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Abstract

Portable, non-intrusive, and accurate vital sign de-
tection systems are imperative for early emergency
intervention where mere seconds can be the differ-
ence between life and death. Monitoring respira-
tion rate in real-time can identify early signs of res-
piratory distress, but respiration rate is the most
difficult of the three main vital signs to monitor
in uncontrolled environments. To solve this prob-
lem, we introduce the Apollo V2, the 2nd iteration
of our wearable vital sign monitoring shirt which
is suitable for real-world environments. The shirt
has no rigid components except for a small non-
intrusive control patch and uses textile sensors to
monitor respiration rate. We tested our system in
a small user study consisting of both a sleep study
and several awake activities. We demonstrate that
Apollo V2 can accurately monitor respiration rate
with an average error of less than 1 breaths per
minute for sedentary and light exercise, and an
average error of less than 1.4 breaths per minute
for select medium to high intensity exercises.

Introduction

Accurate, real-time vital sign monitoring is im-
portant for diagnosing cardiovascular disease and
preventing death by allowing faster intervention
in life or death scenarios by medical professionals.
The three most important vital signs to monitor
are heart rate, body temperature, and respiration
rate. There are many accurate, real-time vital
sign monitoring devices such as the Holter mon-
itor,’® modern smart-watches,” %7 or the Polar
H10 heart rate monitor.> These systems are capa-
ble of accurately measuring heart rate and temper-
ature, but are unable to accurately quantify respi-
ration rate.

Respiratory arrest due to choking, asthma at-
tack, infection, etc. can occur while a subject
has a normal heart rate, and existing clinical res-
piratory monitoring systems are not suitable for

real-world (IE: outside of a medical clinic) due
to intrusiveness or lack of portability. There is a
clear need for a respiration detection system that is
portable, non-intrusive, and accurate that is suit-
able for daily-living and vigorous physical activity.
Such a need leads us to the following research ques-
tions:

RQ1: What wearable textile design allows for ac-
curate respiration monitoring regardless of physi-
cal activity level?

RQ2: What features and models allow for the ac-
curate estimation of respiration rate?

In this paper, we answer RQ1 by designing a
wearable shirt that is capable of accurately mea-
suring respiration signals by placing the respira-
tion sensor in a manner that will be robust against
different body types. We use 3 conductive fabric
strips placed vertically and horizontally across the
chest and abdomen so that respiration events can
be identified regardless of body position. To an-
swer RQ2, we compare both filtering and peak
detection methods against a trained convolutional
neural network (CNN) in order to demonstrate
that machine learning methods are more suited for
respiration detection. We demonstrate that our
CNN based approach is capable of detecting res-
piration with a breaths-per-minute-error (bpme)
of 0.47 for standing positions and 0.95 bpme for
light exercises such as walking. Additionally, our
preliminary results show that for medium to high
intensity exercise, Apollo is capable of detecting
respiration with an average bpme of 1.38.

Wearable Vital Sign Detection
System Design

In this section, we describe the design of our
Apollo V2 shirt that is capable of accurately mon-
itoring the respiration of the wearer even during
different wearer activity levels. We also describe in
detail the differences between the original Apollo
V1 shirt and the Apollo V2 shirt.



Apollo V2 Shirt Template

The underlying shirt template that our flexible
textile sensors are attached to is made out of
a spandex-blended compression material that ac-
commodates multiple body types, is breathable for
temperature regulation, and can be worn comfort-
ably during a wide range of activities from sleep-
ing to vigorous exercise. The Apollo V2 shirt is
sleeveless unlike the Apollo V1 version that had
short sleeves. The V2 version is sleeveless because
we found that arm and shoulder movement in the
V1 shirt would create noisy artifacts in the col-
lected data. This is because arm movement in a
shirt with sleeves will cause movement of the fabric
of the rest of the shirt. For example, arm swing-
ing while walking when testing Apollo V1 reduced
the breathes per minute error (bpme). We explain
this fact in more detail in the next section. With-
out sleeves, arm and shoulder movement has mini-
mal impact on the collected data, and reduces the
bpme.

