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Abstract

This paper presents the development and simulation of a global nonlinear passivity-based observer for
aircraft in wind. Wind estimates are vital to the expansion of urban air mobility operations by contributing
to model-based atmospheric predictions as well as vehicle-level systems for improved weather tolerance and
safety. Traditional approaches to wind estimation rely on linearization of the flight dynamics and thus are
only valid near a nominal flight condition. For operations across the flight envelope in a wide variety of
wind conditions, a more global result must be obtained. This paper specializes existing passivity-based
observer theory to aircraft in wind. The main results of this paper give explicit formulas for necessary gains
as well as a linear matrix inequality that can be used to optimize wind estimate convergence. The developed
wind observer is implemented on simulation data and shows good performance even when assumptions are
violated, indicating its robustness.

1 Introduction

Weather patterns over complex terrain are compli-
cated and ever-changing, yet are crucially important
to understand for safe air mobility operations [1].
The importance of accurate, real-time weather pre-
diction only increases as NASA’s Advanced Air Mo-
bility (AAM) and Urban Air Mobility (UAM) mis-
sion concepts mature to bring ubiquity, safety, and
efficiency to highly automated air transportation of
people and goods in urban and suburban areas [2].
As we mature towards ubiquitous air mobility oper-
ations the need grows for higher weather tolerance
and thus relaxed margins for flight safety [3, 4, 5, 6].
The expansion of weather-tolerant operations will not
just be made possible through more accurate model-
based atmospheric predictions on the mesoscale and
microscale, but also improved atmospheric measure-
ments at the vehicle level. In particular, the latter
can contribute to the former using in situ measure-
ments of wind as illustrated in Figure 1.

Traditional sampling methods such as weather bal-
loons are impractical in an urban setting and only
capture a few data points in the atmospheric bound-
ary layer. One of the fastest-emerging solutions to
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Figure 1: Enabling Air Mobility

bring higher temporal and spatial resolution to atmo-
spheric measurements is the use of small unmanned
aircraft systems (UAS) [7, 8, 9, 10, 11]. The use
of UAS enables better atmospheric boundary layer
(ABL) profiling and microscale numerical weather
prediction (NWP) using high-rate in situ measure-
ments. Of particular interest are approaches that do
not require specialized sensors, such as an anemome-
ter to measure wind velocity. The dynamics of the
aircraft itself in response to external disturbances can
be used to continuously estimate the wind at the air-
craft’s location. The low instrumentation barrier for
implementation makes UAS-based wind estimation
an extremely viable and feasible solution for UAS
as well as advanced air mobility, package delivery,
and emergency services aircraft. This opportunity
for crowdsourced sensing provides an extremely rich
data set that can be used across disciplines and appli-
cations to enable safer, more efficient, and weather-
tolerant air mobility operations [12, 13].
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While the incorporation of weather sensing on air
mobility vehicles presents a great opportunity, there
are concerns that current approaches would not en-
able access to regions where data may be needed
most, such as areas subject to high winds. Most
approaches to aircraft wind estimation rely on a lin-
ear flight dynamic modeling approach assuming small
perturbations from a nominal flight condition. While
these methods work well close to the designed oper-
ating condition, the underlying assumptions can be
violated in the presence of strong wind. These con-
cerns present a need to expand the range of flight
conditions for which accurate wind estimates and at-
mospheric measurements can be made.

To improve capability to predict weather in an ur-
ban environment, this paper presents the design and
simulation of a global nonlinear passivity-based wind
observer for aircraft. This observer provides real-time
estimates of the wind valid across the entire flight
envelope. Such an observer creates a capability to
expand the range of flight conditions for which accu-
rate wind estimates can be made. One of the main
benefits of this nonlinear observer is that it comes
with rigorous guarantees on the wind estimate con-
vergence, thus increasing the level of trust in what-
ever autonomous mission it may be employed. This is
where traditional linear approaches and linearization-
based approaches such as the extended Kalman fil-
ter can come up short. Furthermore, Kalman filter-
ing approaches to wind estimation tend to be very
sensitive to assumptions about the statistics of the
wind disturbance, which is only exacerbated for flight
across a wide variety of conditions.

This paper is organized as follows. Section 2 intro-
duces the aircraft in question and derives the equa-
tions of motion in wind for which the observer is de-
signed. Section 3 provides an overview of the theory
of passivity-based observers as presented in [14, 15].
The main result of this paper is detailed in Sec-
tion 4 where the passivity-based observer for aircraft
in wind is designed. Section 5 presents simulation re-
sults for this observer and evaluates its performance
as assumptions are violated. Section 6 states the con-
clusions of this work along with future research.

