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Abstract

Neighborhoods of the Lagrange points control phase space transport at low energies in the circular restricted three-
body problem because of the geometry of the forbidden region. At high energies, the forbidden region vanishes and
the linearized dynamics about the Lagrange points no longer controls transit. ”Arches of chaos” spanning solar system
phase space were recently discovered which induce marked phase space stretching. We demonstrate numerically that
the arches are the intersections of the stable and unstable manifolds to the singularities at the primaries with a specific
surface of section. We explore how trajectories near these manifolds evolve and show how they connect to patched
conics theory.
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1. Introduction

The collinear Lagrange points anchor a fractal web of
manifolds which transport particles throughout the Solar
System. The phase space structure emanating from the
Lagrange points was first analyzed within the circular re-
stricted three-body problem, or CR3BP (Conley, 1968,
1969; McGehee, 1969; Llibre et al., 1985; Astakhov &
Farrelly, 2004; Onozaki et al., 2017; Oshima et al., 2017;
Topputo, 2013), but recent studies have investigated more
general dynamical models, such as periodically perturbed
problems (Jorba et al., 2020; McCarthy & Howell, 2020;
Fitzgerald & Ross, 2022; Kumar et al., 2022; Oshima,
2022). The resultant theory of low energy transport is
well-understood and has proven invaluable for both un-
derstanding the motions of natural celestial bodies (Koon
et al., 2001; Jaffé et al., 2002) and planning spacecraft
missions (Lo et al., 2001; Farquhar, 2001; Wu et al.,
2012). Applications of the theory outside of astrodynam-
ics span a wide range of topics, from chemical reaction
dynamics (Bartsch et al., 2008) to snap-through buckling
(Zhong et al., 2017; Zhong & Ross, 2021). However, for
reasons that will be discussed in this study, low energy
transport theory does not govern particle motion within
sufficiently high energy regimes, and so different dynam-
ical sets must take precedence.
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Recent numerical investigations into solar system
dynamics have revealed “arches of chaos” stretching
throughout the phase space (Todorović et al., 2020).
These objects induce dramatic rates of divergence be-
tween nearby trajectories on either side, suggesting that
a mechanism of underlying phase space structures is re-
sponsible. The arch structure exists not only when all
seven planets are considered but also when the dynam-
ics are simplified to the Sun-Jupiter-particle system, sug-
gesting that the core phenomenon arises in the restricted
three-body problem. The current work will demonstrate
that the stable and unstable manifolds to the CR3BP’s sin-
gularities are responsible for the arches of chaos.

2. Introduction to the Arches of Chaos

2.1. The Fast Lyapunov Indicator

The Fast Lyapunov Indicator (FLI) is a computational
method used to find chaotic regions and other phase
space structures in a dynamical system (Froeschlé et al.,
1997b,a).

Consider a manifold M where the n-dimensional tan-
gent space at each p ∈ M is TpM. An autonomous dy-
namical system with time variable t on M induces a flow

ϕt : M → M. Let
{

∂
∂x1

∣∣∣
p , . . . ,

∂
∂xn

∣∣∣
p

}
be a basis for TpM.

Then the FLI at time t, with initial condition x0 at t = 0,
is ψt : M × R→ R+ such that
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where (ϕt,∗)x0 is the pushforward induced by ϕt at x0
(Froeschlé et al., 1997b).

Because the FLI distinguishes regions of greater and
lesser local “stretching”, calculating it for grids of initial
conditions facilitates detecting chaos-inducing structures.
However, the Fast Lyapunov Indicator detects chaotic sets
but does not indicate what dynamics created them. Addi-
tional methods are needed, and so explaining the dynami-
cal geometry underlying the arches of chaos is the primary
aim of this study.

2.2. The Arches of Chaos

A recent paper by Todorović et al. describes regions of
high local stretching discovered by computing the FLI for
selected initial conditions in solar system models (2020).
One model incorporates the seven major planets, whereas
the other is simpler and only incorporates the Sun and
Jupiter. Calculating the FLI over dense grids of initial
conditions in both models gradually reveals, over suf-
ficient timescales, the arch-like regions seen in Figure
1. Much of this picture persists regardless of the model
employed, which led the authors to conclude that inter-
actions with Jupiter dominate the dynamics (Todorović
et al., 2020).

