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Abstract—The Mu2e experiment at Fermilab is searching for the direct neutrinoless conversion of a muon
to an electron. The experiment requires an extremely efficient Cosmic Ray Veto to detect cosmic muons and
ignore electrons produced by them that can be confused with real direct conversions. We found that using a
deep neural network improved upon the current Cosmic Ray Veto algorithm in terms of both the induced
cosmic-ray background and the deadtime, yielding much promise for future exploration.
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I. THE MU2E EXPERIMENT

Although the Standard Model of particle
physics is well-tested in many areas, it appears
to be incomplete. Even though Charged Lepton
Flavor Violation (CLFV) (a transition between
taus, muons, and electrons that does not con-
serve lepton family number) is not explicitly
forbidden in the Standard Model of particle
physics, it is greatly suppressed. Beyond the
Standard Model, there exist predictions for
observable CLFV rates, and searches of inci-
dences of this have greatly increased in the past
few years.1

One example of CLFV is the neutrinoless
conversion of a muon to an electron within
the Coulomb field of a nucleus. The Mu2e
experiment, expected to start in 2025, will be
looking for evidence of such a conversion. The
experiment is a multinational project consistent

of multiple labs and universities, mounted at
the Fermi National Accelerator Laboratory near
Chicago.1

To search for the direct neutrinoless conver-
sion of a muon to an electron, a proton pulse
hits a production target every 1.7 µs, where it
will produce a beam of low-energy negatively
charged muons which will be transported to
and stopped at a series of thin foils known as
the stopping target by the transport solenoid,
which selects the particle’s momentum and
avoids a direct line of sight from production
to the stopping target. At the stopping target,
the individual muons will be captured in atomic
orbits. The produced conversion electron’s mo-
mentum, energy, and a variety of other at-
tributes will be recorded by the tracker and
calorimeter.2 The apparatus is pictured in Fig.
1, and the production of a conversion electron



from a muon hitting the stopping target in Fig.
2.

The signal window for conversion is ap-
proximately 1000 ns, with 700 ns to the next
proton pulse. Within this time window, if the
muon converts to an electron without emitting
a neutrino, and the experiment detects it, then
a direct muon-to-electron conversion has been
found.

II. THE COSMIC RAY VETO

The occurrence of a neutrinoless conversion
of a muon to an electron is extremely rare, if
it occurs at all. A large barrier to achieving
the desired sensitivity is the cosmic-ray back-
ground, induced by cosmic-ray muons. Each
minute, approximately one cosmic-ray muon
hits the Earth’s surface per square centime-
ter. These muons are expected to produce, on
average, one event a day (in this case, event
means an electron that has the same character-
istics as a real conversion electron) that cannot
be distinguished from a successful conversion
electron.3

The rate of such an occurrence has to be
reduced by a factor of 10,000 in order to reduce
the background to less than one event.3 The
solution to this problem is to surround the
Mu2e detection apparatus with a detector that
identifies cosmic-ray muons and rejects, or “ve-
toes”, time windows around cosmic-ray muons
that produce conversion-like backgrounds dur-
ing the offline analysis.

The Cosmic Ray Veto (CRV), displayed in
Fig. 3, consists of four layers of extruded
polystyrene scintillators (a material that “scin-
tillates”, or emits light, when excited by ioniz-
ing radiation) counters with embedded wave-
length shifting fibers, read out with Silicon
Photomultiplier (SiPM) photodetectors.3 These
counters range from 900 to 6600 mm long, and
have a cross section of 50 × 20 mm2.3 These
detectors sense when charged particles enter
the CRV, and will be used to detect muons and
veto the events associated.

An track stub consists of at least three ad-
jacent strips of the CRV with signals over a

certain threshold within a 5 ns time window,
signifying a real track localized in both space
and time. These tracks are reconstructed using
an algorithm developed by Dr. Ralf Ehrlich.
Once a track stub is recorded within the CRV,
the CRV reconstructs various numeric variables
for the track stub using the algorithm by Dr.
Ehrlich (such as position, light yield, and time),
and the tracker itself also records variables
pertaining to the interaction of the conversion
electron, (such as the momentum, track quality,
and the time recorded). Note that particles can
enter the tracker without hitting the CRV and
still be considered electron events.

Given a good track stub, a 200ns time win-
dow around the respective event recorded by
the tracker will be vetoed during offline anal-
ysis to prevent consideration of any possible
electrons produced by a cosmic-ray muon.