2 Aircraft Dynamics in Wind

Rigid-Body Dynamics

Consider an aircraft, modeled as a rigid body of
mass m. Let unit vectors {i1, i2, i3} define an earth-
fixed, inertial North-East-Down (NED) orthonormal
reference frame, FI. Let the unit vectors {b1, b2, b3}
define the orthonormal body-fixed frame, FB, cen-

tered at the aircraft center of gravity (CG) with b1
out the front of the aircraft, b2 out of the right-
hand side, and b3 out of the bottom completing the
right-hand rule. The position of the body frame with
respect to the inertial frame is given by the vector
q = [x y z]T. The attitude of the aircraft is given by
the rotation matrix, RIB, that maps free vectors from
FB to FI. Consider the Euler angle parameterization

RIB = eS(e3)ψeS(e2)θeS(e1)φ

where φ, θ, and ψ are the roll, pitch, and yaw angles
of the aircraft, respectively. Here, e1 = [1 0 0]T, etc.,
and S(·) is the skew-symmetric cross product equiva-
lent matrix satisfying S(a)b = a×b. Let v = [u v w]T

and ω = [p q r]T be the translational and rotational
velocity of the aircraft with respect to FI expressed in
FB, respectively. Thus, we have the kinematic equa-
tions

q̇ = RIBv (1a)

ṘIB = RIBS(ω) (1b)

With Θ := [φ θ ψ]T, Eq. (1b) becomes

Θ̇ =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ


︸ ︷︷ ︸

LIB

pq
r


︸︷︷︸
ω

(2)

Alternatively, we may parameterize the attitude of
the aircraft using the heading vector, λ = RT

IBe1,
and tilt vector, ζ = RT

IBe3, as done in [16, 17, 18, 19].
Then, the the attitude kinematics become

λ̇ = λ× ω, ζ̇ = ζ × ω (3)

where the rotation matrix, RIB, may be recon-
structed as

RIB(λ, ζ) =
[
λ S(ζ)λ ζ

]T
(4)

Let us represent the aerodynamic forces and moments
on the aircraft expressed in FB as F and M . De-
fine p = mv to be the linear momentum of the air-
craft and h = Iω to be the angular momentum vec-
tor about the center of mass, both expressed in FB.
Here, I is the moment of inertia matrix about the
center of mass in FB. Altogether, the equations of
motion in still air are

q̇ = RIB(λ, ζ)v (5a)

λ̇ = λ× ω (5b)

ζ̇ = ζ × ω (5c)

ṗ = p× ω +mgζ + F (5d)

ḣ = h× ω +M (5e)
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Dynamics in a Wind Field

Consider the aircraft’s motion in wind. In general and
independent of the aircraft’s motion, the wind is a
time-varying vector field, W : R3 × R→ R3, defined
in the inertial frame. Let the instantaneous wind vec-
tor as experienced by the aircraft be

w(t) = W (q(t), t) (6)

The apparent wind, w, is part of the aircraft state
vector, defined by evaluating the wind field, W , at
the aircraft’s position, q, at time t. Using the chain
rule, the time derivative of w is

dw

dt
=
∂W

∂t
(q, t) +∇qW (q, t)

dq

dt
(7)

in agreement with [11]. Note the we have arrived at
Eq. (7) under the implicit assumption that the vehicle
does not affect the flow field in which it is immersed.

As done by Etkin [20], we may define the angular
velocity of the wind as experienced by the aircraft in

the body frame, ωw =
[
pw qw rw

]>
, such that

Φ := R>IB∇qWRIB =:

 0 0 0
rw 0 0
−qw pw 0

 (8)

The matrix Φ is the local wind gradient matrix ex-
pressed in the body frame. In terms of Φ, (7) becomes

ẇ =
∂W

∂t
+RIBΦv (9)

where ∂W
∂t is a function of q and t.

We now consider the time derivative of the wind
gradient as experienced by the aircraft. The goal is a
closed-form expression for ω̇w. However, taking the
time derivative of Eq. (8), requires computation of
the time derivative of ∇qW . In general, this requires
information about (or estimation of) the gradient of
the tensor field ∇qW . To simplify the problem, we
make the following assumption in order to eliminate
the dependence of ωw on vehicle position.

Assumption 1. The change in gradient of the ap-
parent wind on the scale of the aircraft due to its
translation through the wind field is sufficiently slow.
In other words, ∇qW is constant.

Taking the derivative of ωw as defined in Eq. (8)
using the chain rule with (2), we obtain

ω̇w =
∂ωw

∂Θ
LIBω

∣∣∣∣
∇qW=RIBΦR>

IB

(10)

While this expression looks quite complicated, it sim-

plifies to

ω̇w =

 qwr
rwp− pwr
−qwp

 (11)

We make the assumption the aerodynamic forces
and moments only depend on the air mass rel-
ative velocity. Therefore, F = F (vr,ωr,u) and
M = M(vr,ωr,u), where u are the aircraft control
inputs and

vr = v −R>IBw (12)

ωr = ω − ωw (13)

Taking the time derivative of Eq. (12), we have

v̇r = vr × ω + gR>IBe3 +
1

m
F (vr,ωr,u)

−R>IB
∂W

∂t
−Φ(vr +R>IBw) (14)

Here we have chosen to use variables vr and w, but
any other combination of the wind triangle Eq. (12)
is equally valid. Unlike the translational velocity, we
choose the angular velocity states ω and ωw because
typically ω is directly measurable. From Eq. (5), the
angular velocity dynamics are

