigate to while making sure the
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device in flight remains stable. One solution is
to filter eye movements as input [10, 11]. Using
eye movements as input has been compared to
the Midas Touch: all of the user’s gaze is taken
as valid input [9]. As a starting point, some
type of on/ off switch can be implemented, re-
quiring some additional input systems or meth-
ods. In [8] authors present keyboard controls
as the companion input to eye-tracking using a
desktop eye-tracker and keyboard input to con-
trol four degrees of freedom of the drone: ro-
tation, speed, altitude, and translation. They
found that the best control mode was using eye-
tracking to control the rotation and speed of
the drone and using the keyboard to control
the translation and altitude of the drone. For
methods that use only eye-tracking as its in-
put, the user is required to do extra steps, such
as following specific patterns with their eyes
[6]. In [23], authors present single-stroke gaze
gestures to navigate a drone through a path.
They found that control using gaze gestures
did perform slower compared to keyboard, joy-
stick, and dwell time controls, but participants
reported gaze gestures required a lower men-
tal workload compared to the other methods.
In GazeGuide [4], authors present AR-based
drone navigation using eye tracking optics and
markers. The work is limited to the maneuver-
ing of the camera with the UAV fixed in a pre-
defined direction.

Methodology

We design our application architecture based
on two tasks involved in controlling a drone
using eye-tracking; 1) Identify and locate the
user’s AOI based on gaze, and 2) Search and
navigate a drone to the given AOI. Based on
this architecture, we compose processes for
each task and define AOIs using ArUco mark-
ers [7] for the simplicity of the application.

Eye movements were captured using the
PupilLabs Core eye-tracking headset with a
200 Hz sampling rate. We used a DJI Tello

drone, manufactured by Ryze Robotics. This
lightweight drone is equipped with an HD cam-
era. Joystick control is done using the Tello
app, and the movement for the drone was pro-
grammed using the DJI Tello Python library.
The checkpoints were designated by ArUco
markers: synthetic square markers with a wide
black border and an inner binary matrix that de-
termines its identifier. In our experiment, we
used four ID size 5x5 markers that measure
175x175 mm.

Gaze Tracking Process

The gaze tracking process starts by sampling
the gaze positions from the eye-tracker of the
user for a predefined period. We sample gaze
positions along with the field of view (FOV)
for 5 seconds. During the period, we ig-
nore samples that correspond to blinks, missing
data points, and low-confidence gaze estimates.
Then, we scan for markers at each FOV and
compute the distances from the gaze location to
each marker in the FOV. Finally, we obtain the
average distance of each marker and determine
the marker corresponding to the gaze location
by considering the least distance.

Drone Navigation Process

Our algorithm for drone navigation comprises
two steps: 1) Scan for the marker, and 2)
navigate to the located marker. During the
scanning process, the drone iterates through
a pre-defined set of relative angles for which
the drone will rotate and scan for the selected
marker. Detection of the marker during a scan-
ning step causes the application to start navigat-
ing the drone to the marker. Should the selected
marker not be detected at all, the user must re-
select the marker or choose the next marker in
the sequence to be scanned.

For the navigation task, we consider a co-
ordinate system passing through the drone: the
x-axis passing through the front to back of the
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drone, the y-axis passing through the sides of
the drone, and the z-axis passing through the
top of the drone. From this, we consider three
main types of motions for navigating the drone:
1) Horizontal motion (along x-axis), 2) Verti-
cal motion (along z-axis), and 3) Yaw rotation
(about z-axis). For the horizontal motion, we
use a piecewise function based on the area of
the ArUco marker as observed by the drone
camera. For the vertical motion and yaw ro-
tation, we use a modified Proportional Integral
Derivative (PID) controller based on the work
of related setups [3, 2]. To successfully track
the markers, these three motions must be in
specified ranges. Since the drone’s rotation dur-
ing the initial scanning phase and some sud-
den movements destabilizes the camera feed,
the implementation includes short delays while
waiting for camera feed stabilization. More-
over, to counter possible decode errors during
transmission, we add retries where we try to
read frames from the drone camera.

Baseline Task

During the baseline task, participants were in-
structed to navigate through a series of markers
using virtual joystick controls on a mobile ap-
plication (see Figure 2 (a)). After a briefing and
training session, the proctor revealed the navi-
gation sequence. For each marker, the proctor
manually checked the approximate distance to
ensure consistency.

Gaze-Augmented Task

The gaze-augmented task uses the same se-
quence using the eye-tracking control as de-
scribed earlier. In the experimental setup, we
used audio feedback to note key events in the
system: start of gaze sampling, end of gaze
sampling, arrival at a marker, and completion
of marker tracking.

Results

We found that participants favored the eye-
tracking control over mobile joystick control.
Participants noted that the joystick control was
too sensitive, making it difficult to control the
drone. Also, the eye-tracking control required
little action from the user, whereas the user’s at-
tention was required all the time while using the
joystick control. Next, we quantitatively com-
pared the two control methods by comparing
the marker tracking time and the total time dur-
ing each trial.

Marker Tracking Time

We define the marker tracking time as the time
between proctor instruction and the proctor ac-
knowledgment of success during the baseline
task. For the gaze-controlled task, we define it
as the time from the drone scanning and reach-
ing the target marker. Then we obtained the
mean marker tracking times for each marker for
evaluations across all trials.