III. STUDY GOALS/STRATEGY

The CRV currently employs a “time win-
dow cut” to veto potential conversion electrons
produced by cosmic-ray muons. All electron
events outside this time window are classified
as possible conversion electron (CE) events,
and all those within the window are classified
as background. Currently, the CRV has a very
high efficiency rate in identifying cosmic-ray
muons.

However, the CRV produces false track stubs
from random coincidences due to the beam-
induced background in the scintillator counters
at high beam intensities. Deadtime, or the frac-
tion of the time that the CRV spends vetoing
events, maxes out at approximately 50% at
the highest expected beam intensity with the
current algorithm. Such behavior is not ideal,
as the greater the deadtime the greater the
running time of the experiment to achieve a
given sensitivity.

The aging of the CRV will also reduce
the capability of the CRV to suppress the
background of cosmic-ray muons, as the light
yields of the SIPMs decrease over time in the
scintillator counters. A new algorithm that is
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Fig. 1: The Mu2e apparatus, with the proton beam, transport solenoid, and detector solenoid separated and pictured.
To prevent magnetic bottles which trap muons, the magnetic field of the solenoids is graded (hence the magnetic
field strengths in Teslas in the figure).2

Fig. 2: Left: An event produced by a cosmic ray muon that knocks out a conversion-like electron in the Detector
Solenoid. Right: A cosmic-ray neutron is incident from the upper right and interacts in the apparatus to produce
an upstream-going electron. This electron reverses direction in the Detector Solenoid magnetic mirror and passes
again through the tracker. This event is not vetoed by the CRV, because the neutron is a neutral particle, but can
be vetoed by the tracker.

Fig. 3: A drawing of what the CRV will look like, along
with its coordinate axes, with a human shown for scale
below the CRV-U in white.

both able to decrease the deadtime and reduce
reliance on the light yield of the CRV is being
investigated from many angles. Even though
the current CRV veto algorithm is quite good

Fig. 4: The deadtime produced by the CRV vs the beam
intensity. Beam intensity is relative to the nominal value
of 3.9× 107 protons per pulse.

at correctly identifying cosmic-ray muons, it
is quite crude. It is the goal of this study to
make a more sophisticated veto algorithm using
the current algorithm developed by Dr. Ralf
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Ehrlich supplemented by a deep neural network
at the last step instead of the time window cut
that is used currently .

IV. SIMULATED DATASETS

Data were generated using GEANT4 (GE-
ometry And Tracking Iteration 4), a tool for
modeling the passage of elementary particles
through matter.4 The software for Mu2e in-
stantiates a solid model of the Mu2e appa-
ratus within the GEANT4 framework.5 Three
different data sets were generated by Dr. Yuri
Oksuzian, a scientist at Argonne National Lab-
oratory. The CE/noise dataset was produced
by simulating conversion electrons, overlaid
with noise produced by the Mu2e beam, which
consists of neutrons and gammas. Overall, this
dataset represented events that should not be
vetoed, lest they contribute to the deadtime.

The CRY3 (Cosmic Ray Shower Genera-
tor) dataset corresponds to cosmic-ray muons
that produced an electron-like track that was
successfully reconstructed in the tracker. The
CRY4 dataset was produced in nearly exactly
the same way as the CRY3 dataset, but with
a slightly updated generation algorithm with
greater statistics, along with an updated shield-
ing geometry. The sample also contained sam-
ples at differing light yields, in order for the
algorithm to be tested on multiple light yields.
The CRY3 and CRY4 samples represent events
that should be vetoed, lest they contribute to the
cosmic-ray induced background.

V. IMPORTANT DEFINITIONS

The following section serves to define terms
used for the rest of the paper.

A. Cut Terminology

There were a variety of cuts used in the study
as well. These cuts, based off of the attributes
of particles that enter the tracker, have been
optimized over the course of multiple Mu2e
studies to both help suppress cosmic-ray muons

Cut CRY3 CE/Noise CRY4
No Cut 1,842,456 2,385,473 15,157,304

Loose Box Cuts 220,918 1,814,739 2,059,156
Box Cuts 133,307 1,806,498 1,280,300

Loose Cuts 75,175 1,579,431 786,184
Extended Momentum Cut 11,577 1,457,507 130,903
Physical Momentum Cut 847 893,575 9,863

TABLE I: A table of how many events remain for the
three datasets after the given cuts defined. Each cut is
more restrictive than the last going from top to bottom,
as they all build off of each other.

alongside other backgrounds, and to separate
noise from real conversion electrons.

