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Abstract:

This research focuses on validating the range
at which factorization theorems still accurately
describe the momentum distribution of quarks.
Specifically, we are interested in values of large
momentum distribution, referred to as high-xB,
where quarks start to experience a phenomenon
known as quark confinement. In the high-xB

regimen, modern techniques used to calculate
quantum interactions such as perturbation the-
ory (pQCD), are unable to accurately describe
the distribution of the quarks momentum. Thus,
correction terms, known as “Hadron Mass Cor-
rections”, are needed and are a focus of study at
Jefferson Lab. The goal of our research is to as-
sess the viability of the proposed extended ver-
sion of the QCD factorization theorem, whose
validity can be explicitly tested in the model and
applied with renewed confidence to experimen-
tal data. To accomplish this, an analytically cal-
culable distribution function is used to simulate
Deep Inelastic Scattering experiments, such as
those done at Jefferson Lab. These simulated
experiments are then used to analytically test the
viability of the proposed factorization theorems.

Introduction

Background

Deep Inelastic Scattering (DIS) is the scatter-
ing of a high energy lepton off a target hadron

- for example, an electron off a proton, whereby
the lepton interacts with the quarks that com-
pose the target in a bid to study its internal struc-
ture. That’s how the prediction by Murray Gell-
Mann’s of the very existence of these elemen-
tary particles, indirectly derived from the the
structure and regularity of the hadron spectrum
in the 1960s, were confirmed a decade later by
DIS experiments. Under normal conditions, in-
deed, quarks only exist confined inside heavier
composite particles called hadrons, of which the
proton is an example. There, they vigorously
interact with other quarks via gluon exchange
by means of the “strong nuclear force”. Com-
bined, the quark and gluon interactions give rise
to the observed properties of their host hadron,
yet these particle cannot be detected by them-
selves. Conversely, high-energy scattering ex-
periments between electrons, protons, and even
nuclei, have provided the scientific community
with a flexible tool for finer and finer measure-
ments of hadron structure, and the dynamics of
their constituent “partons”: the quarks and glu-
ons.

Motivation

The focus of this research is on understand-
ing confinement at ordinary density and tem-
perature by means of DIS experiments. What
enables the investigation we have in mind is
the QCD factorization theorem, that reformu-
lates the quarks cross sections as a convolution
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Figure 1: Left: Electron scattering off a proton re-
sulting in the emission of a quark and a ”jet” of
hadrons. Right: Electron scattering off proton is di-
quark view.

of theoretically calculable parton-level interac-
tions and so-called Parton Distribution Func-
tions (PDF) that characterizes the quark (q)
and gluon (g) momentum distribution within the
hadron. These can then be extracted in global
QCD fits by comparing the calculated and mea-
sured cross sections.

Research Goal

The goal of our research is to assess the vi-
ability of the proposed extended version of
the QCD factorization theorem, whose valid-
ity can be explicitly tested in the model and
applied with renewed confidence to experi-
mental data. Extrapolations of these measure-
ments to xB → 1 will then inform one on the
way QCD dynamically confines quarks and glu-
ons inside the proton.

Deep Inelastic Scattering

The process under investigation is a high energy
electron scattering off quarks inside the proton
via an emitted virtual photon of 4-momentum
q, as shown in Fig. 1, Left. The virtuality of
the photon, Q2 = −q · q , can be thought of as
the squared 4-momentum transferred during the
scattering process. While at large enough Q2 the
photon essentially scatters on a quasi-free quark
in a calculable manner, the confining nature of
the strong nuclear interactions precludes a the-

Figure 2: Gauge invariant decomposition of the
transverse structure function FT at Q2 = 4 GeV 2

for model parameters fitted to phenomenologically
determined quark PDFs. On the horizontal axis, the
Bjorken variable xB = Q2/(2pµqµ) can be inter-
preted as the fraction of momentum carried by the
quark.

oretical calculation of the quark PDF, that can
only be experimentally measured as discussed
above.

