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ABSTRACT
We present an individual-centric model for COVID-19 spread in an
urban setting. We first analyze patient and route data of infected
patients from January 20, 2020, to May 31, 2020, collected by the Ko-
rean Center for Disease Control & Prevention (KCDC) and discover
how infection clusters develop as a function of time. This analysis
offers a statistical characterization of mobility habits and patterns of
individuals at the beginning of the pandemic. While the KCDC data
offer a wealth of information, they are also by their nature limited.
To compensate, we use detailed mobility data from Berlin, Germany
after observing that mobility of individuals is surprisingly similar
in Berlin and Seoul. Using information from the Berlin mobility
data, we cross-fertilize the Seoul data set and use it to parameterize
an agent-based simulation that models the spread of the disease in
an urban environment. We then validate the simulation predictions
with ground truth infection spread in Seoul.

1 INTRODUCTION
OnMarch 11, 2020, theWHO declared COVID-19 the first pandemic
caused by a coronavirus [4]. Since then, a tremendous amount of
data has been collected to guide public health policy decisions.
For example, Google provides time-series data of infections at a
coarse granularity [5] (i.e., as a function of the area’s population,
no information is provided at the granularity of single individu-
als). Epidemiological simulation and mathematical models have
been used to predict the spread of the disease. Typically, model
effectiveness is tied to its input parameterization.

In this paper, we use data provided by the Korean Center for
Disease Control (KCDC) during the first wave of the disease in
South Korea [21]. In contrast to the Google data, the KCDC data
focuses on individual patients and allows the development of an
individual-centric model of the COVID-19 epidemic. Infected indi-
viduals are monitored and their movements are logged using CCTV,
cellphones, and credit card transactions [14]. The KCDC records
patient movements in plain text which are parsed through auto-
mated code and rule-based methods to extract keywords that are
then used with web mapping service APIs (e.g., Google Maps [1])
to extract geographical coordinates and other data.

To the best of our knowledge, the KCDC logs are the only avail-
able data that contain patient-centric information in great detail:
they report on patient mobility, i.e., traveled distance and the se-
quence of locations visited daily, the date of the onset of symptoms,
whether and when the patient got in contact with other patients
that are also diagnosed. The KCDC data set is a valuable resource
for studying the spread of COVID-19, yet it presents limitations:
• The KCDC data sets contain data collected up to May 31, 2020

(i.e., the first wave) and have not been updated since then. By May

31, 2020 approximately 11,500 COVID-19 cases were confirmed in
South Korea [14, 23].
• Some locations visited by patients are not recorded due to

privacy concerns. Consequently, patient infection information and
route data do not always coincide. For example, there are patients
that infect each other even if their routes do not cross. This may
happen for patients of the same household (locations where people
live are rarely logged).
• Patient and route data may be incomplete (i.e., some attributes

are occasionally missing, such as the type of locations visited by
some patients) and require manual completion before analyzing
the data set.
• There is route data for only a portion of the patients. Patient

movement has been logged only for the 15% of all confirmed cases
by May 31.
•The KCDC logs do not contain a complete picture of all different

factors affecting the disease spread. For example, these logs have
no information on the number of people living in a single residence,
or on behaviors of healthy individuals. The length of time a patient
spends at a particular location in their route is also not recorded.

We adopt different data discovery strategies to address the above
challenges. We manually retrieve certain missing attributes: in the
case of patient routes with missing location type (e.g., store, school,
hospital, airport), we use the provided geographical coordinates to
retrieve the visited location and identify its type. Regretfully, some
missing data are not possible to recover.

Provided that the mobility of only the 15% of confirmed patients
are logged in detail, we assume that the mobility of all patients is
independent and identically distributed to the patients with detailed
logs. We contend that while detailed logs provide data of statistical
significance, their usage introduces some unavoidable bias towards
the percentage of patients who voluntarily sharedmore information
than others. Statistical information derived from histograms (i.e.,
processed data) fill-in the gaps of missing information and can be
used as input of patient activity in the simulation.