Marker ID Joystick Eye-tracking
0 21.73 33.01
1 19.46 33.50
2 25.31 29.65
3 20.27 27.37

Average 21.69 30.88

Table 1: Average Individual Tracking Times
(sec)

Total Time

We define the total time as the time between
the drone initialization and the marker track-
ing success acknowledgment (proctor or audio
feedback) of the final marker. We report the
average time taken by each user to complete
the task using both control mechanisms.

Pineda 3



Figure 1: Experimental Tasks (a) Navigating drone with virtual controls on the mobile applica-
tion, and (b) Navigating drone using gaze.

Participant Joystick Eye-tracking
1 112.67 121.60
2 107.83 128.11
3 102.48 124.35
4 88.01 140.18
5 114.92 109.02

Average 103.68 123.53

Table 2: Average Total Times (sec)

Remote Navigation Scheme

Our previous work focused on a proximity
based navigation scheme using artificial ArUco
markers. Our future work plans on adapting
that work to a remote navigation scheme using
object detection.

Proposed Methodology

In our proposed work, the setup has the user
watching the drone’s camera feed on a screen.
This video is the focal point for the user, and
the drone may or may not be in the user’s field
of view. The user would navigate the drone re-
motely until they see an object of interest in the
video feed. Once the user sees an object they
wish to investigate, a similar process to our pre-
vious work would start. The user would focus
on the object as their gaze is sampled by the
eye-tracker. After the chosen object is found,
the information would be sent to the drone.

The drone would scan for that object and begin
tracking it.

Object Detection Using YOLO

The object detection model used is the You
Only Look Once, or YOLO, object detection
model created by Redmon et. al [18]. The
model uses bounding boxes to predict where
objects in a scene are located.

There are two types of YOLO models: the
”full” version and a tiny version [1]. In sim-
ple terms, the ”full” model has more accurate
detections compared to the tiny version at the
cost of speed, and the tiny model has faster de-
tections at the cost of accuracy. For the drone,
we use the tiny versions of YOLO v3, v4, and
v7 pretrained on the MSCOCO dataset [15] to
find detections.

Currently, we settled on using YOLO v4
Tiny as our main model.

Discussion

In our initial research, we found our control
method took longer compared to typical joy-
stick control. We recognize three reasons as
contributing factors to the lower performance.
The first factor is the delay introduced by the
scanning procedure in our algorithm, which
is often time-consuming. The drone does not
record the positions of other markers for future
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Figure 2: Drone detecting a bottle and phone using YOLO v4 Tiny

use. Thus, the drone must rescan the environ-
ment to detect the target marker irrespective of
having seen the target previously. In compar-
ison, the scanning time human-controlled ap-
proach is negligible. We expect to incorporate
a stateful scanning and navigation procedure
to eliminate the existing delays. Secondly, we
used a strict objective to achieve a tracking suc-
cess state during gaze-control, resulting in the
drone oscillating to adjust the position. In con-
trast, we used a subjective measure, the proc-
tor’s judgment, for confirmation when using
joystick controls. Finally, the gaze-controlled
approach encompasses delays for camera and
gaze stabilization, which are not present in joy-
stick controls.

Our proposed work would combine our pre-
vious work with gaze-augmented drone naviga-
tion with object detection using YOLO. In our
previous work, we created a proximity gaze-
based drone navigation framework and had
promising results. We now plan to create a re-
mote gaze-based drone navigation framework.
The user will focus on object in the drone’s
camera feed, prompting the drone to track that
object. The YOLO object detection model will
allow us to track real world objects in real time,
allowing us to expand our work to real world
applications.

Conclusion

Our proposed work would combine our previ-
ous work with gaze-augmented drone naviga-
tion with object detection using YOLO. In our
previous work, we created a proximity gaze-
based drone navigation framework and had
promising results. We now plan to create a re-
mote gaze-based drone navigation framework.
The user will focus on object in the drone’s
camera feed, prompting the drone to track that
object. The YOLO object detection model will
allow us to track real world objects in real time.
We expect that this research will allow us to ex-
pand our work to real world applications.

Acknowledgements

This work was supported in part by NSF
CAREER 2045523, NSF REU Supplement
2214096, and Virginia Space Grant Consor-
tium Undergraduate STEM Research Scholar-
ship for Kayla Pineda.

References

[1] ADARSH, P., RATHI, P., AND KUMAR,
M. Yolo v3-tiny: Object detection
and recognition using one stage improved
model. In 2020 6th international confer-
ence on advanced computing and commu-
nication systems (ICACCS) (2020), IEEE,
pp. 687–694.

Pineda 5



[2] ATTIGUI, M. Autonomous drone pro-
gramming feature detection, tracking, and
obstacle avoidance.

[3] BABU, V. M., DAS, K., AND KUMAR,
S. Designing of self tuning pid controller
for ar drone quadrotor. In 2017 18th
International Conference on Advanced
Robotics (ICAR) (2017), pp. 167–172.

[4] BN, P. K., BALASUBRAMANYAM, A.,
PATIL, A. K., AND CHAI, Y. H.
Gazeguide: An eye-gaze-guided active
immersive uav camera. Applied Sciences
10, 5 (2020), 1668.

[5] DALY, D. Drone industry outlook for the
united states: 2020-2030. Consortiq (Nov
2020).

[6] DREWES, H., DE LUCA, A., AND

SCHMIDT, A. Eye-gaze interaction for
mobile phones. In Proceedings of the
4th International Conference on Mobile
Technology, Applications, and Systems
and the 1st International Symposium on
Computer Human Interaction in Mobile
Technology (New York, NY, USA, 2007),
Mobility ’07, Association for Computing
Machinery, p. 364–371.

[7] GARRIDO-JURADO, S., MUÑOZ-
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