The manifold structures associated with the arches of
chaos appear and operate over fast timescales: several
decades rather than tens of thousands of years. In this
regard, they operate much faster than the timescales typ-
ically used in solar system dynamics (Todorović et al.,
2020). Because of their higher energies and faster tran-
sit times, they also differ from the low-energy mani-
folds, which can require thousands of years to success-
fully transfer particles between planets (Werner, 2022).
As shown in Figure 1, the stable manifolds to the collinear
Lagrange points bound the arches when depicted in a-e
space.

2.2.1. The surface of initial conditions

The arches of chaos are computed using initial conditions
lying on a surface of constant mean anomaly M, incli-
nation, argument of perihelion ω, and longitude of the as-
cending nodeΩwhich is parameterized by the semi-major
axis a and eccentricity e of the initial conditions. For ini-
tial epoch 30 September 2012, i, ω, and Ω for all initial
conditions are set to the inclination, argument of perihe-
lion, and longitude of the ascending node of Jupiter’s or-
bit, and M for all initial conditions is set 60◦ ahead of the
mean anomaly of Jupiter’s orbit. These values correspond
to trajectories whose position space projections begin evo-
lution near the Sun-Jupiter L4 Lagrange point (Todorović
et al., 2020).

3. The regularization of the
circular restricted three-body problem

3.1. The CR3BP

The circular restricted three-body problem concerns the
motion of a particle P subject to the gravitational influ-
ence of two masses m1 > m2, which both circle their com-
mon barycenter O. For the remainder of this paper, we re-
strict analysis to the planar CR3BP (PCR3BP), in which
P is constrained to the plane of motion of m1 and m2. The
generalization to the spatial case is straightforward.

We write the equations of motion within a rotating ref-
erence frame whose origin is O and whose x-axis and y-
axis point along the line between m1 and m2 and along the
direction of motion of m2, respectively (see Figure 2).

The equations of motion in the PCR3BP are Hamilton’s
canonical equations generated by the following Hamilto-
nian (Koon et al., 2022):

HCR3BP =
1
2

(
p2

x + p2
y

)
− xpy + ypx −

1 − µ
r1
−
µ

r2
(1)

where

r1 =

√
(x + µ)2 + y2, r2 =

√
(x − 1 + µ)2 + y2

and µ = m2/(m1 + m2) is the mass parameter.

3.2. The irrelevance of the Lagrange points

At low energies, phase space transport in the PCR3BP
is controlled by the equilibria of the equations of mo-
tion, which are called the Lagrange points (Conley, 1968,
1969; McGehee, 1969; Koon et al., 2022). In the time-
perturbed PCR3BP, phase space transport at low ener-
gies is controlled by generalizations of the Lagrange
points sometimes called dynamical replacements to the
Lagrange points or Lagrange manifolds (Jorba et al.,
2020; Fitzgerald & Ross, 2022).

At high energies, the Lagrange points or Lagrange man-
ifolds no longer control phase space transport. To under-
stand why, vary the Hamiltonian energy and consider the
evolution of the forbidden realm. Fix HCR3BP = E ∈ R to
be the (conserved) energy of a trajectory. P can only move
throughout the Hill’s region, the subset of position space
accessible for the chosen E. The inaccessible remainder
is called the forbidden realm. The forbidden realm may
exhibit one of five qualitatively distinct geometries corre-
sponding to different intervals of E (see Figure 3):

1. For E < E1, P is confined to neighborhoods around
m1 or m2 or to an area exterior to the forbidden realm.

2. For E1 < E < E2, P is confined to neighborhoods
around m1 or m2 or to an area exterior to the forbid-
den realm.
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Figure 1: FLI maps of a grid of initial conditions with varying semi-major axes a and eccentricities e reveal a complex series of arch-like structures,
the Arches of Chaos, in the Sun-Jupiter restricted three-body problem. Regions with lighter colors correspond to higher values of the FLI and
therefore to higher trajectory divergence, which suggests the presence of stable and unstable manifolds. q j and Q j are Jupiter’s perihelion and
aphelion lines, respectively, and T j = 3 is a Jupiter Tisserand curve. WS

L1
and WS

L2
are the stable manifold curves of the Sun-Jupiter L1 and L2

points, respectively. Figure edited from Todorović et al. (2020).

Figure 2: A schematic of the planar circular restricted three-body prob-
lem viewed in the rotating frame.