Because there is still much information unavailable in the KCDC
logs that may better help us understand the spread of the disease in
an urban environment, we also analyze data sets detailing human
mobility in Berlin, Germany [25]. Both data sets contain detailed
information on the routes of individuals, such as distance travelled,
unique locations visited, and overlapping routes showing potential
contact. These data sets still have several key differences. The KCDC
data sets contain information on COVID-19 cases, whereas the
Berlin data has information on healthy individuals. On the other
hand, the Berlin data sets contain detailed information on important
factors that affect disease spread, such as household size and time
spent at a location. Using the parallels between these datasets, we
examine the opportunity to cross-fertilize the Seoul data with Berlin
data.
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(a) South Korea. Blue
points are hotspots.

(b) Seoul: Gangnam (blue) and Seocho
(green) districts.

(c) Top-10 most visited locations. (d) Movements
across districts.

Figure 1: Seoul: heat maps of most visited locations, most
visited location types, and movement between two districts.

We use logs and histograms to feed our tool, GeoSpread, an ex-
tended version of GeoMason [32]. GeoMason is a tool that uses
agent-based models (ABM) and geographic information systems
(GIS) and has been used to study disease outbreaks (e.g., cholera is
studied using this tool in [12]). We simulate interactions of thou-
sands of people in the Gangnam and Seocho districts of Seoul on
roads and in buildings to investigate the COVID-19 outbreak in the
largest metropolis of South Korea. We validate the results of the
simulations with the ground truth derived from the KCDC logs. The
GeoSpread tool offers a flexible model based on real-world COVID-
19 spread information and can be used to facilitate evaluation of
different mitigation measures and patient behaviors. Here, we use
this processed data in the form of histograms (and also make them
available to the community) [30]. Our contributions are:
• Data Discovery: We analyze and connect data from vari-

ous KCDC logs to extract information on patient movements (Sec-
tions 2). Missing information is manually retrieved, when possible.
• Statistical Analysis: We provide statistical analysis of popu-

lation movements and habits in the form of histograms.
• Cross-fertilization:We investigate similarities between the

Seoul and Berlin data sets seeking common patterns. Leveraging
this information, we cross-fertilize to incorporate useful informa-
tion from the Berlin data sets which are unavailable in the Seoul
data (e.g., travel speed, transportation means, household size).
• GeoSpread: We parameterize an ABM that uses the cross-

fertilized data as input, see Section 4, and outline its flexibility to
capture a variety of conditions. The simulation tool, GeoSpread,
and processed data are open sourced [30].
• Model Validation with Real Data: The simulation model is

validated and discussed in Section 5.

2 THE KCDC DATA
The data sets [21] used in this paper contain data collected by the
KCDC from January 20, 2020, to May 31, 2020. The PatientInfo and
PatientRoute data sets contain information and routes of COVID-
19 patients in Seoul, respectively. The number of (healthy and
sick) people moving across Seoul districts are also provided in the
SeoulFloating data set. This data has been collected using the Big
Data Hub of SK Telecom, a Korean wireless operator.
PatientInfo data set. This data set provides epidemiological data
of COVID-19 patients. Each entry provides the patient_id, their gen-
der and age, their provenance (country, province, and city), whether
they have been infected in a known case (infection_case) and the
ID of the patient that infected them (infected_by), the number of
people that the patient came in contact with (contact_number), and
the date of their first symptoms (symptom_onset_date). This data
set is also described in [20].
PatientRoute data set. This data set contains entries of unique
South Korean COVID-19 patients. A location is identified by its
latitude and longitude. province, city, and type (e.g., airport, hospital,
store) of each location are also provided. The attribute type of almost
30% of entries is set to etc (i.e., locations that cannot be identified
using the rule-based approach of [21]). We manually look for their
type using their geographical coordinates and OpenStreetMap [2].
Each entry also contains the patient (identified by patient_id, the
same as in the PatientInfo data set, and by global_num, another ID
used only in this data set) that visited the location on a specific date.
The time spent in the location is not available. Locations visited by
a patient in a single day are logged in chronological order.
SeoulFloating data set. This data set provides hourly data of
people moving across Seoul districts. Collected data are grouped
by gender, age, and district and allow visualizing the movement of
people in Seoul during this period. Age is provided at the decade
granularity for people in their 20s through 70s. No information is
provided for children or for people who are 80 or older. As a result,
it is not possible to conclude on infections at education facilities
or directly model mitigation measures that include school closings.
This data set reports data on the entire Seoul population, not just
the COVID-19 patients, and only considers those with cell phones.