ω̇ = I−1 (Iω × ω +M(vr,ωr,u)) (15)

Altogether, the equations of motion of an aircraft
in a wind field are

q̇ = RIBvr +w (16a)

λ̇ = λ× ω (16b)

ζ̇ = ζ × ω (16c)

v̇r = vr × ω + gζ +
1

m
F (vr,ωr,u)

−R>IB
∂w

∂t
−Φ(vr +R>IBw) (16d)

ẇ =
∂W

∂t
+RIBΦ

(
vr +R>IBw

)
(16e)

ω̇ = I−1 (Iω × ω +M(vr,ωr,u)) (16f)

ω̇w =
∂ωw

∂Θ
LIBω

∣∣∣∣
∇qW=RIBΦR>

IB

(16g)

Simplified Dynamics for Passivity-Based
Observer Design

In order to simplify the nonlinear observer design,
consider the following two assumptions.

Assumption 2. The wind field is frozen with negli-
gible gradient such that ẇ = 0 and ωw ≡ 0.
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Assumption 3. For the purpose of estimation, the
aircraft’s aerodynamics evolve on a time scale signif-
icantly slower than the observer dynamics such that
at any point in time, the aerodynamics may be taken
to be linear, quasi-steady with

F = F0 + Fvvr + Fωω + Fuu (17a)

M = M0 +Mvvr +Mωω +Muu (17b)

The effect of Assumption 3 is that the quantities
F(·) and M(·) are treated as slowly-varying parame-
ters. For example, the values of F(·) and M(·) gener-

ally depend on dynamic pressure, 1
2ρv

T
r vr, which can

be assumed to vary sufficiently slowly compared to
the observer dynamics. Thus, the plant dynamics for
which we want to design a nonlinear observer are

q̇ = RIBvr +w (18a)

λ̇ = λ× ω (18b)

ζ̇ = ζ × ω (18c)

ω̇ = I−1
(
Iω × ω +M

)
(18d)

v̇r = vr × ω + gζ +
1

m
F (18e)

ẇ = 0 (18f)

with F and M given by Eq. (17). The
state of this system is defined by the vector
x = [qT λT ζT ωT vTr w

T]T ∈ X ⊂ Rn where the in-
put vector, u ∈ U ⊂ Rm, is known.

It is often the case that aircraft are instrumented
with an accelerometer, gyroscope, magnetometer,
and inertial positioning system (i.e. vision-based or
GNSS) such that position, attitude, and angular ve-
locity measurements can be readily obtained without
noise from a low-level estimation algorithm. Thus,
we make the following assumption.

Assumption 4. The aircraft position, attitude, and
angular velocity are measured without noise.

Therefore, let y = x1 := [qT λT ζT ωT]T. With
x = [xT

1 x
T
2 ]T where x2 = [vTr w

T]T, the dynamics
are written as

ẋ1 = f1(x1,x2,u) (19a)

ẋ2 = f2(x1,x2,u) (19b)

3 Passivity-Based Observers

In this paper, we use the passivity-based observer
as described in [14]. This approach aims to find
an injection gain matrix L and output-feedback
law v that render the observer error dynamics
strictly passive. First, we recall a dynamical system

ẋ = f(x) + g(x)u with output y = h(x) is dissipa-
tive with respect to the supply rate w(u,y) if there
exists a non-negative smooth storage function W (x)
such that

W (x(t))−W (x(0)) ≤
∫ t

0

w(u(τ),y(τ)) dτ (20)

The system is considered passive if it is dissipative
with respect to the supply rate w(u,y) = uTy. It
is strictly passive if there also exists a positive def-
inite function φ such that the system is dissipative
with respect to w(u,y) = uTy − φ. Passive systems
exhibit many desirable properties. Primarily, pure
negative output feedback of a zero-state detectable,
passive system asymptotically stabilizes the origin.
This property among others are described in the sem-
inal work of [21], where the authors also develop the
conditions under which a system can be rendered pas-
sive by state feedback. Then in [22], these conditions
were extended to output-feedback passivation. This
is the case for an observer where only some of the
states are available for feedback, thus leading to the
passivity-based observer design in [15, 14].

We now present an overview of passivity-based
observer design as detailed in [14]. Consider the
Luenberger-like observer

˙̂x1 = f1(x̂1, x̂2,u) +L1v(x̂,y,u) (21a)

˙̂x2 = f2(x̂1, x̂2,u) +L2(y)v(x̂,y,u) (21b)

with feedback

v(x̂,y,u) = −k(x̂,y,u)yd + vd (22)

where yd = x̂1 − x1 is the desired output and vd
is a dummy input. Note we allow the matrix L2 to
depend on measurements like in [23, 24, 25], which is
not explicitly considered in [14]; however, the proof
does not strictly rely on L2 being constant. Define
the estimate error as x̃ := x̂ − x and consider the
notation F (x̃;x;u) := f(x̃+ x,u)− f(x,u). Then,
the state estimate error dynamics are