3. For E2 < E < E3, P gains the ability to travel be-
tween the m1 and m2 neighborhoods.

4. For E3 < E < E4, P gains the ability to travel be-
tween the m2 neighborhood and the exterior area.

5. For E5 < E, the forbidden realm is no longer present.

The dynamics of low-energy transport rely on the exis-
tence of the ”neck regions” linking the neighborhoods. In
the Case 3 energy interval often used in trajectory design,
P can access all three regions of interest but is forced to
travel through the necks. The neck regions correspond to
the neighborhoods of the Lagrange points, which is why
the linearized geometry about the Lagrange points is re-
sponsible for governing transit at low energies.

At high energies such as those within the Case 5 energy
interval, the forbidden region disappears and so the neck
regions no longer link regions of position space. The La-
grange points are no longer key to phase space transport.

3.3. Introduction to the Levi-Civita regularization

We will show in the remainder of the paper that the loca-
tions of m1 and m2 dictate high-energy transport, but we

Figure 3: The Hamiltonian energy can be separated into five distinct
intervals based on the topologies of the forbidden realm.

Figure 4: The x-y plane in standard coordinates maps to the half-plane
in regularized coordinates.

must first resolve a methodological difficulty.
The Hamiltonian (1) diverges as ri → 0 and so the as-

sociated equations of motion are not defined at ri = 0.
The locations of the primaries are singularities, creating
challenges for numerical and analytical investigation in
arbitrarily small neighborhoods of the two masses. The
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Levi-Civita regularization resolves these issues by refor-
mulating the CR3BP in order to remove one of the sin-
gularities from the system. We assume, for the remainder
of this study, that the singularity to be regularized is the
singularity about m2.

We define a Cartesian coordinate system (X,Y) cen-
tered at m2 where X = x − 1 + µ and Y = y and a
corresponding polar coordinate system (r, θ) where r =
√

X2 + Y2 and θ = (Y, X).
Then, the Levi-Civita regularization recasts the phase

space variables into the following form (Paez & Guzzo,
2020):

x − 1 + µ = u2
1 − u2

2,

y = 2u1u2,

px =
U1u1 − U2u2

2 |u|2
,

py − 1 + µ =
U1u2 + U2u1

2 |u|2

(2)

with |u|2 = u2
1 + u2

2 (refer to a visualization of the posi-
tion space transformation in Figure 4). In addition, the
standard time t is rescaled into the Levi-Civita time τ ac-
cording to the conversion equation

dt = |u|2 dτ. (3)

Regularization recasts the singularity as a collision
manifold (Llibre, 1982) which is included within the Levi-
Civita phase space.

For topological reasons, one may extend phase space
to six dimensions by including the standard time t and
the standard energy E, which are conjugate to each other,
so that the full set of phase space variables becomes
(u1, u2,U1,U2, t, E) (For notational and conceptual sim-
plicity, t and E will be omitted in certain sections of the
ensuing analysis, resulting in four-dimensional state vec-
tors). E is constant in τ and must be set to the HCR3BP
energy of the trajectory under consideration.

The Hamiltonian for the Levi-Civita system is

HLCR =

(
U1 + 2|u|2u2

)2

8
+

(
U2 − 2|u|2u1

)2

8

−
|u|6

2
− µ − |u|2

(
E +

(1 − µ)2

2

)
−

(1 − µ)|u|2

 1√
1 + 2(u2

1 − u2
2) + |u|4

+ u2
1 − u2

2

 .

The equations of motion corresponding to (4) are as fol-
lows:

du1

dτ
=
∂HLCR

∂U1
,

du2

dτ
=
∂HLCR

∂U2
,

dt
dτ
=
∂HLCR

∂E
,

dU1

dτ
= −

∂HLCR

∂u1
,

dU2

dτ
= −

∂HLCR

∂u2
,

dE
dτ
= −

∂HLCR

∂t
.

(4)

Note that the third equation in (4) is equivalent to (3)
and that the sixth equation in (4) implies dE

dτ = 0.

3.4. The Levi-Civita regularization and numerical integration

Regularization facilitates numerical investigation: at-
tempting to integrate the standard CR3BP equations of
motion in the vicinity of the singularity often causes the
algorithm to fail or become prohibitively slow as the step
size becomes too small.

Throughout the remainder of this paper, we numeri-
cally integrate trajectories that pass near the singularity
by converting standard trajectories to Levi-Civita form us-
ing the inverse forms of (2) and (3), integrating within the
regularized system, and then converting back to standard
coordinates.