In order to test the factorization theorem
regime of applicability, and extend this to the
largest possible xB and smallest possible Q2,
we utilize a model theory which describes the
essence of QCD in DIS, see Fig. 1, Right. In the
model one can calculate not only can the DIS
scattering off the quark, to which one applies
pQCD factorization, but also (as it happens in
real processes) the resonant excitation of the tar-
get and the interference of these two processes,
see Fig. 2. as shown in a recent paper by Guer-
rero and Accardi [GA20]. The model’s factor-
ized cross section can then be analytically com-
pared to the full one.

More specifically, the values of the large mo-
mentum distribution of quarks confined in a
hadron are particularly sensitive to the mecha-
nism by which the strong interactions confines
them, but lies at the edge of the applicability of
perturbative factorization techniques (pQCD).
In this regime, which is currently been exper-
imentally probed at Jefferson Lab, a number
of corrections to the standard theoretical cal-
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culations are need to interpret the experimental
data and extract the quark distributions [GA20].
These corrections, known as ”Hadron Mass Cor-
rections”, become non-negligible at lower val-
ues of Q2.

Within the adopted model, as opposed to real
process, one can analytically calculate the full
scattering cross section, and separate the purely
DIS component whereby the photon scatters off
the quark [GA20]. One can also derive the
quark distribution, q(x), analytically in terms of
the masses of the particles involved and of the
quark’s momentum fraction x [GA20].

The factorization theorem can then be tested
by generating pseudo-data for the model’s scat-
tering cross section, approximating this with the
factorized formula, and using the latter to ex-
tract a quark PDF by fitting the data. The factor-
ized formula will be deemed successful if the
fitted PDF statistically compares well enough
with the analytical one. We will thus be able
to find the validity of factorized pQCD in en-
ergy regions where hadron mass corrections are
non-negligible and thereby piece together a new
factorized formulation of QCD to the prescribed
region.

Event Simulation

The initial objective of this project is to simulate
the inclusive electron-proton scattering events
described by the model in the previous section.
Each event consists of a measurement made of
the 4-momentum transferred between the elec-
tron and the proton, measured by the pair of
variables (xB, Q

2). These events will then be
used to test the factorization formulas. A more
detailed description of the statistical techniques
used to analyze the event generation can be
found in works such as [DS10] and/or [Tay97]
as well as [KNS20].

In order to generate the events a standard
Monte-Carlo method was used. That is, given
a probability distribution function (p.d.f.), f(x),

of a stochastic variable x, then the probabil-
ity of an event, x, falling between xa and xb,
Pr[xa ≤ x ≤ xb], is calculated via:

Pr[xa ≤ x ≤ xb] =

∫ xb

xa

f(x)dx . (1)

One may then create an array of events, {xi},
distributed according to f(x) by repeatedly gen-
erating a random pair of coordinates, (x, y), uni-
formly over a domain of x ∈ [xmin, xmax] and
y ∈ [ymin, ymax]. If the values of y fall under the
function, i.e.,

y < f(x) (2)

then the corresponding x value is added to the
array of events. Otherwise the pair is discarded.
This process continues until the desired number,
N , of events are collected within the events ar-
ray

Events = {x1, x2, . . . , xN} . (3)

In this case the events, {(xi, Q
2
i )}, are the

measurements of a scattered electron. Thus the
Monte-Carlo method was applied by generating
a set of coordinates (xB, Q

2, y) across a 3 di-
mensional domain via

f(xB, Q
2) =

1

A
FT (xB, Q

2) (4)

where

ADIS =

∫ 1

0

dxBdQ
2FT (xB, Q

2) . (5)

from [GA20]. Fig. 3 shows a sample of ac-
cepted events distributed via the model DIS
function, where the shaded area represents the
DIS structure function.

Binning

Binning is the process of dividing the the do-
main into discrete intervals and grouping the
events which fall into those intervals. For sim-
plicity the intervals are divided into, K, rectan-
gles of size δxB by δQ2 such as that in Fig. 3.
Choosing bin sizes is not arbitrary, however, and
special care must be taken.
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Figure 3: Distribution of 25000 events gener-
ated via FDIS

T (xB, Q
2). The left figure shows

the generated (xB, Q
2, y) coordinate with the

underlying function in black. The figure on the
right shows the corresponding phase space, such
as if one were to down upon the figure on the
left.