2.1 Data Discovery
Here, we discuss what we extract from the data sets and how it is
used to parameterize GeoSpread. All input parameterization data
for GeoSpread is given in the form of distributions.
Visited Locations. Figs. 1(a) and 1(b) depict heat maps of the most
visited locations in South Korea and Seoul, respectively, showing
where COVID-19 outbreaks are more likely to happen. Seoul is
the city with the most visited locations. Within Seoul, the south-
west and south-east areas are those with more patient routes. The
financial district and company headquarters are located in the south-
west part of the city. The south-east region corresponds to the
Gangnam district, outlined in blue in Fig. 1(b). Many shopping and
entertainment centers are located in Gangnam. Fig. 1(c) shows the
ten most visited facilities in Seoul, with Hospital being the first one.
This is mainly due to the Korean data set being obtained during the
COVID-19 pandemic by monitoring sick people. No information
about schools is available since this data set monitors only people in
their 20s through 70s. The scarcity of logged residential facilities is
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(a) Patient connections (partial). (b) Partial hypergraph of patient contact. (c) Partial hypergraph cluster. (d) Contact degree CDF.

Figure 2: Seoul Patient contacts.

(a) People infected. (b) Logged days. (c) Unique locations visited. (d) Total locations visited.

Figure 3: Super spreader analysis in Seoul.

due to privacy concerns. Finally, Fig. 1(d) illustrates the movement
of population between two neighboring districts, Gangnam and
Seocho that we use later.
Patient Connections. Fig. 2(a) presents a subgraph of patient
connections discovered by linking the PatientRoute and PatientInfo
data sets. To improve visibility, we only present a small portion of
the entire graph. Here, nodes depict patients, black edges connect
patients that visited the same place during the same day from the
PatientRoute data set, and red edges represent the virus spreading
information obtained from the PatientInfo data set (i.e., infected_by
attribute). Some red edges do not overlap with black edges. This
means that, even if one of the two nodes connected by the red edge
infected the other, no connections (i.e., visits to the same location
during the same day) have been recorded in the data set. The node
degree in Fig. 2(a) shows the contact degree among patients and
illustrates visually the complexity of the problem.

Patient connections can also be visualized as a hypergraph to
capture how many times patients come into contact and at what
locations. An example can be seen in Fig. 2(b) where a node repre-
sents a patient and a hyperedge represents the connection between
any number of patients who met at a specific location on a specific
date. Visually, a hyperedge is shown as an edge that branches to
connect two or more patients. This allows us to look at gatherings
of groups of people, rather than just the binary relationship of
whether or not two individuals came into contact. Clusters of cases
in Seoul can be seen in the hypergraph in Fig. 2(c).

Finally, Fig. 2(d) shows a summary view of patient connections:
the contact degree CDF of all patients for the entire dataset. Three
CDFs are shown: one for the whole South Korea, one for Seoul, and
another one for the Gyeongsangbuk-do province. Interestingly, all
CDFs have a similar shape. High contact degrees indicate potential
super spreaders (i.e., patients that infect many other people). People
who come into contact with many others are not necessarily super

spreaders since it is unknown whether they were sick or healthy
when contact occurred. Because of this, further analysis is required
to determine whether or not a patient is a super spreader.
Super Spreaders. The data set shows a mix of super spreaders (i.e.,
people who infected more than six people) and low spreaders, who
infected six or fewer people1. Using this classification of patients
based on the number of people they infect, we discover different
behaviors of super/low spreaders, shown in Fig. 3. Super spreaders
account for 3.59% and low spreaders account for the remaining
96.41% of patients.