4. Preliminary Numerical Experiments
on the Stable and Unstable Manifolds to the Singularity

In this section, we demonstrate the connection between
the unstable and stable manifolds to the singularity and
the Arches of Chaos using several numerical experiments.
All numerical experiments will occur within the context
of the Sun-Jupiter PCR3BP, in which µ ≈ 9.537 × 10−4.

4.1. Global geometry of the stable and unstable manifolds

Generating initial conditions for trajectories along the
stable and unstable manifolds to the singularity is very
straightforward in standard coordinates. The stable mani-
fold is comprised of trajectories that collide with the sin-
gularity in forward time, and the unstable manifold is
comprised of trajectories that collide with the singular-
ity in backward time. Trajectories with initial conditions
(r, θ,−ṙ, 0) and (r, θ, ṙ, 0) for 0 < r ≪ 1, ṙ ≫ 1, and
θ ∈ S 1 therefore shadow the stable and unstable mani-
folds, respectively. For fixed r and θ, an initial condition
can have an ṙ with arbitrarily large magnitude and still
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Figure 5: A projection of the portion of the stable manifold with E = 1.3
onto x-y-px space. Integration has been truncated while the trajectories
are still close to the singularity in order to make the depiction of the
geometry clearer.

Figure 6: A projection of the portion of the stable manifold with E = 1.3
onto x-y-px space. Integration has been truncated much further from the
singularity than in Figure 5.

Figure 7: A schematic of the numerical experiment for examining how
trajectories on either side of the stable manifold to the singularity move
throughout phase space. The red and dark blue trajectories are generated
at an initial radius rce but have θ̇ < 0 and θ̇ > 0, respectively. They
reflect one choice of θ, but a whole family of trajectories for different
values of θ must be generated in order to match + and - pairs along
the detection radius rd . We integrate forwards and backwards and then
match those + and - trajectories whose final position in backwards time
was nearest to each other; in the schematic, the red - trajectory has been
matched with a light blue + trajectory, generated in the same way as
the dark blue trajectory for a different value of θ. We then compare the
pre-encounter, four-dimensional phase space distance dpre with the post-
encounter distance dpost for each matched pair.

lie on the manifolds, and so the stable and unstable man-
ifolds are parameterized by the Hamiltonian energy. The
stable manifold and the unstable manifold with a chosen
fixed energy are diffeomorphic to S 1 × R (a cylinder),
and the full topology of each manifold is diffeomorphic
to S 1 ×R×R (the Cartesian product of a cylinder and the
real line).

Trajectories along the globalized stable and unstable
manifolds are obtained by numerically integrating these
initial conditions backwards and forwards, respectively,
using the procedure described in Subsection 3.4.

The intersections of the manifolds with a fixed energy
surface are straightforward to visualize. Fix HCR3BP = E.
Select a large number of linearly spaced θ, calculate the
corresponding θ̇ at the chosen energy, and integrate. The
resulting two-dimensional surface, which is embedded in
the four-dimensional phase space, can be projected into
three-dimensional space (see Figures 5 and 6).

4.2. Quantifying the consequences of close encounters

We demonstrate using a numerical experiment that trajec-
tories separated by the stable and unstable manifolds to
the singularity undergo phase space divergence. Without
loss of generality, restrict attention to the stable manifolds
of m2 and consider the following construction:

Fitzgerald, Rosengren, and Ross 5
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Figure 8: The + and - trajectories have an essentially constant, very
small initial separation pre-encounter, but post-encounter their separa-
tion varies significantly depending on the angle along the detection circle
(in this case, we use θ+pre, the pre-encounter angle of each + trajectory,
as the angle for identifying and sorting matched pairs of + and - trajec-
tories).

1. Define two circles in position space centered at m2: a
close encounter radius rce which is very small, and a
detection radius rd which is very large (at minimum,
greater than the Hill radius).