Bin Sizes

Although different bin choices cannot improve
the overall statistics of the generated events, it
allows one to interpret them differently. Differ-
ent bin sizes will inherently change the amount
of events that fall into it, ultimately changing the
statistics for the individual bins. Generally, one
wants to take as small bins as possible to max-
imize the information information of the shape

of the underlying function. However, too small
of bin sizes can severely affect the uncertainty
of our counts. Thus careful consideration had to
be taken to ensure an ideal bin size was being
used.

High-xB region

Our area of interest is that of high energy par-
tons on the edge of confinement. This corre-
sponds to measurements made in the high-xB

region. However, this region also corresponds
to a highly unlikely state of the parton and needs
careful consideration.

If there are not enough points in a bin, the
measurement will not be statistically significant.
At the very minimum, 5 events must be in the
bin to be statistically significant. Specifically,
we needed a way to find a way to increase the
statistical significance of the high xB region, in
order to precisely validate the factorization the-
orems.

Enhanced Data

Although larger bin sizes could capture more
points in the high-xB, we would lose resolution.
Thus, we enhanced the data in the high-xB re-
gion. A new array of m events were generated
over a domain of κ = 0.6 ≤ xB ≤ 1 and added
to an array of events in which there are already
nκ events within that same region.

The enhanced data must be re-scaled, or
weighted, appropriately, however, or else it will
not represent the actual distribution function.
That is, given a total of m + nκ events, it must
be re scaled to represent it’s original number of
events nκ.

Statistical Analysis of the Event Generation

With an ideal scheme for binning, one may gen-
erate a histogram of the counts in each bin and
begin to parameterize a fit for it. However, be-
fore fitting the data, it is useful to make sure that

Krause 4



the data statistically corresponds to the underly-
ing p.d.f. used to generate it.

Before trying to fit the data and test the sub-
asymptotic factorization formulas, it is first im-
portant to make sure that the generated events
match the underlying p.d.f, f(x), used to gener-
ate them. That is, we will compare the observed
counts, Obk, to the expected counts, Exk. This is
for two reasons. First, to test that the events are
being generated correctly. Otherwise, the even-
tual fits will not match the p.d.f., f(x). Second,
to ensure that the statistical analysis program
which was developed for this project is also cor-
rectly analyzing the data.

Assuming the events are properly generated,
we know they will be statistically representa-
tive of the underlying p.d.f., which is analyti-
cally known in our case. Thus, if everything is
running properly, the analysis of the events will
also demonstrate what one should expect to see
when the events are compared to a fitted func-
tion that statistically represents its underlying
distribution.

Observed Counts for the Generated Events

Once the events are divided into bins, a discrete
distribution function can be created via a his-
togram as seen below. The counts of the gen-
erated events will be referred to as the observed
counts, Obk, since they represent measurements
which would be observed in a DIS experiment.
The histogram generates the basic shape which
will then be used to generate a continuous func-
tion.

Expected Counts for Continuous p.d.f.s

In order to compare it to the underlying p.d.f.,
one first must find the expected amount of
counts, Exk, for the underlying p.d.f., f(x), in
each bin. That is, for each bin, k, whose bound-
aries are xa and xb, the expected number of

counts are:

Exk = N

∫ xb

xa

f(x)dx . (6)

This could naturally be expanded to any number
of dimensions. With the observed and expected
values for each bin, a series of tests can be pre-
formed to see how well the data matches what
one would expect the data for a known p.d.f.

Ratio (Relative Deviation)

With a set of observed data points and expected
values, analytical tests, such as the ratio between
two values centered around 0.