Fig. 3 presents CDFs of the number of people infected by an indi-
vidual, the number of days in the log that the individual appears, the
unique visited locations, and the total number of visited locations.
The CDFs in this figure indicate that, in general, super spreaders
tend to be active for more days, visit more unique locations, and
have longer routes than low spreaders. The figure shows that all
super spreaders in the data set are active for three or more days and
visit three or more unique locations. Some of these super spreaders
are active for up to 19 days and visit up to 18 unique locations with
route lengths of up to 31 locations.
Daily Distance and Patient Mobility. With some exceptions,
people mostly travel short distances and visit only a few locations
each day. The CDF of the daily traveled distance is shown in Fig. 4(a).
Intuitively, the more places a patient visits, the higher their mobility
is. Fig. 4(b) shows the day count of unique locations reached by
the patients in the data set: for 2,063 days (88.9% of days) a typical
patient visits 1–3 locations, while for 258 days (11.1%) more than 3
unique locations are visited. Looking at the mobility of individual
patients, there are days where they exhibit high mobility and days

1We define a “super spreader” as someone who infects at least 6 people in order to
obtain the most noticeable difference in patient behavior (number of locations, number
of days, number of records).
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(a) Distance CDF.
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Figure 4: Daily distance and visited locations in Seoul.

(a) Mobility CDF. (b) Low/super spreaders. (c) Young vs. seniors.

Figure 5: Patient mobility in Seoul.

(a) Active days. (b) Unique locations. (c) Total locations.

Figure 6: Behavior after first symptoms in Seoul.

where they move significantly less. This leads us to a more usable
definition of mobility as a function of different time periods (days).

Defining a high mobility day as a day during which a patient
visits at least 𝐿 locations, the mobility of a patient is given as the
ratio of the patient high mobility days to all logged days for this
specific individual. Note that this is not the only way to define
mobility. For simulation purposes (see Section 4), this definition
provides a practical way to capture mobility with a probability.
Based on the histogram shown in Fig. 4(b), days with 𝐿 ≤ 3 are
considered of low mobility. The CDF of patient mobility using the
above definition is depicted in Fig. 5(a). The figure shows that 57.6%
of patients never visit more than 3 locations in a day.

Different classes of patients have different mobility. Fig. 5(b)
shows the difference in mobility between super spreaders and low
spreaders, while Fig. 5(c) illustrates mobility by age groups. Super
spreaders and young people have higher mobility compared to low
spreaders and seniors, respectively. For higher percentiles, the low
spreaders have higher mobility than super spreaders due to the
small number of super spreader agents in the KCDC data set.
Irresponsible Behaviors. Patients behave irresponsibly when
they keep moving after the onset of their first COVID-19 symptoms,
which facilitates the diffusion of the disease. We present how long
sick people continue to show mobility after exhibiting symptoms,
see Fig. 6. The figure shows that only the 20% of patients stop
moving and isolate immediately after initial symptoms are observed.
Some patients keep moving for more than a week after the onset of

Figure 7: Heat map of the most visited Berlin locations.

symptoms, see Fig. 6(a). They also visit many locations; Figs. 6(b)
and 6(c) show the number of unique and total locations that sick
patients visit after initial symptoms are observed.

3 THE BERLIN DATA
In spite of the detailed data provided in the KCDC data sets, there
is still a lot of unavailable information which is necessary for un-
derstanding how COVID-19 spreads in an urban environment. In
this section, we compare distributions of different characteristics of
human mobility from Seoul, South Korea with distributions from
Berlin, Germany to determine whether similarities exist that allow
for cross-fertilization. First, we focus on commonalities in move-
ments of individual in the two urban environments.