Compression material is chosen because it form
fits the wearer. Standard shirt sizes (US) are a
simple function of height and circumference of the
wearer that allows people of different body shapes
to fit into the shirt size. Figure 1 shows sev-
eral different body shapes. A compression shirt
ensures that there is minimal “bagginess” of the
shirt which could impact sensor performance. Fi-
nally, this compression material will have less over-
all movement during vigorous exercise since it will
maintain skin contact with the wearer. Respira-
tion belts used in a clinical setting®® need to be
manually fitted to the wearer which reduces ease-
of-use while our system can accommodate multiple
body types without requiring adjustment.
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Figure 1: Common Body Shapes

Respiration Sensing Textile Sensors

To answer RQ1, we’ve tested many different shirt
and sensor designs over the past year. To accu-
rately determine the respiration rate of the user,
we sewed three different conductive, textile-based,
stretch sensors into the base shirts as shown in Fig-
ure 2a. These textile stretch sensors''® change
resistance depending upon the stretch force ap-
plied. The more the fabric is stretched, the lower
the resistance across the fabric is reduced making
an ideal material for flexible stretch sensors. As a
wearer inhales and expands their diaphragm/ab-
domen, these stretch sensors will show a marked
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(b) Apollo V1 Shirt Design

Figure 2: Comparison Between 1st and 2nd Year
Apollo Designs

difference in resistance than when a wearer ex-
hales. In Figure 2a, sensor A consists of a long
strip of conductive fabric that extends from the
bottom left of the front of the shirt vertically
around the neck of the shirt to the bottom right
of the front of the shirt. This sensor is placed in
such a fashion as to be robust against changing
variables such as different body types that fit into
the same shirt or different types of breathing. For
example, someone who “belly” breathes will expe-
rience less expansion of their chest than someone
who diaphragm breathes.?

Traditionally, respiration belts designed to mon-
itor respiration in a clinical setting are placed
around the circumference of the chest and ab-
domen. These respiration belts are then manually
tightened to suit the user’s body type. However, in



a shirt that multiple body types can wear, manu-
ally tightening of the shirt is not easily done. Sen-
sors B and C in Figure 2a are conductive fabric
strips that are sewn horizontally across the chest
and abdomen in a similar way to how respiration
belts function. As described in Section 4, sensors B
and C are not as accurate as sensor A under most
circumstances. However, certain postures such as
the fetal position cause the sensor A to have slack
which means that no stretch force is applied to
sensor A during respiration. Sensors B and C are
still useful in these positions.

Figure 2a and Figure 2 show the main sensor
placement differences between Apollo V1 and V2.
Unlike Apollo V1, Apollo V2 does not have pres-
sure sensors (1A-D) on the chest and abdomen.
Past works'® have shown that pressure sensors
can be used to accurately detect heart beat bal-
listic signals, but this was shown under sedentary
conditions. With Apollo V1, we found that the
compression material of the shirt was not suffi-
cient to ensure that these pressure sensors main-
tained enough physical contact with the wearer
during light exercise. Unfortunately, significant
noise was present in the collected data which pre-
vented accurate measurement of the user’s heart
rate. Furthermore, while the pressure sensors
could be used for respiration monitoring, we found
that the stretch sensors were much more robust
against repeated physical events such as the vi-
bration of the heel striking the floor during gait.
For real-world deployment, Apollo V2 can be cou-
pled with smartwatches® '7 or other fitness track-
ers” that have difficulty recording respiration rate,
but accurately estimate heart rate.

Apollo V2 Control Patch

Similarly to Apollo V1, Apollo V2 requires a con-
trol patch on the front lower-left of the shirt.
The control patch is fully detachable using con-
ductive metal snap buttons so that the shirt can
be machine washed. The patch consists of a Ar-
duino Uno microcontroller,' a battery with a volt-
age converter, 3 resistors, a 9 degrees of freedom
(DOF) BNOO055 IMU sensor,'? and a Bluetooth
module. Conductive thread* is used to connect
these components as well as connect the control
patch to the textile sensors on the shirt. The
Apollo V1 shirt used the CurieNano! microcon-
troller which made the microcontroller smaller,
but the IMU contained on the CurieNano does
not perform sensor fusion like the BNO055 IMU
sensor does. Since different body types may in-
fluence the orientation of the control patch on the
shirt, an IMU with sensor fusion was important
for "normalization” between individuals. The con-
trol patch samples data at a rate of 100Hz and
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transmits the data to an Android smartphone via
Bluetooth. The 3 resistors contained in the control
patch are necessary to construct 3 voltage dividers
which enables our system to record the change in
resistance of each textile sensor. Fach textile sen-
sor is connected via snap buttons and conductive
thread to different analog pins on the microcon-
troller.