The different cut sets are utilized for differ-
ent purposes the stricter they are, and both the
stricter and looser cuts were used throughout
the study. In order of strictness, the cuts were
as following: Loose Box Cuts, Box Cuts, Loose
Cuts, Extended Momentum Cut, Physical Mo-
mentum Cut. The number of events remaining
for each dataset after each type of cut is de-
tailed in Table 1.

CRV Time Window Cut
The CRV Time Window Cut is applied after

either of the Kinematical Cuts (for the actual
experiment it would be the Physical Momen-
tum Cut, but for this study it could be either of
the cuts, depending on how good the statistics
are). It is a 200 ns window determined by
the time recorded in the CRV and the time
recorded in the tracker. The window for the
cut is −50 < ∆T = TTracker − TCRV < 150ns.
The current Mu2e veto algorithm finds track
stubs in the CRV using an algorithm developed
by Dr. Ralf Ehrlich, then uses the CRV Time
Window Cut Veto, where CE-like events in the
tracker that pass the CRV Time Window Cut
are assumed to be cosmic-ray induced.

B. Deadtime
The deadtime of the experiment is the frac-

tion of data removed by the action of CRV
Veto. Part of the deadtime comes from the ve-
toing of cosmic-ray muons, whereas the other
portion comes from false coincidences in the
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CRV induced by neutrons and gammas from
the exposed beam, which dominates. Real con-
version electron events that the experiment is
looking for may be vetoed if they look similar
to a cosmic-ray muon. Similarly, the deadtime
that was viewed for this study was the “harm-
ful” deadtime, or the time spent vetoing false
coincidences. Due to this, every reference to
“deadtime” in this study refers to the deadtime
induced by conversion electrons and noise.

This value must be minimized, as the greater
the deadtime, the longer the experiment’s an-
ticipated runtime for a given sensitivity. Since
the CRV vetoes the entire 200 ns window
surrounding an event that it believes to be a
cosmic muon, a deadtime of, for example, 50%
would correspond to a 100% increase in the
time required for the experiment, as the CRV
would be unable to detect anything else during
that window. Decreasing the deadtime of the
experiment would then decrease the anticipated
experimental runtime.

C. Cosmic-Ray Induced Background

The cosmic-ray induced background should
be reduced to well less than one expected event
over the course of the experiment. Cosmic-ray
muons that pass through the CRV can produce
a background in the form of a cosmic-ray
induced electron. Due to the simulated nature
of the data produced, the number of events had
to be normalized to the expected “livetime”
for one run of the Mu2e experiment, since the
overall background over a run is heavily de-
pendent on the livetime of the experiment. Run
One of Mu2e’s livetime is equal to 3.46× 106

seconds.
The simulated livetime for the low energy

muons was 1.36× 108 + 5.09× 107 = 1.869×
108 seconds (the livetime was divided into
two portions because the low energy muons
were simulated in two different batches). The
simulated livetime for the high energy muons
was 3.64× 106 seconds. The expected cosmic
background, and its uncertainty, over the course
of one run of the experiment is below:

deadtime = 1− IdentifiedCE

Total PossibleCE
, (1)

∆deadtime =

√
IdentifiedCE

Total PossibleCE
, (2)

bkg =
# cosmic events not vetoed

livetimesample
× livetime,

(3)

∆bkg =

√
# cosmics not vetoed

livetimesample
× livetime

(4)

VI. BUILDING THE MODEL

The Machine Learning model was built using
the Keras6 sequential programming interface
for deep neural networks, which is a package
for Python, the programming language used.
This package allows for easily customizeable
deep neural networks to be built and used.
NumPy and Pandas, packages for data manage-
ment and manipulation were also used through-
out the study. The variables selected to be input
into the model, referenced in Table 2, were at
the recommendation of Dr. Yuri Oksuzian.

A. The Existence of Two Models
There are two types of events within all of

the simulated data: events that produce hits in
the CRV, and those that do not. Events that do
not produce hits do not have CRV variables,
but are still recorded by the tracker, and thus
still have the variables from the tracker.