˙̃x1 = F1(x̃1, x̃2;x1,x2;u) +L1v(x̂,y,u) (23a)

˙̃x2 = F2(x̃1, x̃2;x1,x2;u) +L2(y)v(x̂,y,u) (23b)

The observer design involves two main steps. First,
with yd viewed as the output, we find a proper Lya-
punov function V ∗(x̃2,x) and a positive definite func-
tion ψ3 that prove the augmented system composed
of the error dynamics in Eq. (23) and the plant dy-
namics is globally minimum phase with respect to the
manifold

M = {(x̃,x) | x̃ = 0} (24)
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with V̇ ∗ ≤ −ψ3(‖x̃2‖). This step can be thought of
like the first step in integrator backstepping, where
one stabilizes a subsystem with no available inputs
[26]. Here, we ensure the unmeasured state estimates
asymptotically approach their true values when the
measurable states are known. Second, we find non-
negative functions ϕ1 and ϕ2 such that∣∣∣∣∂V ∗∂x̃2

[F2 −L2L
−1
1 F1](x̃1,L2L

−1
1 x̃1;x1, x̂2;u)

+ x̃1L
−1
1 F1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

∣∣∣∣
≤ ϕ1(x̃1,x1, x̂2,u)‖x̃1‖2

+ ϕ2(x̃1,x1, x̂2,u)ψ
1/2
3 (‖x̃2‖)‖x̃1‖ (25)

In this expression, parentheses contain arguments for
all functions in square brackets. The requirement
that there exists these bounding functions comes from
the sufficient conditions for output feedback passiva-
tion developed in [22]. It essentially ensures the cou-
pling between the output dynamics ( ˙̃x1) and the un-
measurable dynamics ( ˙̃x2) preserves strict passivity
from vd to yd, which is a result of the following.

Theorem 1 (Theorem 2 in [14]). Suppose the Lya-
punov function V ∗ proves the augmented system is
(globally) minimum phase with respect to M. Also
suppose there exists ϕ1 and ϕ2 such that Eq. (25)
holds. Then, the feedback

v = −k(x̂,y)yd + vd (26)

with

k(x̂,y) = ε+ ϕ1(x̂1 − y,y, x̂2 −L2L
−1
1 (x̂1 − y))

+ ϕ2
2(x̂1 − y,y, x̂2 −L2L

−1
1 (x̂1 − y)), ε > 0 (27)

renders the augmented system strictly passive from vd
to yd with respect to M with the storage function

W = V ∗(x̃2 −L2L
−1
1 x̃1,x) +

1

2
x̃T
1L
−1
1 x̃1 (28)

Upon setting vd = 0, M becomes positively invariant
and (globally) asymptotically attractive.

4 Passivity-Based Observer Design
for Aircraft in Wind

Minimum Phase and Relative Degree
Sufficient Conditions

Now consider the aircraft in wind described by
Eq. (18). The components of the error dynamics vec-

tor field F(·) as defined in Eq. (23) are

F1q = RIB(λ̃+ λ, ζ̃ + ζ)(ṽr + vr)

−RIB(λ, ζ)vr + w̃ (29a)

F1λ = S(λ̃+ λ)(ω̃ + ω)− S(λ)ω (29b)

F1ζ = S(ζ̃ + ζ)(ω̃ + ω)− S(ζ)ω (29c)

F1ω = I−1
(
S(Iω̃ + Iω)(ω̃ + ω)− S(Iω)ω

+Mvṽr +Mωω̃
)

(29d)

F2vr
= S(ṽr + vr)(ω̃ + ω)− S(vr)ω + gζ̃

+
1

m
(Fvṽr + Fωω̃) (29e)

F2w = 0 (29f)

We now aim to design L such that the first condi-
tion in Theorem 1 holds. Considering the feedback
injection term in Eq. (26), the zero dynamics of the
augmented system composed of Eqs. (18) and (29) is
analyzed in view of the input-output pair (vd,yd).
In general, the zero dynamics of the augmented sys-
tem with respect to yd exist in some neighborhood
Z ⊆ X × X about x̃ = 0 [21] and evolve on
Z∗ = {(x̃,x) ∈ Z | x̃1 ≡ 0}. As discussed in [14], the
zero dynamics can can be shown to satisfy

˙̃x2 =
[
F2 −L2L

−1
1 F1

]
(0, x̃2;x1,x2;u) (30)

ẋ = f(x,u) (31)

Therefore, we must choose L such that x̃2 = 0 is
asymptotically stable on Z∗. Here, we see the global
existence of the zero dynamics (Z = X × X ) only
requires L1 to be invertible, also implying the error
dynamics have vector relative degree {1, · · · , 1}[22].
For convenience, denote

E2 := F2 −L2L
−1
1 F1 (32a)

=⇒ E∗2 := E2(0, x̃2;x1,x2;u) (32b)

Then partitioning L as

L1 = diag
(
L1q ,L1λ ,L1ζ ,L1ω

)
(33a)

L2 =

[
L2v,q L2v,λ L2v,ζ L2v,ω

L2w,q L2w,λ L2w,ζ L2w,ω

]
(33b)

we compute E2vr
and E2w as defined in Eq. (32a).