Vital Sign Modeling

The data collected by the control patch consists
of 3 analog pin readings pertaining to stretch sen-
sors A, B, and C, as well as 3 accelerometer values
(AX, AY, AZ) after sensor fusion is performed by
the IMU. As noted in the previous iteration of this
work, the textile sensor data can be influenced by
multiple factors including body movement not re-
lated to respiration, body type, and different pos-
tures. In this section, we detail the digital signal
processing techniques used to clean the data as
well as the two forms of respiration rate estima-
tion used.

Signal Processing of Textile Sensor
Data

Stretch sensors A, B, and C are each connected to
different analog pins on the microcontroller which
are capable of reporting a value in the range of 0-
1023. This raw value is converted to voltage using
the following equation where A; is an analog read-
ing pertaining to one of the textile sensors, V;, is
the voltage supplied by the microcontroller, and
V; is the resultant voltage measured by the analog
pin:

Vi" )

1023
Using this recorded voltage, we can then calculate
the resistance of each textile sensor using Equa-
tion 2 derived from the standard voltage divider
formula. Rg, is the resistance of sensor ¢ and R,,
is the resistance of static resistor on the control
patch pertaining to sensor i.

Rs, = R,, X ( Vin _ 1) (2)

‘/ZZA7X

Vout

Given the properties of the conductive textile
material, we generally expect the resistance of each
fabric strip to decrease as the diaphragm expands
stretching each sensor. An important note about
these textile sensors is that each sensor will have a
maximum resistance, R,,q., and a minimum resis-
tance, Ry.in, which are defined by the properties
of each sensor (conductive material type and tex-
tile dimensions). Typically R4, is reached before
the textile sensor is maximally stretched which has



implications for determining the size of an Apollo
V2 shirt for the wearer.

The finer details about how someone breathes
may vary from person to person, but one constant
is that the diaphragm or abdomen will expand and
contract during standard respiration. The stretch
force applied during respiration by two different
people that fit into the same Apollo shirt may
be different. As such, it is important that we
normalize the data from each subject individually
to avoid data from subjects with a wider range
of recorded resistances compressing the data from
subjects with a smaller range. The data for each
subject is normalized to a range of 0 to 1 which is
more suitable for our modeling purposes.

Respiration Rate Estimation Using
Non-Machine Learning Methods

As shown in the previous iteration of Apollo,
peak detection algorithms'®!® can be a reliable
means of extracting the respiration rate from tex-
tile based stretch sensors. Inhalation stretches
these sensors and reduces the resistance measured.
As aresult, the peaks in the data will denote where
the chest is deflated and the valleys will denote
where the chest is inflated.

The time-series resistance data exhibits signif-
icant high-frequency noise arising from measure-
ment error by the microcontroller. Normal human
respiration is usually 12-40 breaths per minute, or
0.2-0.67Hz. Higher frequencies that are dominant
in the sensor data should not be due to human
respiration and can be ignored. To do this, we
use a 5th order Butterworth® bandpass filter be-
tween 0.2-0.67Hz to remove high frequency noise.
Lower frequency signals are also removed, though
these are less impactful than high frequency noise.
Figure 3a and Figure 3b show this transforma-
tion from raw data into a denoised, filtered form.
We use an adaptive peak detection algorithm!®
to mark the peaks in the filtered data which de-
note where exhalation has occurred. Figure 3b
shows a comparison of the ground truth respira-
tion markers against the detected peaks in the data
for a sample of time where a subject was walk-
ing. As can be seen, the number of peaks matches
the number of respiration events marked in the
ground truth. There is some time offset between
these values as a result of the ground truth label-
ing method. We discuss this in a later subsection.