2. Generate initial conditions corresponding to trajec-
tories which have their closest approaches to the sin-
gularity at r = rce. As discussed in Subsection 4.1,
trajectories with initial conditions (rce, θ,−ṙ, 0) for
ṙ ≫ 1 and θ ∈ S 1 lie on the stable manifold to the
singularity. The set of trajectories which have their
closest encounters to the singularity at rce have per-
pendicular velocity vectors. This requirement trans-
lates to the initial conditions (rce, θ, 0, θ̇±) for θ̇+ ≫ 0,
θ̇− ≪ 0, and θ ∈ S 1. Notice that at each fixed θ and
E there are two choices of θ̇, which we designate θ̇+
and θ̇−, satisfying the construction. Distinguish close
encounter trajectories of the forms (rce, θ, 0, θ̇+) and
(rce, θ, 0, θ̇−) by the terms + trajectories and - trajec-
tories, respectively.

3. Fix E and select a large number of linearly spaced θ,
calculate their corresponding + trajectories and - tra-
jectories, and then integrate forwards and backwards
using the procedure described in Subsection 3.4 until
the trajectory intersects rd.

4. Match each - trajectory with the + trajectory whose
backward-time intersection point with the rd circle is
closest to that of the - trajectory. This + trajectory
will not generally be the + trajectory that was gen-
erated alongside the - trajectory under consideration.
The + and - trajectories in the matched pair will en-
counter the singularity from different sides and there-
fore lie on either side of the stable manifold.

5. Once each matched pair of + and - trajectories has
been determined, calculate the phase space distance

dpre between their backward-time intersection points
with rd and the phase space distance dpost between
their forward-time intersection points with rd.

Plotting dpre and dpost as functions of the post-
encounter angle of each + trajectory, we discover that al-
though the trajectories lying on either side of the stable
manifold start out extremely close together, they diverge
markedly post-encounter (see 8). The extent of this diver-
gence depends on the close encounter angle.

In addition, the two-body orbital elements of the
matched pairs of + and - trajectories with respect to m1
can be calculated for the forward-time and backward-time
intersections with the detection circle. We can then plot
these orbital elements, such as the Keplerian energy E
and the argument of perigee ω, as a function of the pre-
encounter angle of each + trajectory (see Figure 9).

4.3. Close encounters and patched conics

The close encounter behavior described in the previous
subsection converges to that predicted by patched conics
as rce → 0 and rd → 0. As a numerical experiment to
verify and explore this statement, we use the Keplerian
equations with respect to m2 to find orbital elements for
the initial conditions generated according to the scheme
in Figure 7. For varying choices of rd and rce, we build
initial conditions and compute the Keplerian energies and
argument of perigee values at the points where each tra-
jectory intersects the rd circle.

Suppose rce and rd are sufficiently small. We take rce =
RX
180 and rd = rh, where rh is the Hill radius. For these
parameters, the orbital elements propagated via patched
conics and the orbital elements calculated in the full three-
body regime closely agree (see Figure 10).

Increase rce and fix rd so that rce =
RX
10 and rd = rh.

Then we notice, by comparison with Figure 10, that the
+ and - trajectory values converge to the patched conics
values as rce → 0 (see Figure 11). The Keplerian energies
and arguments of perigee of + and - trajectories generated
along the detection circle at the same θ and then propa-
gated with patched conics are in fact identical.

What if we instead increase rd and fix rce so that rce =
RX
180 and rd = 7rh? Then we notice, by comparison with
Figure 10, that the patched conics curve matches phase
and shape with the + and - trajectory values as rd → 0
(see Figure 12).

Computing the maximum distance between the relevant
curves permits quantifying the error between the patched
conics and CR3BP cases. By holding one radius constant
and continuously varying the other, visualizing how the
error converges to zero as the radii decrease is straightfor-

ward. Vary rd and set rce =
RX
180 . We let rd = nrh, n > 0.
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- -0.5 0 0.5