At the beginning of the study, there was only
one model - no matter the type of event. How-
ever, the existence of CRV variables correlated
with whether an event was a CE/Noise event
or a cosmic muon, diluting the actual correla-
tions of the variable within the dataset. This
phenomenon ended up producing suboptimal
results, and so a change was necessary.

Every dataset was then split in two, known
as the “noCRV” and “CRV” datasets, with their
corresponding models named the same. The
“noCRV” dataset is that without CRV vari-
ables, and the “CRV” dataset is the one with
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CRV Model Variables noCRV Model Variables
Downstream number of hits Downstream number of hits

Particle ID Particle ID
Track quality Track quality

Starting z-value of track Starting z-value of track
Distance from z-axis Distance from z-axis

Recorded CRV z position N/A
Recorded CRV ∆T N/A

PE Yield of primary scintillators N/A

TABLE II: A table of variables used for the models.
The CRV model used 3 more variables than the noCRV
model.

CRV variables. Fig. 5 shows the two datasets
and their correlations. An event without CRV
variables, for example, could be an electron
produced by a muon that went through the TS-
Hole, depicted in Fig. 3, as the CRV does not
cover there.

B. Final Model Structure
The model structure that was chosen was a

width of 4 times the number of input variables,
with 8 hidden layers (layers that are neither
input nor output layers) no matter the number
of input variables. Inside of the middle 6 hidden
layers there was a dropout rate of 0.2. The first
hidden layer did not have dropout functionality
because it was directly connected to the input
layer, and the last one did not have dropout
because it connected directly to the output. The
batch size chosen was 100 events per batch for
the CRV model, 10 events per batch for the
noCRV model was, as the training sample size
was much smaller for the noCRV sample.

The variables used for each model are de-
tailed in Table 2, and a graphical rendition of
the two models in Fig. 6.

VII. TRAINING THE MODEL

A. The Alpha Metric
Neural networks consist of weight matrices

for every neuron, as a way to actually evaluate
the inputs they are given. These matrices can
be analyzed to provide insight into the model
itself, without needing access to the training
data.7

Fig. 5: Correlations for the CRV (top) and noCRV
(bottom) data, which consists of the mixed CRY3 and
CE/Noise data from Fig. 12.

The α metric is an exponent determined by a
model’s weights such that the spectral density
of the weight matrices, ρ(λ), is approximately
equal to λα for a given layer, where λ is an
eigenvalue of the layer’s weight matrix.

An α value less than 2 corresponds to the
overtraining of a layer. As such, the average α
over the every layer of the model was examined
at the end of every epoch, and if the value of
αavg was less than 2.1, training would stop,
as the model was close to being overtrained.
The analysis of this metric was done using the
“WeightWatcher” package for Python.8

B. Training Procedure
Both the noCRV and CRV models were

trained on the CRY3 cosmic dataset alongside
the training/validation subset of the CE/Noise
sample, as stated before. The optimizer used
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Fig. 6: The models for the CRV(top) and the
noCRV(bottom) models. The red dots represent dropped
out neurons, as a representation of how many neurons
would be dropped out. The input is on the left and
output on the right for each model. Note that the first
and last hidden layer do not have dropout functionality.
The dropout rate for the hidden layers with dropout is
0.2.

was the “adam” optimizer, which is a standard
optimizer from the Keras package, and the
kernel was initialized to a normal distribution.6

VIII. MODEL PREDICTIONS

The testing data, which was separated into
the entire CRY4 dataset and the testing subset
of the CE/Noise dataset, was scaled using the

same values used to normalize the data for each
variable to having a mean of 0 and a standard
deviation of 1. These scalers put the testing data
in the same relative scale, meaning that while
the testing data would not have a mean of 0 and
a standard deviation of 1, the data would be
relative in those metrics to the data the model
was trained on.

All of the predictions from the model are
between 0 and 1, and a cutoff has to then
be defined, where everything greater than the
cutoff is classified as a cosmic, and everything
less than the cutoff classified as a CE.

IX. PREDICTION ANALYSIS

A. The Performance of the Two Models

The true positive rate compared to the false
positive rate of the model is shown in the Re-
ceiver Operating Characteristic (ROC) curves
in Fig. 7. The true positive rate is the rate at
which cosmic-ray muon events are correctly
identified, and the false positive rate is the
rate at which CE/Noise events are identified as
cosmic-ray muon events.