Then, the zero dynamics are obtained by simply eval-
uating Eq. (32a) at yd = x̃1 = 0. As a result,

E∗2vr = −S(ω)ṽr +
1

m
Fvṽr −L2v,ωL

−1
1ω
I−1Mvṽr

−L2v,qL
−1
1q

(RIB(λ, ζ)ṽr + w̃) (34a)

E∗2w = −L2w,qL
−1
1q

(RIB(λ, ζ)ṽr + w̃)

−L2w,ωL
−1
1ω
I−1Mvṽr (34b)
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Consider the zero-error manifold, M, defined in
Eq. (24). We aim to find a proper Lyapunov func-
tion V ∗(x̃2,x) that proves M is positively invariant
and globally asymptotically attractive on Z∗. This
amounts to the conditions

ψ1(‖x̃2‖) ≤ V ∗(x̃2,x) ≤ ψ2(‖x̃2‖) (35)

V̇ ∗ =
∂V ∗

∂x̃2
E∗2 +

∂V ∗

∂x
f ≤ −ψ3(‖x̃2‖) (36)

where ψ1, ψ2 are class K∞ functions and ψ3 is a
smooth, positive definite function. Note that V ∗ does
not necessarily depend on x, but allowing it to do so,
may admit observer designs for a wider class of sys-
tems [14]. Fortunately for the aircraft in question, we
need only consider the Lyapunov candidate

V ∗(x̃2,x) =
1

2
x̃T
2 x̃2 (37)

which clearly satisfies Eq. (35). It follows that

V̇ ∗ = −ṽTr S(ω)ṽr + ṽTr
1

m
Fvṽr − ṽTrL2v,qL

−1
1q
w̃

− ṽTrL2v,qL
−1
1q
RIBṽr − ṽTrL2v,ωL

−1
1ω
I−1Mvṽr

− w̃TL2w,qL
−1
1q
RIBṽr − w̃TL2w,qL

−1
1q
w̃

− w̃TL2w,ωL
−1
1ω
I−1Mvṽr (38)

Here we have dropped the the argument to RIB for
compactness. From here on, it is implied that be
RIB = RIB(λ, ζ) unless explicitly stated. Notice the
term ṽTr S(ω)ṽr is identically equal to zero since the
quadratic form of a skew-symmetric matrix is zero.
We may then write Eq. (38) as V̇ ∗ = −x̃T

2P x̃2, where

P11 = − 1

m
Fv +L2v,qL

−1
1q
RIB

+L2v,ωL
−1
1ω
I−1Mv (39a)

P12 = L2v,qL
−1
1q

(39b)

P21 = L2w,qL
−1
1q
RIB +L2w,ωL

−1
1ω
I−1Mv (39c)

P22 = L2w,qL
−1
1q

(39d)

Therefore, we will choose the gain matrix L such that[
Q11 Q12

QT
12 Q22

]
:= Q :=

1

2

(
P + P T

)
� 0

which is sufficient for proving V̇ ∗ ≺ 0. Let us choose

L2v,q = Γv,qR
T
IBL1q (40a)

L2v,ω = Γv,ωM
T
v IL1ω (40b)

L2w,q = RIBΓw,qR
T
IBL1q (40c)

L2w,ω = RIBΓw,ωM
T
v IL1ω (40d)

where the matrix

Γ =

[
Γv,q Γv,ω
Γw,q Γw,ω

]
(41)

is a constant parameter used for tuning. Notice we
have chosen L2 to make the design of L1 independent
of the zero dynamics. Then, Q reduces to

Q11 = − 1

2m

(
Fv + F T

v

)
+

1

2

(
Γv,q + ΓT

v,q

)
+

1

2

(
Γv,ωM

T
vMv +MT

vMvΓ
T
v,ω

)
(42a)

Q12 =
1

2

(
Γv,q + ΓT

w,q +MT
vMvΓ

T
w,ω

)
RT

IB (42b)

Q22 =
1

2
RIB

(
Γw,q + ΓT

w,q

)
RT

IB (42c)

The rotation matrix, RIB, does not influence the def-
initeness of Q. This can be seen using the Schur
complement where Q � 0 if and only if

Γw,q + ΓT
w,q � 0 (43)

and Q11 − Q12Q
−1
22 Q

T
12 � 0. Therefore, we may

choose Γ such that[
− 1
mFv + Γv,q + Γv,ωM

T
vMv Γv,q

Γw,q + Γw,ωM
T
vMv Γw,q

]
+

[
− 1
mFv + Γv,q + Γv,ωM

T
vMv Γv,q

Γw,q + Γw,ωM
T
vMv Γw,q

]T
� 0 (44)

This condition may be stated in the form of the linear
matrix inequality (LMI),

ΓA+ATΓT +Q � γI (45)

for some positive γ where

A =

[
I I

MT
vMv 0

]
, Q =

[
− 1
m (Fv + F T

v ) 0
0 0

]
(46)

One approach is to maximize γ with Γ being

arg max
Γ

γ subject to Eqs. (43) and (45) (47)

This convex optimization problem yields the matrix Γ
that maximizes the convergence rate of the zero dy-
namics. As seen above, the upper bound on γ di-
rectly depends on the aircraft mass, Fv, and Mv. In
other words, the dissipation rate of relative velocity
and wind observation error is dependent on the air-
craft’s physical dissipation due to drag. Practically,
this means there is an upper limit of the time scale
of wind fluctuations that can be accurately resolved.
However, it remains a possibility there exists a differ-
ent Lyapunov function or a different dynamic model
for w that removes this limitation.