Ratio =
Obk − Exk

Exk

±
√

Obk

Exk

(7)

This value is simply the relative deviation of the
observed counts from the expected count in a
given bin, and one would expect them to fluc-
tuate around 0. While this test is able to show
where the two fits diverge up to a given percent-
age, it does not take into account the level of
precision of the generated data. Therefore this
only gives a rough estimate of the goodness of
fit.

Residual (Statistical Uncertainty)

In order to find the level of uncertainty in the fit,
one may consider the residual between the two
counts. The residual simply takes the difference
between the observed and expected values and
scales it to the expected standard deviation or
uncertainty.

Resk =
(Obk − Exk)√

Exk

±
√

Obk√
Exk

(8)

Residual Distribution

In fact, for a distribution of residuals values,

R = {Res1, Res2, . . . , ResK} , (9)
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as K → ∞ the distribution must approach a nor-
mal distribution, as this, by definition, is what
makes a random process normally distributed
according to some underlying p.d.f.. Thus, the
residual distribution is a good indicator of both
the magnitude and direction of the fluctuations.
As mentioned, the average residual should cor-
respond with 0, if the data is fluctuating around
the correct values, and should have a standard
deviation equal to 1 indicating the expected er-
ror for a normal distribution.

Chi-Squared, χ2

Another test, known as the χ2 test, is used,
where:

χ2
K =

∑
k

Res2k =
∑
k

(Obk − Exk)
2

Exk

(10)

The chi squared test squares the residuals and
then takes the sum. Since the residuals are
squared, the sign of the residual disappears and
only the magnitude of the residual becomes ap-
parent. This allows one to find the total ”error”
caused by the fluctuations. If the events are rep-
resentative of the underlying p.d.f., on average
the bin’s should have a standard deviation of 1,
introducing the concept of χ2 per degree of free-
dom.

χ2
K/DoF =

∑
k

Res2k
DoF

=
∑
k

(Obk − Exk)
2

KExk

(11)
where the degrees of freedom, DoF are, for now,
equal to the number of bins, K. Thus, to make
the statement that a set of data is representa-
tive of some underlying distribution, the bins
on average should be 1 standard deviation away
from the expected values. This corresponds to
χ2 ≈ K and χ2/DoF ≈ 1.

Ultimately, both tests are needed and used to
tell if the data is representative of a given distri-
bution function, f(xB, Q

2).

Chi-Squared Distribution

The χ2 value for a single experiment gives a nu-
merical value for the quality of fit, the distribu-
tion of these values provides insight into how
reliable the experiments are. One important fea-
ture of the χ2 distribution is that as k → ∞
the shape of the distribution approaches that of
a Gaussian distribution of width

√
2k centered

around k. Thus, for a distribution of χ2 values,

X = {X1, X2, . . . , XJ} (12)

which are distributed approximately to that of
fk(x) then

(X − k)√
2K

(13)

should approach a normal distribution as k →
∞.

PDF Fitting Framework

With the events binned and scaled properly a pa-
rameterized function is used to fit the Data. With
a function fit to the data, the same type of anal-
ysis as done on the discrete data can be done on
the function to see how well it fits the underly-
ing distribution function. Generating a good fit
not only depends on how well the data is binned,
but it also depends on the paramaterization of
the fits.

Parameterizing Φ(x) and Ω(xB, Q
2)

With the discrete distribution function, a set
of parameters can be found which minimizes
the χ2 value for that fit compared to the
data. Specifically, the code uses the Levenberg-
Marquardt algorithm as a method of least
squares optimization. If a fit is able to be per-
fectly parameterized, than the fit should have a
χ2/DoF ≈ 1.

With our goal of validating the range of ap-
plicability of the factorized structure functions
we need two functions, which I call Φ(x) and
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Ω(xB, Q
2). The first will be the leading order

term, Φ(x), which will be compared to q(x).
The other, Ω(xB, Q

2), will absorb higher order
terms based on which observable we are taking
into account and will be compared to FDIS

T .