The German data sets [25] contain movement logs obtained by
monitoring people that visited Berlin before the COVID-19 pan-
demic, during business days andweekends. It provides demographic
data of all monitored people, the public transport vehicles used by
people for their movements, and the type and capacity of all vis-
ited facilities. Here, we consider movement logs collected during
business days by observing people whose actions are located only
in Berlin. Fig. 7 shows the most active district of Berlin, i.e., areas
of the city that appear more frequently in the German data set.
EventWeekdays data set. People’s movements over 30 hours
are logged in this data set, where almost 6 million activities have
been recorded from start to finish. For each entry, the timestamp
(in seconds) is provided as well as the type of entry (i.e., start for
activities that begin or end for activities that are completed) and the
person to which the activity is associated. For this analysis, we use
only logs from people that never leave Berlin during the observation
period, i.e., 67% (3,919,990) of this data set. All activities in this data
set represent a visit to a facility or the usage of public transport. In
the former case, facility_id and link_id allow associating the entry
to a venue, while the actType attribute specifies the type of activity
performed in that location (e.g., home, school, work). When an
entry refers to a transport activity, it provides the vehicle attribute
with the ID of the vehicle that is used for moving.
Demographic data set. This data set contains information about
each person (i.e., more than 1.2 million people) whose activities
have been logged in the EventWeekdays data set. Specifically, age
and gender for all people is provided as well as their home_district,
home_id, and home coordinates. The home_district attribute contains
one of the 401 administrative districts of Germany. Here, since we
focus just on Berlin, a metropolitan city like Seoul, we consider
people who do not leave Berlin during the observation period.
Therefore only 55% (671,256) of the original data set is analyzed.
The home_id attribute associates each person in the data set to
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(a) Seoul (b) Berlin

Figure 8: Daily presence of different age groups, with the
y-axis normalized for easy comparison.

(a) Daily distance (in miles). (b) Number of unique locations.

Figure 9: Distance and location count comparisons.

their home-place, while the coordinates attribute allows placing
each building on a map with an accuracy of 500 meters.
FacilityType data set. This data set contains all 631,290 facilities
visited in the EventWeekdays data set. The 75% (476,572) of these
venues are located in Berlin. Univocal id and link_id attributes are
associated to all entries of this data set for the identification of each
facility. Coordinates (using the EPSG:25832 coordinate reference
system) are also associated to each venue. This allows placing each
venue on a map. Functions (e.g., home, school, work) might also
be associated to each facility depending on the activities that are
carried out within that venue. Note that multiple functions can be
associated to the same building. For each function of a facility, a
capacity attribute (i.e., the maximum number of people that can
occupy the facility doing the same activity) is also provided.
PublicTransport data set. This data set records vehicles in public
transport. An id and a type (e.g., bus, metro, tram) are associated to
each vehicle. Although almost 1 million vehicles are recorded, only
42,725 of them (i.e., 4%) are located in Berlin. However, many people
use public transport for moving in Berlin and 1,791,061 movements
are completed using one of these vehicles.

3.1 Similarities Across the Two Data Sets
Both KCDC and German data sets allow retrieving information
and attributes that can be used for comparing movement habits of
people living in Seoul and Berlin. In the following, these features
are analyzed and described.
Population Age. Fig. 8 depicts Seoul and Berlin population floating
during a business day. Data is grouped based on people’s age with
decade granularity. The SeoulFloating data set in the KCDC data
sets monitors people that are in their 20s through 70s for both
healthy and sick individuals. As a result, this data set is valuable for
comparison to the German data sets. We investigate the population
habits from January 1, 2020, to May 31, 2020 by age group for
comparison to movements in Berlin, see Fig. 8(a). Fig. 8(b) provides

