
PROBING NON-GENERAL RELATIVITY THEORIES USING DEEP LEARNING 
MODELS 

Siddarth Ajith (author), Kent Yagi (advisor) 
University of Virginia 

Abstract: Gravitational wave parameter estimation is used to extract physical observables such 
as mass from gravitational wave signals. However, the conventional method is extremely time 
and resource intensive. This process can take up to a week to run for a single event, which will 
be computationally prohibitive as detection capabilities improve and scale. Recent work has put 
deep learning to use on this problem; neural networks can be trained in a fraction of that time, 
and they can be used to analyze the data virtually instantly. These models work for general 
relativity, and it is crucial to extend them to estimate beyond-general-relativity parameters in 
order to test a larger space of theories. Such theories can explain modern problems like dark 
energy and quantum gravity, and this neural network can be used to test gravitational theories 
efficiently. We found that our original models have some features that restrict the generality and 
accuracy of the resulting estimations. Following recent work, we are implementing 
autoregressive network flows which will improve and extend the results to be more general. We 
are currently tuning the model to improve the loss and accuracy, which is critical in making it a 
useful tool in analyzing future detections. 

Introduction 
 Einstein’s theory of general relativity 
(GR) is the most successful theory of gravity to 
date, having replaced Newton’s theory of 
gravitation due to GR appropriately explaining 
the bending of light around the sun and the 
orbit of Mercury. Since these initial tests of 
GR, our ability to test gravitational theories has 
expanded, most importantly through the advent 
of gravitational wave GW astronomy6. 
Gravitational waves (GWs) are ripples in 
spacetime sourced by the mergers of extreme 
compact objects such as neutron stars and black 
holes. The spacetime around these mergers 
constitutes an important test bed for gravity; 
this is a region where the gravitational field is 
extremely strong and dynamical (fluctuating 
strongly with time). In the past eight years, the 
LIGO/VIRGO collaboration has detected 
nearly 100 gravitational waves, and GR has 
passed all tests put to it with flying colors. 
More interesting tests lay in the horizon with 
the NASA and ESA collaboration on the LISA 

mission. Next-generation detectors will open an 
even wider range of GW detection capabilities. 
Still, there are reasons to believe our 
understanding of gravitation is not final. 
 Modern physics mysteries such as the 
expansion of the universe, measurement of 
galactic rotation curves, and unexpected 
gravitational lensing requires the introduction 
of new matter and energy sources, the so-called 
dark energy and dark matter. Thus, the way that 
gravity works at the largest scales is rich with 
the possibility of new physics. Additionally, we 
are still learning new things in the strong-
gravity regime, such as the spacetime around a 
black hole. We know GR breaks down as we 
approach the spacetime singularity, so there is 
yet another case where beyond-GR theories 
may prove to be useful. Finally, cosmological 
solutions predict a singularity which could 
indicate the need for a more advanced theory of 
gravity.  
 Many frameworks and procedures exist 
to test gravitational theories, but a particularly 
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powerful one is the parametrized-post-
Eisnteinian (ppE) formalism5. This formalism 
allows for a generic mapping from beyond-GR 
theory to a set of parameters in the phase of the 
gravitational wave, each of which indicate the 
deviations of beyond-GR theories from general 
relativity. The parameters can be mapped to 
specific gravitational theories, and if one can 
measure these parameters in the signal of the 
GW, one can test en masse many theories of 
gravity. In principle, however, this can be 
computationally expensive or even prohibitive 
since GW parameter analysis is already such 
difficult problem. 
 To extract values of observables from 
the merging binary system which sourced a 
GW, one must do parameter estimation on the 
signal. The conventional method which 
estimates the Bayesian prior distribution using 
Markov Chain Monte Carlo sampling works 
very well, but it is incredibly time and resource 
intensive2. For double neutron star mergers, 
this analysis can take on the order of a week to 
analyze for a single merger event. As we scale 
up to detecting more than one GW event per 
day, this can be an extreme bottleneck in the 
process. Additionally, faster detection can 
inform us where to look for electromagnetic 
counterpart signals, which, if measured, would 
give us multi-messenger signals from which we 
can extract new physics. Multi-messenger 
signals are when we have gravitational and 
electromagnetic signal data from a given type 
of merger event. Thus, improving the efficiency 
of parameter estimation is crucial to improving 
GW astronomy.  
 Recently, machine learning has been put 
to use in order to improve this process1,3,4. A 
type of deep learning network called a 
conditional variational autoencoder network 
has been used to mimic the calculation of the 
prior distribution that the conventional methods 
find. This type of network has seen much use in 