Bernstein Polynomials

Rather than create our own polynomial we chose
to use Bernstein Polynomials:

Bη(x) =

η∑
ν=0

βνbν,η(x) (14)

Where the Bernstein basis:

bν,η(x) =

(
η
ν

)
xν(1− x)ν−η (15)

form a basis for the vector space of polynomi-
als no more than degree η. The coefficients βη

are known as the Bernstein coefficients and are
the free parameters which will be used to fit our
function.

Parameterizing the Quark PDF, Φ(x)

In conjunction with the Bernstein Polynomials,
we multiplied the entire polynomial by the re-
striction, (1− x)B, in order to set the restriction
q(x)

x→1→ 0. This we simply called a modified
Bernstein Polynomial, mB(x). More specifi-
cally, a 8th degree mB8 was used to fit the data
such that:

Φ(x) = mB8(x) = (1−x)B
8∑

ν=0

βνbν,η(x) (16)

is used to fit the experimental data with respect
to B, β0, β1, β2, β3, β4, β5, β6, β7, β8.

Parameterizing the observables, Ω(xB, Q
2)

Just as there are multiple scaling values of x̄
used to generate data [GA20], the different scal-
ing values of x̄ can also be used to fit the data.

Fitting the data with different values of x̄ can be
thought as fitting different observables to a set
of data. That is, for each set of data, each ob-
servable can be fit via:

Ωx̄(xb, Q
2) = Φ(x) |x=x̄ (17)

This model can then be used to see how well the
Bernstein Polynomials are able to fit the gener-
ated data. The scaling variable x̄ can also, again
then be used on the generated fits. That is, given
a fit which used x̄Gen to generate the fit, x̄ may
then scale the fit to give.

Higher Twist Corrections ΩHT(xb, Q
2)

The second way we will attempt to separate the
qPDF from the higher order twist terms is by
directly making a Q2 dependant term. This cor-
rection term will be fit such that the dependence
on Q2 will be extracted from the fit and put in
higher correction terms H(x,Q2). The observ-
able in this case:

ΩHT(xb, Q
2) = Φ(x) +

H(x)

Q2
(18)

This will leave a model of the Q2 independent
Φ(x) to analyze directly with q(x).

The Average Fit

And finally an average fit including error can be
generated by simply taking the mean and stan-
dard deviation of the individual fits. That is:

µΦj(x)±σΦj(x) =
1

J

J∑
Φj±

√
1

J

J∑
(Φj − µΦj)

2

(19)

Analysis and Conclusion

Continuous Residual Distribution Function

Again, with our goal of finding the range a va-
lidity between the DIS structure function and
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our factorized models it will be more useful to
define our residuals in terms of a continuous
function rather than discrete counts. The scaled
residuals between two p.d.f.s can be thought of
as a residual distribution function, which I de-
fine as:

RDF(xk) =
ϕ(xk)− q(xk)√

q(xk)

√
K

N
(20)

where:

Reskδx ≈
∫ xk+1

xk

RDF(x)dx (21)

This allows the residual to be expressed in terms
of the discrete distribution functions.

Res(xk) =
ϕ(xk)− q(xk)√

q(xk)

√
N

K
(22)

Analysis of Φ(x) and Ω(x)

After fitting the DIS data, the fits were then com-
pared to the DIS data as shown in Figures 4 and
5. The top plots show the difference between
the functions. The middle plots shows the resid-
ual distributions between Φ(x) and q(x), while
the bottom plot shows the residual distributions
between the observables Ω(xB, Q

2) with FDIS
T .

Figure 4: Fit of an 8th degree polynomial to that
of the DIS function.

Figure 5: Fit of an 8th degree polynomial with
an added higher power term to that of the DIS
function.

Conclusions

In conclusion, it is clear that the factorized for-
mulas are able statistically viable up to 0.8xB

when different choices of X̄ are chosen. How-
ever with the additional higher power term, the
factorized formulas are able to extract the in-
dividual shape of the DIS function better. As
shown in Fig. 5, the added higher power term
was able to boost the statistical viability up to
about 0.9xB. In the end we will continue to try
different ways of parameterize our fit functions,
in order to try improve the range of our factor-
ized formula viability.
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