information of people living in Berlin that are also younger than
20 or older than 79 (see dashed lines) as well. Since the number
of observations in the two data sets is different, the population of
Seoul and Berlin is normalized over the maximum number of people
observed in both cities. Overall, Seoul and Berlin experience similar
people floating dynamics. Specifically, the normalized number of
people that are between 60 and 79 is similar in both cities and it
tends to be flat during the day. Adults and young-adults of both
cities show also similar dynamics, with the only exception of people
in their 40s and 50s. The normalized number of people that are
between 40 and 49 is larger in Seoul than in Berlin, but they float
similarly in both cities, i.e., they increase around 6 AM and decrease
after 3 PM. The normalized number of people in their 50s that live in
Seoul and Berlin is similar (i.e., 0.85). While such a number increases
during the morning in Berlin (then it decreases in the evening),
it does not change much in Seoul. Looking at the Berlin data, we
observe that there are not many people older than 80 and that
number does not change during the day. The only age group whose
number decreases in the morning and increases in the evening is
the one representing kids younger than 10.
Daily Traveled Distance. Fig. 9(a) plots the cumulative distribu-
tion function (CDF) of daily traveled distance (in miles) for people
living in Seoul and Berlin. The two CDFs match closely implying
that Korean patients and Berlin inhabitants travel similar distance
daily. Specifically, 75% of people move less than 5 miles and only a
small percentage of the population travels more than 15 miles.
Unique Locations. Fig. 9(b) depicts the daily number of unique
locations visited by all monitored people in Seoul and Berlin. The
two distributions (i.e., the x-axis) in Fig. 9(b) are normalized over
the maximum number of unique visits for each city. Since the
KCDC data set monitors patients’ movements for different days,
the daily number of unique locations visited by each patient in
Seoul is averaged over their number of active days. For this reason,
non-integer values are also observed when looking at the unique
location distribution of Seoul in Fig. 9(b) (i.e., blue line). The number
of unique locations in Berlin is not averaged over the number of
active days since people are monitored for only 30 hours in the
German data set. Hence, the number of unique locations visited by
Berlin people is an integer value and the distribution (i.e., yellow
line) is discrete. Nevertheless, the distributions of unique locations
visited by people living in Seoul and Berlin show similar trends.
Contact Degree. The analysis of how many people are met by
each person logged in the two data sets (i.e., contact degree) allows
discovering relationships that might facilitate the spread of the
virus. Intuitively, the more people a COVID-19 patient meets, the
faster the virus can spread. In the KCDC data set, no data is provided
about the time a patient visits a facility, only the date is known.
For this reason, their contact degree is computed as the number
of other people that visit their same facilities on the same day.
People’s movements in the German data set are provided with their
exact time. This enables a more precise evaluation of the contact
degree since we can determine who is in the same facility during
the same period. Due to the large number of people monitored in
the German data set (i.e., more than 1.2 million), the contact degree
in Berlin happens to be greater than 12,000 for a small percentage
of individuals. This makes impossible to compare the Seoul and
Berlin contact degrees, see Fig. 10(a), even after normalizing both
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(a) With outliers. (b) Without outliers.

Figure 10: Contact degree (normalized) of Seoul patients and
Berlin inhabitants. Outliers are discarded in (b).

(a) Travel Time (b) Travel Speed

(c) Activity Length (d) Household Size

Figure 11: Unique characteristics of the Berlin Data set.

distributions over themaximum number of contacts. For this reason,
we consider Berliners with a very large contact degree to be outliers
and discard their interactions by considering only people whose
contact degree is within the 99th percentile. To compare the Seoul
contact degree with the Berlin one, in the latter case we do not
account for contacts on public transportation since this makes the
contact degree significantly larger. Results are depicted in Fig. 10(b),
where it is visible that normalized contact degrees of people living
in Seoul and Berlin match. This implies that, the chances for the
virus to spread in Seoul and Berlin are similar.

3.2 Unique Attributes of the Berlin Set
The prior analysis of the KCDC and German data sets show that
the two cities share many characteristics, however, both data sets
also contain a wealth of unique characteristics. While both data
sets contain information about distance travelled, the German data
sets contain additional information about travel time and speed.
These distributions are seen in Fig. 11(a) and Fig. 11(b). One notable
drawback of the KCDC data sets is the lack of fine-grained time
stamps on patient routes. The KCDC logs only contain the date and
the order in which locations were visited by that patient on that
date. The German data has detailed time stamps and records of the
amount of time spent performing a specific activity (e.g., shopping,
work, etc.). Fig. 11(c) shows the distribution of activity lengths in
the German data sets. Because the KCDC data sets only contain in-
formation about individuals with COVID-19, and route information
is often incomplete due to privacy concerns, no information can

be extracted about the number of people living together. On the
other hand, household size is available in the German data sets. This
information is shown in Fig. 11(d). These unique characteristics
have the potential to cross-fertilize the information extracted from
the KCDC data sets, and aid us in modeling and understanding
different factors of human mobility that affect virus spread.