Respiration Rate Estimation With
Neural Networks

In the previous version of Apollo, we elected to not
use machine learning due to the limited amount of
data that we were able to collect due to Covid-19
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Figure 3: Comparison Between Unfiltered and Fil-
tered Sensor A Data

in order to answer RQ2. However, we were able to
collect more subject data this year which allowed
us to train a convolutional neural network (CNN)
for respiration rate estimation. CNNs are proven
to be effective at extracting patterns that exist
in time-series data, but are less computationally
expensive than long-short-term-memory recurrent
neural networks. Additionally, in theory, previ-
ous respiration events should have minimal impact
on future respiration events for healthy subjects.
This may not be the case for someone with a res-
piratory illness, but the subjects in our study are
all healthy. As such, a CNN is suitable because
respiration events are less spatially linked as the
time between events is increased. For respiratory
rate detection and diagnosing respiratory illnesses,
a transformer-based neural network capable of as-
sociating many individual respiration events may
be more useful. Figure 4 shows the structure of
our CNN model. Our model takes in two inputs:
a 1D time-series window consisting of the normal-
ized, unfiltered sensor data, and a 1D time-series
window consisting of normalized and filtered data
discussed in the previous section. The size of these
windows is 5 seconds, or 500 values since we record
data at a frequency of 100Hz, and the step size for
these windows is 0.25s. The These inputs enter
two different branches of our CNN model consist-
ing of three 1D convolutional layers which allows
the model to learn patterns that exist in the raw
data separate from the filtered data. Three con-
volutional layers per branch was chosen for two
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reasons. 1. While we have sufficient data to train
our model, deeper neural networks typically re-
quire more data for adequate training to occur.
2. A shallower CNN will avoid the vanishing gra-
dient problem since typical measures for alleviat-
ing this problem with deeper neural networks such
as ResNet!! based architectures will require more
data than we have collected. The output of the
model is an integer denoting the number of respi-
ration events, specifically inhalations, exist in the
input data. To get the number of breaths per-
minute, we perform a moving average over all the
windows contained within a certain time frame.

Respiration Ground Truth

The ground truth for respiration rate was derived
from the recorded respiration audio of each sub-
ject. During the tests performed by the subjects
in our study, each subject wore an N95 mask with
a microphone inserted into the mask. The mask
served to muffle and reduce noise from the environ-
ment which helped us isolate the breathing signal
of the subject. Originally, we explored existing
machine learning models for respiration analysis,
but found that by controlling the user study envi-
ronment, we could eliminate the majority of exter-
nal noise that could potentially cause issues. We
detail this in the next section.
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SciPy peak detection was performed with a min-
imum distance determined by visual inspection of
the audio signal in order to automatically mark in-
halation and exhalation. Visual inspection of the
labels was performed to ensure accuracy, and any
incorrect labels were corrected through video and
audio inspection. Figure 5 shows a typical sam-
ple of audio recorded from one of the subjects in
our study. Exhalation is marked by a larger sound
amplitude than inhalation.

Experimental Results

In this section, we provide details about our user
study, and evaluate the ability of Apollo to moni-
tor respiration rate under different user activities.
Furthermore, we show the experimental perfor-
mance of Apollo when tested with medium to high
intensity activities.

User Study

In Apollo V1, we collected small amounts of data
from three users for sitting, standing, and walk-
ing activities. For Apollo V2, we collected signifi-
cantly more data for an additional three users for
sleeping, standing, and for various walking speeds.
Additionally, we collected data for medium to high
intensity activities from a single user. All data col-
lection was conducted in strict accordance with an
accepted IRB protocol. During each test, users in
our study wore a N95 mask with a microphone in-
side connected to an Android smartphone which
recorded respiration audio to serve as the ground
truth for our study.

For the sleeping portion of our study, each user
was asked to wear the Apollo V2 system while tak-
ing a nap for 1 hour. No restriction was placed
on sleeping position or user comfort (pillow size,
blankets, etc). For both the awake and sleeping
portions of our study, no restrictions were placed



on the user for adjusting the shirt as they might
adjust their clothing at anytime in the real-world.
For the awake portion of our study, users were
asked to repeatedly stand still for one minute, then
continuously walk for two minutes. Users were
asked to repeat this this sequence as many times
as they felt comfortable, and users were given the
option to take a break whenever they wished to.
For the medium to high intensity activities, a sin-
gle user performed jumping jacks, pull ups, and
ran at a fast pace. The three users in our Apollo
V2 study all fit into the same XL shirt, and each
fit into a different body type category shown in
Figure 1. This fact is essential for us to deter-
mine the effectiveness of Apollo for different body
shapes that fit into the same sized shirt.