-1

-0.5

0

0.5

1

-5 0 5

-6

-4

-2

0

2

4

- -0.5 0 0.5

-

-0.5

0

0.5

-5 0 5

-1

0

1

2

3

4

Figure 9: For all computations in this figure, trajectories were generated such that rd ≈ 0.4774 and rce = 0.1RX, where RX is the radius of Jupiter in
non-dimensionalized units. (a) A comparison of the Keplerian energies of the + and - trajectories as a function of the pre-encounter angle θ+pre. E±pre
denotes the pre-encounter Keplerian energies of the + and - trajectories, which approximately coincide. E+post and E−post denote the post-encounter
Keplerian energies of the + and - trajectories, respectively. The energy values of an example pair of matched + and - trajectories are highlighted.
The + trajectory has negative Keplerian energy after the encounter, which predicts that it will be a bound elliptical orbit around m1; the - trajectory
has positive Keplerian energy after the encounter, which predicts that it will be an unbound hyperbolic orbit. (b) The highlighted pair of + and -
trajectories integrated in the rotating frame, demonstrating the predicted divergence in their post-encounter fates. (c) A comparison of the argument
of periapse values of the + and - trajectories as a function of the pre-encounter angle θ+pre. ω±pre denotes the pre-encounter argument of perigee
values of the + and - trajectories, which approximately coincide. ω+post and ω−post denote the post-encounter argument of perigee values of the + and
- trajectories, respectively. The values of the example trajectories are highlighted. (d) The highlighted pair of + and - trajectories integrated in the
inertial frame.

Calculating the errors in the Keplerian energy and argu-
ment of perigee over a range of n results in the behavior
seen in Figure 13, in which the error decreases with n.

5. Numerically Linking the Arches of Chaos
and the Stable and Unstable Manifolds

It is straightforward to demonstrate the geometric link-
age between trajectories lying along the arches of chaos
and the stable and unstable manifolds to the singularities.
By globalizing the stable manifold to the m2 singularity
backwards until it reaches the section used to create the
arches of chaos (see Subsection 2.2.1 for a specification
of this section), we can determine whether the intersec-
tion of the stable manifold with this surface replicates the
arch pattern in Figure 1. Previous work suggested that
the connection holds in the other direction: all trajectories
that have initial conditions on the section and that belong
to the arch structure have close encounters with Jupiter
(Todorović et al., 2020).

In order to generate initial conditions along the stable
manifold, we use the approach described in Subsection
4.1 for a cylindrical grid of θ and E values. We then in-
tegrate backwards until we reach the surface of section or
until the trajectory meets one of several failure criteria,

namely escaping from the vicinities of m1 and m2, collid-
ing with m1, or running out of integration time.

Only a very small percentage of the trajectories form-
ing the stable manifold reach the surface of section, but
those that do reach the section form a pattern that coin-
cides with the arches of chaos (see 14). Thus, the connec-
tion between the arches of chaos and the stable manifold
to the m2 singularity is visually apparent.

6. Discussion and Conclusion

We demonstrate, using the Levi-Civita regularization as
a numerical tool, that the arches of chaos can be iden-
tified with the stable and unstable manifolds emanating
from the singularities in the circular restricted three-body
problem. Trajectories whose initial conditions lie near ei-
ther side of the manifolds experience dramatic amounts of
phase space stretching, and this implication is consistent
with the construction of the original FLI plots. Plotting
the orbital elements of these trajectories before and after
close encounters demonstrates how the manifolds affect
capture/escape behavior and how the manifolds connect
to patched conics flyby theory. The numerical linkage
between the arches of chaos and the stable and unstable
manifolds to the singularity is uncovered by globalizing
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Figure 10: A comparison of selected orbital elements of the families of
+ and - trajectories integrated in the full PCR3BP equations with orbital
elements ascertained through patched conics propagation. Both rd and
rce are small enough that close agreement is seen with the Keplerian
case.
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Figure 11: Similar to Figure 10, but rce has been increased.
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Figure 12: Similar to Figure 10, but rd has been increased.
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Figure 13: A comparison of the maximum errors between the three-
body and patched conics orbital element curves. n = rd/rh. The error
is computed with respect to the corresponding patched conics curve: for
example, Epre for E±pre and Epost for E±post . (a) The Keplerian energy
errors. (b) The argument of perigee errors.

the manifolds to the proper section.
As an explanation of the nature of the arches of chaos,

we believe that our work represents a significant contribu-
tion to the literature. In addition, it unifies several related
concepts: the arches, the stable and unstable manifolds to
the singularities, the collision manifold, and patched con-
ics flyby theory.

One interesting implication of our work is that the
shape of the arches of chaos is not intrinsic to their func-
tion; rather, it arises from the specific choice of section
with which the manifolds are intersected. The mani-
folds are three-dimensional objects embedded in a four-
dimensional space. The choice of section used by Todor-
ović et al. happens to depict these three-dimensional ob-
jects as a series of one-dimensional ”arches” embedded in
a two-dimensional orbital elements space, but the mani-
folds could be depicted in other ways with equal validity.