Hopwood 6



With Γ chosen such that Eq. (45) holds, we see

V̇ ∗ = −x̃T
2Qx̃2 ≤ −

γ

2
‖x̃2‖2 =: −ψ3(‖x̃2‖) (48)

thus proving the error system is globally minimum
phase with respect to yd = x̂1 − x1.

Bounding Functions and Strict Passivity

Next, we need to satisfy the second condition of Theo-
rem 1 and find continuous, non-negative functions ϕ1

and ϕ2 such that Eq. (25) holds. As will be shown in
[27], the left-hand side of Eq. (25) can be written as∣∣∣∣∂V ∗∂x̃2

E2(x̃1,L2L
−1
1 x̃1;x1, x̂2;u)

+ x̃1L
−1
1 F1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

∣∣∣∣
=
∣∣x̃T

2B(x̃1,x1, x̂2)x̃1 + x̃T
1A(x̃1,x1, x̂2)x̃1

∣∣ (49)

where A and B are matrix functions of appropriate
dimensions. Then by the triangle inequality and a
series of sub-multiplicative properties,∣∣x̃T

1A(x̃1,x1, x̂2)x̃1 + x̃T
2B(x̃1,x1, x̂2)x̃1

∣∣
≤
∣∣x̃T

1A(x̃1,x1, x̂2)x̃1

∣∣+
∣∣x̃T

2B(x̃1,x1, x̂2)x̃1

∣∣
≤ ‖A(x̃1,x1, x̂2)‖F‖x̃1‖2F

+ ‖B(x̃1,x1, x̂2)‖Z‖x̃2‖Z‖x̃1‖Z (50)

where ‖ · ‖F is the Frobenius norm (simplifies to the
Euclidean norm for the vector x̃1), and ‖ · ‖Z is
a generalization of the norm used to prove asymp-
totic stability of the zero dynamics from Eq. (48).
Due to the LMI result, it is simply defined as
‖B‖Z :=

√
γ
2 ‖B‖F , but in general could be more

complicated given a different ψ3. For B = x̃2, the
norm ‖x̃2‖2Z is equivalent to ψ3(‖x̃2‖). Therefore,∣∣∣∣∂V ∗∂x̃2

E2(x̃1,L2L
−1
1 x̃1;x1, x̂2;u)

+ x̃1L
−1
1 F1(x̃1, x̃2 +L2L

−1
1 x̃1;x1, x̂2 − x̃2;u)

∣∣∣∣
≤ ‖A(x̃1,x1, x̂2)‖F‖x̃1‖2F

+ ‖B(x̃1,x1, x̂2)‖Zψ1/2
3 (‖x̃2‖)‖x̃1‖Z (51)

and ϕ1 and ϕ2 can be taken to be

ϕ1(x̃1,x1, x̂2) = ‖A(x̃1,x1, x̂2)‖F (52)

ϕ2(x̃1,x1, x̂2) = ‖B(x̃1,x1, x̂2)‖Z (53)

satisfying the second condition in Theorem 1.

Note these choices of ϕ1 and ϕ2 hold for any block-
diagonal, invertible L1 and any finite L2v,λ , L2v,ζ ,

L2w,λ , L2w,ζ . However, the observer gain is then also
arbitrarily large. Therefore, it is judicious to choose
these gains to make ϕ1 and ϕ2 as small as possi-
ble. It turns out that setting L2v,λ , L2v,ζ , L2w,λ , and
L2w,ζ to be zero matrices accomplishes this task. In-
tuitively, this is because the attitude kinematics do
not encode any information about the relative veloc-
ity and wind states. They only depend on the mea-
sured angular velocity. Therefore, introducing terms
in the relative velocity and wind observer dynamics
that depend on the attitude estimate error only de-
grades observer performance. The matrix L1 is left as
a free tuning parameter. It can be chosen using sim-
ilar methods to that of a Kalman filter or other Lu-
enberger observer. Altogether, the matrix L is given
in Eq. (54).

L =


L1q 0 0 0
0 L1λ 0 0
0 0 L1ζ 0
0 0 0 L1ω

Γv,qR
T
IBL1q 0 0 Γv,ωM

T
v IL1ω

RIBΓw,qR
T
IBL1q 0 0 RIBΓw,ωM

T
v IL1ω

 (54)

Thus we arrive at the main result of this paper, which
is a direct result of Theorem 1.