Respiration Evaluation for Sensor A

The most common and important metric other res-
piration detection works use is breaths per minute
error (bpme). Too large a bpme and a system be-
comes unreliable. In literature, a bpme of < 1
is considered highly accurate, though the degree
of acceptable error may depend upon the specific
applications of the system. In our case, we are
looking to achieve two goals: a low bpme of < 1
and a stable bpme across multiple subjects, akin
to accuracy and precision.

To evaluate the peak detection based approach
for respiration analysis, bpme is a simple function
of comparing the number of breaths detected vs.
the ground truth for the entire dataset since this
method does not ”fit” to the data like a machine
learning model does. Given the limited number of
subjects we have, we’ve opted to perform our eval-
uation of our CNN model under subject-dependent
conditions since it is highly likely that our model
will not generalize to unknown subjects with vastly
different characteristics than the subjects present
in the training data. As such, we’ve elected to
perform 10-fold cross validation for each subject
where the test set for each fold is a random slice
of 20% of a subjects data. 10-fold cross validation
is performed for each activity. An important note
is that we ensure that the 20% of the data used as
the test set for each fold is not present in the train-
ing data to ensure that no data leakage artificially
boosts the performance of our model.

Table 1 shows the performance for the peak de-
tection algorithm using data from Sensor A (verti-
cal textile sensor) in Figure 2a and Sensor 2 in Fig-
ure 2b for standing and walking for all 6 subjects.
As expected, bpme increases during walking (1.34)
when compared to standing (0.48). However, we
believe this increase to be acceptable given the
simplicity of this approach. Table 2 shows the
10-fold cross validation performed for each sub-
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ject’s standing and walking tasks. As can be seen,
the CNN model slightly outperformed the peak de-
tection algorithm, achieving a bpme of (0.47) for
standing and a bpme of (0.95) for walking. We hy-
pothesize this is the case because the CNN model
was able to learn from both the raw and filtered
signal data which may have helped the CNN model
learn to ignore noise in the signal stemming from
foot falls. The minimal difference between stand-
ing bpme for peak detection and our CNN model
may suggest that we are approaching the minimum
bpme that Apollo is capable of achieving, possibly
due to limitations in the materials and fabrication
of the shirts themselves. Sensors B and C proved
to be less accurate than sensor A for subjects 4,
5, and 6. This is likely due to body shape in-
fluencing the maximum amount of stretch applied
during respiration. For example, sensor C was at
near maximum stretch while sensor B was rela-
tively slack for participant 5.

Participant 4 completed medium to high inten-
sity activities (jumping jacks, pull ups, running).
The average bpme for our CNN model for this par-
ticipant was 1.38 bpme. The error for the peak de-
tection algorithm was 7.10 bpme. These prelimi-
nary results reveal that our CNN model is capable
of ignoring noise in the data generated from body
movement.

Conclusion and Future Work

In this work, we demonstrated Apollo V2, the
2nd iteration of our wearable vital sign monitoring
shirt. We demonstrated that our Apollo shirt and
CNN based approach is capable of detecting respi-
ration with a breaths-per-minute-error (bpme) of
0.47 for standing positions and 0.95 bpme for light
exercises such as walking. Additionally, our pre-
liminary results showed that for medium to high
intensity exercise, Apollo is capable of detecting
respiration with an average bpme of 1.38. We be-
lieve that further improvements can be made by
segmenting the vertical respiration sensor in to sec-
tions to even better accommodate different body
shapes, as well as further improve movement noise
reduction.
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Activity | Sub. 1 | Sub. 2 | Sub. 3 | Sub. 4 | Sub. 5 | Sub. 6 | Avg.
Standing | 0.49 0.32 0.77 0.67 0.59 0.41 0.48
Walking 1.12 1.52 2.51 0.90 0.84 1.21 1.34

Table 1: Peak Detection Error (BPME) For Vertical Stretch Sensor

Activity | Sub. 1 | Sub. 2 | Sub. 3 | Sub. 4 | Sub. 5 | Sub. 6 | Avg.
Standing | 0.45 0.37 0.62 0.21 0.76 0.38 0.47
Walking 0.99 0.87 1.26 0.74 0.95 0.88 0.95

Table 2: CNN Detection Error (BPME) For Vertical Stretch Sensor
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