Another interesting implication of our work is that Fig-
ure 9 implies a method for designing pairs of high-energy
three-body orbits whose initial conditions lie very close
to each other but whose fates are very dissimilar: one
will be captured by the primary and the other will escape
the system. Using a Keplerian energy plot similar to the
one in the figure, a θ+pre can be selected such that one tra-
jectory has positive Keplerian energy with respect to the
primary after encounter and the other trajectory has neg-
ative Keplerian energy with respect to the primary after
encounter. This technique might facilitate the design of
multi-payload missions in which the primary payload is
destined for interplanetary space and the secondary pay-
load must remain within the Earth-Moon system.

There are several potential topics for further research.
Homoclinic and heteroclinic trajectories that connect Lya-
punov orbits around the Lagrange points are key to under-
standing the global transit structure predicted by the low-
energy manifold dynamics theory (Koon et al., 2022). An-
alyzing heteroclinic and homoclinic connections between
the singularities and other dynamical objects of interest as
in Paez & Guzzo (2020), particularly when perturbations
capable of altering the CR3BP energy are added to the
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Figure 14: The intersection of an approximation of the stable manifold originally consisting of 40,000 trajectories with the arches of chaos section,
viewed in semi-major axis/eccentricity space. Yellow crosses represent stable manifold trajectories, which have been superimposed onto a plot of
the arches of chaos in the Sun-Jupiter-Spacecraft restricted three-body problem adapted from Todorović et al. (2020). The stable manifold closely
shadows the arches even though only a small percentage of the trajectories intercept the section.

system, could facilitate the construction of an all-energy
global transit structure theory. Additionally, although our
work explored the arches of chaos from a purely three-
body perspective, they were also introduced within a so-
lar system model containing all major planets (Todorović
et al., 2020), and recent work has confirmed using Ke-
plerian maps that transfers between different solar sys-
tem planets are possible within the low-energy regime
(Werner, 2022). The possibility of constructing a the-
ory that unifies low-energy interplanetary transfers and
the full, high-energy arches of chaos should be explored
further.
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Todorović, N., Wu, D., & Rosengren, A. J. (2020). The
arches of chaos in the solar system. Science Advances,
6(48), eabd1313.

Topputo, F. (2013). On optimal two-impulse Earth–Moon
transfers in a four-body model. Celestial Mechanics
and Dynamical Astronomy, 117(3), 279–313.

Werner, M. A. (2022). Multiple Gravity Assists for Low
Energy Transport in the Planar Circular Restricted 3-
Body Problem. Ph.D. thesis Virginia Tech.

Wu, W., Liu, Y., Liu, L., Zhou, J., Tang, G., & Chen, Y.
(2012). Pre-loi trajectory maneuvers of the chang e-
2 libration point mission. Science China Information
Sciences, 55(6), 1249–1258.

Zhong, J., & Ross, S. D. (2021). Global invariant mani-
folds delineating transition and escape dynamics in dis-
sipative systems: an application to snap-through buck-
ling. Nonlinear Dynamics, 104, 3109–3137.

Zhong, J., Virgin, L. N., & Ross, S. D. (2017). A
tube dynamics perspective governing stability tran-
sitions: An example based on snap-through buck-
ling. International Journal of Mechanical Sciences, .
URL: http://www.sciencedirect.com/science/
article/pii/S0020740317312596. doi:https://
doi.org/10.1016/j.ijmecsci.2017.10.040.

Fitzgerald, Rosengren, and Ross 10

http://www.sciencedirect.com/science/article/pii/S0020740317312596
http://www.sciencedirect.com/science/article/pii/S0020740317312596
http://dx.doi.org/https://doi.org/10.1016/j.ijmecsci.2017.10.040
http://dx.doi.org/https://doi.org/10.1016/j.ijmecsci.2017.10.040

	Introduction
	Introduction to the Arches of Chaos
	The Fast Lyapunov Indicator
	The Arches of Chaos
	The surface of initial conditions


	The regularization of the  circular restricted three-body problem
	The CR3BP
	The irrelevance of the Lagrange points
	Introduction to the Levi-Civita regularization
	The Levi-Civita regularization and numerical integration

	Preliminary Numerical Experiments  on the Stable and Unstable Manifolds to the Singularity
	Global geometry of the stable and unstable manifolds
	Quantifying the consequences of close encounters
	Close encounters and patched conics

	Numerically Linking the Arches of Chaos  and the Stable and Unstable Manifolds
	Discussion and Conclusion