The performance of the noCRV model is sig-
nificantly worse, as none of the variables in the
noCRV model really correlate to cosmic status,
making prediction quite difficult. The role of
the noCRV model was simply to separate at
least some of the cosmic events from the rest,
not necessarily to optimize the separation. The
real classification power came from the CRV
model, where a majority of the cosmic muons
were.

B. Providing a Classification Cutoff

The value of the classification cutoff is the
largest factor in determining whether an event
is a cosmic muon or a CE, as it is the final
determining cut for the ML Veto Algorithm.

The final classification cutoff was crafted
in such a way that the cosmic background
would be minimized. Since the vast majority
of the cosmic-ray muon events are handled
by the CRV model, and a large number of
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Fig. 7: The ROC curves for both models, with the CRV model on the left and the noCRV model in the middle.
The ROC curve for the models combined is on the right.

CE/Noise events are handled by the noCRV
model, the cutoff was established at 0.5 for
the noCRV model. Other cutoff values for the
noCRV model were explored, but it was settled
that a value of 0.5 was the best.

For the CRV model, the cutoff value was
set to match or improve upon the CRV Time
Window Veto in terms of performance with
regards to the cosmic-ray induced background.
The three cutoffs looked at in depth were at val-
ues of 0.001, 0.005, and 0.010. A cutoff greater
than 0.010 resulted in a cosmic background that
was too large.

X. PHYSICAL METRICS

A. Cosmic Background

The ML Veto performs consistently better
than the CRV Time Window Veto at the cutoff
value of 0.001 in terms of both cosmic-ray
induced background and deadtime. For every
light yield except the highest at 17,000, the
other two cutoff values selected does either
better or within one ∆ of the CRV Time Win-
dow Veto, with ∆ being calculated using Eqs.
5 and 10. The cosmic-ray induced background
vs light yield for the three cutoffs alongside the
CRV Time Window Veto are plotted in Fig. 8
below.

One notable trait of the ML Veto is its suc-
cess in regards to low and high energy muons.
The ML Veto often performs worse than the
CRV Veto for high energy muons for the higher

cutoff values at higher light yields, and the ML
Veto performs consistently better than the CRV
Time Window Veto for low energy muons at
that scale. This can be seen in the plots in
Appendix B.

B. Deadtime

The deadtimes for the CRV Time Window
Veto and the ML Veto Cutoff values are de-
tailed below in Fig. 9. In reality, the beam
produced by the production solenoid will have
a set beam intensity, and Fig. 9 displays the
deadtime for the ML Veto Algorithm versus the
beam intensity. The ML Veto has less deadtime
than the CRV Time Window Veto for every
beam intensity except the lowest one. Even for
the lowest beam intensity all the deadtimes are
within each other’s uncertainty bound.

There is a relatively large difference between
the deadtime of the CRV Time Window Veto
and the ML Veto for every cutoff available.
This difference can be explained the by ∆T
distribution for the ML Veto versus the current
CRV Veto. Unlike the CRV Time Window
Veto, the ML Veto lets through a number of
CE events that are inside of the CRV Veto’s
time window while still identifying and vetoing
enough cosmic muons to remain relevant as a
viable veto for the CRV itself, which produces
a much lower deadtime for the ML Veto even
at the strictest cutoff value available.
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Fig. 8: The cosmic-ray induced backgrounds for different light yields. The noCRV model cutoff was kept at 0.5,
with only the CRV cutoff changing.

Fig. 9: The deadtime of the ML Veto and CRV Time Window Veto versus the beam intensity. Beam intensity is
relative to the nominal value of 3.9× 107 protons per pulse.

XI. CONCLUDING THOUGHTS

A. Study Conclusion

This study is an investigation into whether a
deep-neural network could perform better than
the current CRV Time Window Veto. The ML
Veto performs either the same or better than
the CRV Time Window Veto in terms of both
reducing the cosmic-ray muon induced back-
ground and the deadtime. For the strictest cut-
off of 0.001 for the ML Veto, both the cosmic
background and deadtime were improved upon
at every light yield, which is very promising

for the future of using machine learning for
the Mu2e CRV.

B. Further Study

Any model developed needs to be further
tested for robustness and further tested against
other backgrounds, such as the DIO (muons
which Decay In Orbit) background, and other
such backgrounds. Even though the cuts ap-
plied remove a large portion of these back-
grounds, it would still be pertinent to check.
This would be the only way to actually beat
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the CRV Time Window Veto, as the current
veto algorithm is also optimized for these back-
grounds.