image analysis, and the fruits of such work 
have become quite popular with AI generated 
art. CVAEs do parameter estimation by training 
the network to minimize the difference between 
the its output and the true Bayesian prior that 
encodes the physical parameters to be extracted 
from the signal. By training the network on 
simulated gravitational wave signals, the 
machine learning algorithm has been shown to 
give similar results to MCMC sampling3. 
However, the networks take on the order of 
days to train, and the networks run almost 
instantly. Thus, we have orders of magnitude 
speedup in computational time per event. There 
is much work to be done still. Relying on 
machine learning should come only after we 
know the results are accurate and reliable. 
Furthermore, the networks can be improved 
and extended to include ppE parameters, which 
can allow for efficient tests of GR. 
 The rest of the paper is organized as 
follows. We outline the ppE formalism, discuss 
the conditional variational auto encoder 
network, briefly discuss masked autoregressive 
flows, and finally give a description of the 
current status of the project. Then we 
summarize in a conclusion. 

Parameterized-Post-Einsteinian Formalism 
 When doing the parameter analysis to 
match a GW signal to specific observable 
values, the theory that is being assumed will 
change the results. To create a more theory-
agnostic framework, ppE formalism was 
developed5. To start, note that the signal of the 
gravitational wave can be split into its 
amplitude and phase, denoted by , 
respectively. The waveform of the GW, denoted 
as , can be expanded as  

,(1) 
Where  encapsulate the deviations 
from general relativity. In general, differences  

A and Ψ

h
h = A(t)eiΨ = [AGR(t) + δA(t)]ei[ΨGR+δΨ]

δA and δ Ψ
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in the phase contribute more, so we shall focus 
on this term mainly.  
 The phase of the gravitational wave can 
be further parametrized by splitting the 
deviations in a sensible manner. A sensible 
splitting turns out to be a series expansion in 
the merging binary’s orbital velocity (denoted 

), giving a splitting that looks like 
. 

In principle, there are infinite terms in this 
series, but for a feature being tested, only a few 
parameters may be of interest. Previous 
analysis has been done where one parameter at 
a time is tested, but ideally we want a method 
to test as many parameters so that all analysis is 
done free of theory-bias. These  parameters 
are precisely the terms we are looking to 
include in the network. 

Deep Learning Methods 
Conditional Variational Autoencoder Neural 
Networks 
 Briefly, we shall lay out what the 
computational challenge is that we set out to 
solve. The problem of extracting observable 
values from the data begins with having a 
model vs. the data. From this model and data, 
one should have a list of extracted parameters, 
which are observables, usually the masses of 
the black hole, the distance to the GW event 
from earth, and the time the black holes collide.  
In reality there are more parameters such as the 
spin of black holes, but we consider these 
initially to start our model. This naturally turns 
into a Baye’s theorem problem, where we 
denote  to be our observable values and  to be 
the signal data1. The signal is comprised of the 
waveform model  and noise . The model can 
be put into what is called a latent space with 
variables denoted with . This latent space 
essentially encodes aspects of the model. When 
 is present, this is where an explicit model is at 

play. The parameters given a signal is then the 
same as the parameters given the latent space 
and signal and the latent space formed given a 
signal. This is precisely the integral 

, 

where in the integral there are two Gaussian 
distributions that get mixed into the final 
distribution that is more general in structure3. 
This is equivalent to  

, 
which more explicitly looks like a Baye’s 
theorem problem.  turns out to be a 
computationally intensive step, so this is a good 
place to try to approximate using deep learning. 
The goal here is to construct  using a 
deep learning model. This is accomplished by 
making a network to represent all three of the 
expressions on the RHS of Eq. (). Since we 
have reduced the problem to a system of 
networks, let us explicitly define the networks 
to be given by  

, 

where the  parts are known as encodes 
and  are the decoder3. This is where the 
neural network gets its name, conditional 
variational autoencoder (CVAE). The network 
is trained using two measures, the loss (denoted 

) and the Kullback-Leiber ( ) divergence, . 
The loss measures how well the decoder gives 
the distribution of parameters, controlled by 