Theorem 2. Consider the aircraft in wind described
by Eq. (18) and the observer in Eq. (21) with L given
by Eq. (54). Suppose there exists a positive constant
γ such that LMI conditions Eq. (43) and Eq. (45)
hold. Then the feedback in Eq. (27) with ϕ1 and ϕ2

given by Eq. (52) globally renders the augmented sys-
tem strictly passive with respect to M. Upon setting
vd = 0, M is rendered positively invariant and glob-
ally asymptotically attractive.

5 Simulation Results

The designed observer was implemented using sim-
ulated flight data of a small fixed-wing UAS called
the My Twin Dream, shown in Figure 2. A nonlinear

Figure 2: My Twin Dream Research Aircraft

aerodynamic model was developed for this aircraft in
[28] which was linearized about a nominal flight con-
dition to obtain the matrices F(·) and M(·). Then,
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this model was simulated in Matlab using large-
amplitude open loop controls to excite the nonlinear
dynamics. The aircraft was simulated in a uniform
wind field with components WN = 10, WE = −15,
and WD = −3, as seen in Figure 3. Then, the non-

Figure 3: Simulated aircraft trajectory in wind

linear passivity-based observer was implemented on
this data. Two violations to the assumptions of the
observer design were considered. First, measurement
noise was added indicative of typical estimate error
from a low-level filter that obtains x1. Then, the
aerodynamic matrices Fv and Mv were perturbed
randomly to test the observer’s robustness to aero-
dynamic modeling error.

First the observer was simulated with all assump-
tions satisfied. That is, the model is perfectly known,
there is no measurement noise, and the wind is con-
stant. The convex optimization problem stated in
Eq. (47) was solved with γ = 1.54. The wind es-
timate results are shown in Figure 4. The observer
shows good convergence even with high wind speeds
for a small UAS. The bounding functions were also
plotted and are shown in Figure 5 where the nonlin-
ear nature of the observer injection is evident.

0 5 10 15 20 25 30

t

-20

-15

-10

-5

0

5

10

15

A
p
p
a
re

n
t
W

in
d

V
ec

to
r

ŵN
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Figure 4: Passivity-based wind estimates

Then, Gaussian measurement noise was added with
standard deviations of σq = 0.1, σλ = 0.05, σζ =
0.01, and σω = 0.001 for position, compass vector, tilt
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Figure 5: Bounding functions ϕ1 and ϕ2

vector, and angular velocity, respectively. While the
observer somewhat amplifies this noise, the results as
shown in Figure 6 still show good performance even
with a violation of Assumption 4.
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Figure 6: Wind estimates with measurement noise

Finally, the aerodynamic model used to design and
implement the observer was randomly perturbed in
addition to the presence of measurement noise. The
diagonal elements of the matrices Fv and Mv were
arbitrarily perturbed with

F̂v = Fv (I + diag(ν1))

M̂v = Mv (I + diag(ν2))

where ν1 and ν2 are Gaussian random vectors with
a standard deviation of 0.25. Then the observer was
designed and run using the imperfect values of F̂v and
M̂v. The results are shown in Figure 7, where the
wind estimates still converge with good performance.
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ŵN

ŵE
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Figure 7: Wind estimates with measurement noise
and a perturbed aerodynamic model

6 Conclusions and Future Work

This paper details the design and simulation of a
global nonlinear passivity-based wind observer for
aircraft. Under some reasonable assumptions about
the wind field and time scale of the aircraft’s aero-
dynamics, we obtain rigorous guarantees about the
convergence of wind estimates across the entire flight
envelope. Such strong results help expand the range
of flight conditions for which accurate wind estimates
can be made. Through a clever choice of injection
gain function L2, a linear matrix inequality result
was developed that proves the observer error dy-
namics are globally minimum phase. Then, explicit
formulas for the bounding functions that define the
scalar injection k were derived. The result of The-
orem 2 is generally applicable to a wide variety of
aircraft, providing a powerful capability to estimate
wind with rigorous guarantees even in adverse con-
ditions. Future work involves implementing this ob-
server on flight test data from both multirotor and
fixed wing air vehicles as well as relaxing the assump-
tion of linear, quasi-steady aerodynamics.
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[7] J. González-Rocha, C. A. Woolsey, C. Sultan,
and S. F. J. De Wekker, “Sensing Wind from
Quadrotor Motion,” Journal of Guidance, Con-
trol, and Dynamics, vol. 42, pp. 836–852, Apr.
2019.

[8] J. Jacob, P. Chilson, A. Houston, and S. Smith,
“Considerations for Atmospheric Measurements
with Small Unmanned Aircraft Systems,” Atmo-
sphere, vol. 9, p. 252, July 2018.

[9] B. Witte, R. Singler, and S. Bailey, “Develop-
ment of an Unmanned Aerial Vehicle for the
Measurement of Turbulence in the Atmospheric
Boundary Layer,” Atmosphere, vol. 8, p. 195,
Oct. 2017.