4 AGENT-BASED MODEL
In this section, we show how to parameterize a simulation based
on GeoSpread [30], our extended version of GeoMason [32] using
the characterization presented in Sections 2 and 3. The following
attributes are set during initialization:

(1) Infection status. One or more random agents are selected as
the initial case(s).

(2) Position. Agents are randomly placed on a road.
(3) Speed. Speed determines how fast an agent moves from one

location to another and is selected according to a distribu-
tion: we sample from the speed distribution from the Berlin
data set characterization to select an agent’s speed.

(4) Type of spreaders.We define two classes of spreaders: 3.59%
are super spreaders and 96.41% are low spreaders.

(5) Mobility. We use the mobility of super spreaders and low
spreaders depicted in Fig. 5(b) to model patient mobility.

(6) Home district and home building. We assign agents a home
buildingwithin their home district based on Fig. 1(d). Agents
select destination buildings in the simulation depending on
how agents move between these districts, see Fig. 1(d).

(7) Family size and family members. Agents are assigned family
members who all live together in a home building. While at
home, agents are able to infect family members they are in
contact with. The number of individuals in a family is de-
termined by sampling from the household size distribution
in Berlin described in Fig. 11(d).

In addition to the mobility distribution of super spreaders and low
spreaders, the CDF of daily traveled distance in Fig. 4 is also used to
determine the distance to a destination. The location type an agent
will travel to is determined by Fig. 1(c). The amount of time agents
spend at a location is determined according to Fig. 11(c). Simulation
time is defined by cycles. In each simulation cycle, agents outside
a building move along the road towards their destination; agents
inside a building can choose to stay or leave, based on their mobility.
Agents with high mobility have a high probability to leave the
building and visit many others. Note that agents stay in a building
for at least 15 minutes in order to meet the definition of close
contact [9]. If multiple agents are inside the same building, they
may infect each other with a certain probability.

When infection happens, the agent state changes from healthy
to infected. We assume the outdoor infection probability to be neg-
ligible. Given the probability of infection inside a building, 𝛼 , and
the number of infected agents in the building, 𝑛, the probability of
a healthy agent to be infected by a contact within the building is
Pr(infection) = 1 − (1 − 𝛼)𝑛 . Note that this equation for the proba-
bility of infection is nominal. Any model can be used to capture the
viral load: the total number of people in the location, the duration
of interaction among individuals, the square footage of the room,
its air circulation, wearing a mask or not, see [24].
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It takes 1–14 days for patients to show symptoms after infection
according to theWHO [35].We therefore use a Uniform distribution
between 1 and 14 days to transition from infected to symptomatic.
A uniform distribution is again nominal here, one could easily use
any distribution, e.g., a lognormal distribition with its peak set to 5
to capture a more realistic scenario consistent with hard data. Since
some patients continue to move even after showing symptoms, as
seen in Fig. 6, we use the CDF in Fig. 6(a) to determine the number
of active days after their first symptoms. After each infected person
exhausts their active days after infection, they are isolated.

Consistent with infectious disease simulation studies [22], we
set the simulation cycle to 5 minutes. The simulation stops either
when all agents are infected or after a number of cycles defined
by the user. Contact degree and the number of unique locations
visited are used for validation since these are not input parameters.