Similarly, it would possibly be prudent to see
a machine learning model’s reaction to chang-
ing the reconstruction thresholds: for instance,
changing the threshold for a valid muon track
stub to 2/4 layers hit instead of 3/4, to allow for
a higher efficiency. This could help gain more
cosmic-ray induced CEs, but may also backfire,
so it would be an interesting test to do in the
future.

Currently the performance of the ML Veto,
similar to the CRV Time Window Veto, is very
dependent on the light yield of the sample. This
should be improved upon due to aging concerns
in the CRV. Looking into methods making the
machine learning model more resilient towards
changes in the light yield is a point for further
study.

XII. ACKNOWLEDGEMENTS

This work was done under the supervision
and guidance of Dr. Yuri Oksuzian and Prof.
E. Craig Dukes. Feedback and guidance was
also provided by members of the Mu2e Col-
laboration over the course of the study.

XIII. REFERENCES

1 Fermi National Accelerator Lab-
oratory, “Mu2e for physicists,”
https://mu2e.fnal.gov/public/index.shtml,
2021, [Online; accessed 2021].

2 Y. Oksuzian, “A cosmic ray veto detector
for the mu2e experiment at fermilab,”
https://indico.cern.ch/event/361123/
contributions/856188/attachments/1135881/
1625309/DPF2015 CRV Overview.pdf,
2017, [Online; accessed 2022].

3 E. C. Dukes, “Cosmic rays are a pain: The
mu2e cosmic ray veto,” http://muse.lnf.
infn.it/wp-content/uploads/2017/08/mu2e
crv seminar 2017 08 fnal.compressed.pdf,
2017, [Online; accessed 2021].

4 CERN, “Geant4: A simulation toolkit,”
https://geant4.web.cern.ch/, 2022, [Online; ac-
cessed 2022].

5 Y. Oksuzian, “Report on the 2020 LDRD
expedition project: “improvements to cosmic
muon identification at mu2e,” 2020, [Online;
accessed 2021].

6 Keras, “Keras: the python deep learning
api,” https://keras.io/, 2021, [Online; accessed
2021].

7 C. H. Martin, T. Peng, and M. W. Mahoney,
“Predicting trends in the quality of state-
of-the-art neural networks without access
to training or testing data,” CoRR, vol.
abs/2002.06716, 2020. [Online]. Available:
https://arxiv.org/abs/2002.06716

8 C. Martin, “weightwatcher 0.5.5,” https://
pypi.org/project/weightwatcher/, 2021, [On-
line; accessed 2021].

10

https://mu2e.fnal.gov/public/index.shtml
https://indico.cern.ch/event/361123/contributions/856188/attachments/1135881/1625309/DPF2015_CRV_Overview.pdf
https://indico.cern.ch/event/361123/contributions/856188/attachments/1135881/1625309/DPF2015_CRV_Overview.pdf
https://indico.cern.ch/event/361123/contributions/856188/attachments/1135881/1625309/DPF2015_CRV_Overview.pdf
http://muse.lnf.infn.it/wp-content/uploads/2017/08/mu2e_crv_seminar_2017_08_fnal.compressed.pdf
http://muse.lnf.infn.it/wp-content/uploads/2017/08/mu2e_crv_seminar_2017_08_fnal.compressed.pdf
http://muse.lnf.infn.it/wp-content/uploads/2017/08/mu2e_crv_seminar_2017_08_fnal.compressed.pdf
https://geant4.web.cern.ch/
https://keras.io/
https://arxiv.org/abs/2002.06716
https://pypi.org/project/weightwatcher/
https://pypi.org/project/weightwatcher/

	The Mu2e Experiment
	The Cosmic Ray Veto
	Study Goals/Strategy
	Simulated Datasets
	Important Definitions
	Cut Terminology
	Deadtime
	Cosmic-Ray Induced Background

	Building the Model
	The Existence of Two Models
	Final Model Structure

	Training the Model
	The Alpha Metric
	Training Procedure

	Model Predictions
	Prediction Analysis
	The Performance of the Two Models
	Providing a Classification Cutoff

	Physical Metrics
	Cosmic Background
	Deadtime

	Concluding Thoughts
	Study Conclusion
	Further Study

	Acknowledgements
	References