. The KL divergence measures how 
closely both of the encoders’ outputs are. The 
idea is that at first   may not account for 
the true parameters, , very well, but as the 
network trains, the KL divergence will make 
sure this encoder outputs a latent space that will 
accurately capture features correlated to good 
guesses for the parameters given a random 
signal.  is a more “biased” encoder 
that accounts for both the parameters and the 

u
δ Ψ = Σj βju j

βj

θ s

h n

z

z

p(θ |s) = ∫ dz p(θ |z, s)p(z |s)

p(θ |s) = p(θ |z, s)p(z |s)/p(z |θ, s)

p(z |θ, s)

p(θ |s)

p(θ |s) ≈
pD(θ |z, s)pE(z |s)

q(z |θ, s)
= pNN(θ |s)

{pE, q}
pD

L KL

pD(θ |z, s)

pE(z |s)
θ

q(z |θ, s)
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signal. Finally, the decoder  is 
training to take in a latent space and signal and 
give a parameter estimation. How accurate this 
guess is determines the loss, which in turn 
tunes up the decoder. The neural network thus 
gives an approximation of the distribution we 
wanted, , can be tested for how well it 
replicates the true posterior distribution using 
cross-entropy  

. 

It can be shown that this is equivalent to an 
expression explicitly in terms of the loss and 
KL divergence, given by 

, 

where the N denotes the number of times the 
network is run in batches to train and j indexes 
a sum over all of these runs3. 
 To make this set up less nebulous, let us 
see how the network is put together and 
interacts. The figures below show a schematic 
drawing of the CVAE3. The network 
architecture varies whether we test or train it.  

 On the left, we have the training 
architecture while on the right, we have the 
test. When training, the “biased” encoder on the 
left helps the right encoder train by minimizing 
the KL divergence. This will train the right 
encoder how to handle signals without input as 
to what the correct value  is. The decoder is 
trained by being given input from a sample of 
the latent space denoted  and the signal . This 
allows the network to encode the modeling 
aspect of parameter estimation into the latent 
space created by a multivariate Gaussian of 
means  and standard deviations . Note these 
are a vector of means and deviations, and they 
have a dimension equal to whatever the creator 
of the network deems fit. Often the power of 
these networks is the ability to create a latent 
space smaller than the number of parameters 
the network is trying to estimate. This means it 
can condense information into a small profile 
based on features the network finds to be 
important, and from the latent space and a 
signal, the decoder can make predictions. If the 
network is trained properly, the right encoder  
( ) will get better at making a latent space that 
best matches signals to true parameters without 
ever “seeing” what the true values were. The 
decoder is trained to take a sample of such 
latent space and create accurate parameter 
estimates. Thus the testing procedure is done 
using just ;  takes in a signal and 
encodes the signal into a latent space of 
Gaussians, parametrized by means and 
standard deviations . The decoder then takes 
in the signal and the latent space and guesses 
the parameters, outputting guess  with 
distributions of means  and standard 
deviations 3. 
 Note there are a few subtleties to watch 
out for. One common example is overfitting  
which in this case can lead to “posterior 
collapse” where the encoders are too similar in 

pD(θ |z, s)

pNN(θ |s)

H = ∫ dxp(θ |s)log pNN(θ |s)

H ≲
1
N

Σj {Lj(pD) + KLj(q, pE)}

θ

z s

μ σ

pE

{pE, pD} pE

μD
σD

θp
μD

σD
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guesses. This will likely lead to inaccurate 
guesses since the encoders should hold some 
generality and should make guesses different 
from the exact examples it has already seen4. 
This is why it is important that the encoders are 
separate; part of the power of this methodology 
comes from the second encoder being 
somewhat blind to the true values, allowing its 
predictive power to be more generic. 
 Previous work has put this kind of 
CVAE network to use in GW parameter 

estimation3. We aimed to replicate this result 
and then extend the network. To do so, we 
made our own training data, which requires 
generating simulated noise and simulated 
waveforms. These are shown below: 

These are then combined to get the full 
simulated signal (waveform+noise=signal). 

The above figure with orange is from Green, et 
al. and illustrates a fit waveform in a signal4. To 
improve the model, one could use more 
realistic noise realizations like real LIGO/ 
VIRGO noise values. 
 Below I show an output of the neural 
network.  