[10] R. T. Palomaki, N. T. Rose, M. van den Bossche,
T. J. Sherman, and S. F. J. De Wekker, “Wind
Estimation in the Lower Atmosphere Using Mul-
tirotor Aircraft,” Journal of Atmospheric and

Hopwood 9



Oceanic Technology, vol. 34, pp. 1183–1191, May
2017.

[11] J. W. Langelaan, N. Alley, and J. Neidhoefer,
“Wind Field Estimation for Small Unmanned
Aerial Vehicles,” Journal of Guidance, Control,
and Dynamics, vol. 34, pp. 1016–1030, July
2011.

[12] K. A. Adkins, M. Akbas, and M. Compere,
“Real-Time Urban Weather Observations for Ur-
ban Air Mobility,” International Journal of Avi-
ation, Aeronautics, and Aerospace, vol. 7, no. 4,
2020.

[13] R. Trub, D. Moser, M. Schafer, R. Pinheiro,
and V. Lenders, “Monitoring Meteorological Pa-
rameters with Crowdsourced Air Traffic Control
Data,” in 2018 17th ACM/IEEE International
Conference on Information Processing in Sen-
sor Networks (IPSN), (Porto), pp. 25–36, IEEE,
Apr. 2018.

[14] H. Shim, J. H. Seo, and A. R. Teel, “Nonlin-
ear observer design via passivation of error dy-
namics,” Automatica, vol. 39, pp. 885–892, May
2003.

[15] H. Shim, A Passivity-based Nonlinear Observer
and a Semi-global Separation Principle. Ph.D.
Dissertation, School of Electrical Engineering,
Seoul National University, Feb. 2000.

[16] C. Woolsey and L. Techy, “Cross-track control
of a slender, underactuated AUV using potential
shaping,” Ocean Engineering, vol. 36, pp. 82–91,
Jan. 2009.

[17] T. Battista, S. Jung, C. Woolsey, and E. Pater-
son, “An energy-casimir approach to underwater
vehicle depth and heading regulation in short
crested waves,” in 2017 IEEE Conference on
Control Technology and Applications (CCTA),
(Mauna Lani Resort, HI, USA), pp. 217–222,
IEEE, Aug. 2017.

[18] J.-M. Fahmi and C. A. Woolsey, “Port-
Hamiltonian Flight Control of a Fixed-Wing Air-
craft,” IEEE Transactions on Control Systems
Technology, vol. 30, pp. 408–415, Jan. 2022.

[19] J.-M. Fahmi and C. A. Woolsey, “Passivity
Based Cross-Track Control of a Fixed-Wing Air-
craft,” in Conference on Guidance, Navigation
and Control, May 2022.

[20] B. Etkin, “Turbulent Wind and Its Effect on
Flight,” Journal of Aircraft, vol. 18, pp. 327–
345, May 1981.

[21] C. I. Byrnes, A. Isidori, and J. C. Willems,
“Passivity, feedback equivalence, and the global
stabilization of minimum phase nonlinear sys-
tems,” IEEE Transactions on Automatic Con-
trol, vol. 36, pp. 1228–1240, Nov. 1991.

[22] Jiang, Zhong-Ping and D. J. Hill, “Passivity and
disturbance attenuation via output feedback for
uncertain nonlinear systems,” IEEE Transac-
tions on Automatic Control, vol. 43, pp. 992–
997, July 1998.

[23] A. Venkatraman and A. van der Schaft, “Full-
order observer design for a class of port-
Hamiltonian systems,” Automatica, vol. 46,
pp. 555–561, Mar. 2010.

[24] Y.-C. Chen and C. Woolsey, “Passivity-Based
Disturbance Observer Design,” (Virtual, On-
line), p. V001T21A007, American Society of Me-
chanical Engineers, Oct. 2020.

[25] Y.-C. Chen and C. A. Woolsey, “Nonlinear,
Model-Based Disturbance Estimation for Fixed-
Wing Aircraft,” in AIAA Scitech 2021 Fo-
rum, (VIRTUAL EVENT), American Institute
of Aeronautics and Astronautics, Jan. 2021.

[26] H. K. Khalil, “Chapter 14: Nonlinear Design
Tools,” in Nonlinear Systems, pp. 551–646, Up-
per Saddle Ridge, New Jersey: Prentice Hall,
3rd ed., 2002.

[27] J. W. Hopwood and C. A. Woolsey, “Passivity-
Based Wind Estimation Using Aircraft,” In
preparation, 2023.

[28] J. L. Gresham, B. M. Simmons, J.-M. W. Fahmi,
and C. A. Woolsey, “Remote Uncorrelated Pilot
Inputs for Nonlinear Aerodynamic Model Identi-
fication from Flight Data,” in AIAA AVIATION
2021 FORUM, (VIRTUAL EVENT), American
Institute of Aeronautics and Astronautics, Aug.
2021.

Hopwood 10


	Introduction
	Aircraft Dynamics in Wind
	Passivity-Based Observers
	Passivity-Based Observer Design for Aircraft in Wind
	Simulation Results
	Conclusions and Future Work