The parameter estimates are denoted by epoch, 
where contours denote confidence intervals and 
higher epochs narrows the uncertainty range of 
the estimates. We can see by almost 500 epochs 
we get fairly accurate results, and the network 
takes about 1-2 days to train. One thing to 
notice however, is that the predictions are very 
Gaussian in shape. 
 To get a more general shapes (less 
Gaussian), more advanced techniques may be 
applied. The mentioned previous work has 
gotten CVAE alone to get quite amazing 
results, but a straightforward way to improve 
the generic features that can be captured is by 
combining CVAE with other techniques like 
masked autoregressive flow, a type of 
normalizing flow3,4. 
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Masked Autoregressive Flow and Current 
Status 
 B r o a d l y s p e a k i n g , m a s k e d 
autoregressive flow (MAF) networks were 
made to make encoder networks more flexible/ 
versatile4. The math behind this method is a bit 
slick, where the chain rule and properties of 
Gaussian distrbutions are used in conjunction, 
but we paint a more qualitative picture of how 
the technique is used. This addition of masked 
layers to make MAF is based on the work of 
Green et al. To build a masked layer, one starts 
with a single masked autoencoder layer (a fully 
connected network with specific layers then 
disconnected). This is a network with very 
specific geometry, but a single layer will be 
somewhat Gaussian. As you add layers, you get 
much more complex distribution geometry, and 
as you build the MAF network, the non-
Gaussian nature emerges from stacking more 
and more layers4. However, too many of these 
layers may require you to add a normalization 
layer to make the distribution easier to sample. 
Essentially, the latent space of the above CVAE 
network can have MAF layers added to it 
before the decoder. The exact configuration is 
largely up to the programmer making the 
network, but some combination of MAF and 
normalization layers will mix up the latent 
space and make the CVAE network more 
versatile. These non-Gaussian filters allow 
more generic features to be captured by the 
network.  
 Currently, the model we have has some 
MAF layers incorporated after the latent layer, 
and an example output parameter estimation is 
included in the next page. We can thus see that 
more parameters can be estimated here, and the 
distributions as a whole are more flexible in 
their parameter estimations rather than always 
clumping into normal distributions. The 
literature uses p-p plots to compare the 
accuracy of these networks. The idea of this 

kind of analysis is to compare two cumulative 
probability distributions, and the closer the 
distributions are, the closer the lines are to 
being at 45 degrees, along the central line3,4. 
The p-p plot from the above parameter 
estimation is given on the following page. We 
note that the accuracy is not sufficient to 
compete with the conventional methods yet, but 
it is a good starting step. To improve this 
network output, we need to tune many aspects 
of the model. This includes layer size, MAF 
layers and normalization layers, and the hyper 
parameters (values controlling how the network 
is interconnected). This process can be tricky, 
and it takes a lot of trial and error to see what 
improves the model.  
 We have thus far excluded ppE 
parameters from this iteration until we can 
improve the accuracy of this revision. Once this 
gets smoothed over, we will go back to 
extending the parameter space so that our 
network will help with tests of GR. As  
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upgrades to the network are made, it is often 
necessary to reduce the parameter space until a 
working model is constructed. The tuning will 
likely be guided by what changes will make the 
loss function more closely match previous 
work, and afterwards we need to study what 
will tune the accuracy to be higher (i.e. make 
the p-p plot lines converge towards the central 
line). 

Conclusion 
 Deep learning has proven to be a useful 
and powerful asset to GW astronomy. New uses 
are constantly being found, and GW data 
analysis is an especially fruitful use case for 
deep learning1,3,4. CVAE networks in 
conjunction with other recent network 
architectures are quickly becoming popular 
topics of investigation, and the promised 
speedup makes the endeavor worthwhile. 
 Through our investigations, we started 
with CVAE networks to do our parameter 
estimation, but when testing the network, we 
found that new methods could greatly help the 
flexibility of our network. The largest area of 
improvement when it comes to the flexibility of 
our network is being able to capture features 
that deviate from non-Gaussian distributions. In 

general, GW parameter estimation needs to 
produce fairly versatile posteriors. Adding  
MAF layers to the latent layer of our encoder 
has helped this issue, but we must improve the 
accuracy of this new iteration. Refining these 
networks will require further tuning, but once 
this is done we can keep adding parameters for 
the network to estimate. The goal is to 
incorporate as many features as possible, but, 
due to the stochastic nature of this work, any 
c h a n g e s c a n l e a d t o u n p r e d i c t a b l e 
complications. A complete network that 
includes ppE parameters will be powerful in 
efficiently testing gravitational theories, and 
such tools are crucial to fully realizing the 
possibilities that future detectors like LISA will 
afford us. 
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