We simulate the COVID-19 outbreak in the Seocho and Gang-
nam districts, i.e., the region of Seoul with the most hotspots, see
Fig. 1(b). This area has 11,438 road intersections and 7,043 buildings.
Roads and buildings are placed in the simulated area as described
in [3], a collection of GIS data with regard to Seoul. GeoSpread
loads the GIS data (e.g., roads, road intersections, buildings) stored
in a shapefile format, i.e., a file that stores geometric locations and
their attribute information. Although the longest distance we ob-
serve in the PatientRoute data set in Seoul is 30 miles, the longest
distance between two buildings in the simulated Gangnam district
is 7.06 miles. Therefore, we normalize the maximum distance to
3.53, which is half of the longest distance in the simulated area,
to ensure a valid building selection as the agent’s destination. In
the Gangnam district there are 604,586 people and a total of 7,043
buildings. We do not have any information on building stories, en-
tries, or number of rooms. This information is crucial, especially
for apartment buildings, where multiple people can be inside the
same building at the same time without contact. To address this
lack of information, we limit the population in our simulations. We
validate parameter choices against ground truth data in Section 5.

5 MODEL VALIDATION
Fig. 1(d) shows the residents in Seocho and Gangnam that have
been infected, the figure also illustrates the movement between the
two districts. We use this information to parameterize the simula-
tion. During the initialization phase, we separate the agents into
Gangnam residents (70.4% of the population) and Seocho residents
(29.6% of the population). Next, we retrieve the distributions of
agent mobility and spreader types from the data set for residents
of each district to set their attributes. The probability of a resident
staying or leaving their home district follows Fig. 1(d).

Since two districts are considered here, starting with only one
infected agent in one of the two areas could bias results. Here, we
start the simulation with 55 infected agents, i.e., the number of
infections observed from the data set on March 9, 2020, proportion-
ally assigned to agents in the two districts (29.6% in Seocho, 70.4%
in Gangnam). Simulations starting at any time earlier or around
March 9, result in similar trends.

Fig. 12(a) depicts the number of COVID-19 cases in the Gang-
nam and Seocho districts observed from the data set (black line,
ground truth) and simulation (red and blue lines). The ground truth

(a) Infections: simulation vs. ground truth.

(b) Validation of mitigation measures. Strong Social
Distancing campaign starts on March 22.

Figure 12: Validation. Results are presented with 95% confi-
dence intervals (shaded areas).

line illustrates the COVID-19 outbreak in the two districts. At the
beginning of April, the curve flattens. This is likely due to effective
counter-measures executed in Seoul, especially the Strong Social
Distancing Campaign which began on March 22. Consistent with
the COVID-19 incubation timeline, the effectiveness of the Strong
Social Distancing Campaign does not show immediately, but after
the beginning of April. Our simulation in Fig. 12(a) does not model
the effect of social distancing campaign so it is expected not to
capture the knee of the ground truth curve.

We align the beginning of simulation data to the time of 55
infection cases in the ground truth, since this is the starting point
of the simulation. The two simulation lines in Fig. 12(a) (their 95%
confidence intervals are given by the shaded areas) closely follow
the ground truth: the simulation of population 10,000 with infection
rate 0.004 and the simulation of population 20,000 with infection
rate 0.002 are in excellent agreement with the ground truth from
March 26, 2020 to April 5, 2020, when the effects of any counter-
measures are not discernible yet. The overlap of two simulation
cases with the ground truth validates the simulation.

We note in Fig. 12(a) an interesting relationship between pop-
ulation and infection rate: when population is doubled, dividing
the infection rate in half gives similar simulation outcomes. This
observation meets the results in the generic simulation that higher
population leads to faster spreading of the COVID-19 virus, while
lowering the infection rate slows down virus spreading. We con-
clude that we can use a “limited” population with an adjusted in-
fection rate to efficiently (yet accurately) model larger populations.

As further validation, we simulate the effects of applying a stay-
at-home advisory mid-simulation in order to capture the effects of
the mitigation measures taken in Seoul on March 22 – the Strong
Social Distancing Campaign. Fig. 12(b) depicts the simulation re-
sults (with 95% confidence intervals) against ground truth. In this
experiment, we begin with no mitigation measures and apply a stay-
at-home advisory when the Strong Social Distancing campaign is
enacted. After applying the stay-at-home advisory mid-simulation,
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(a) Ground truth. (b) Simulation: 10K. (c) Simulation: 20K.

Figure 13: Hotspots in the data set (ground truth) and model.

(a) Patients per cluster. (b) Unique locations. (c) 7-day contact degree.

Figure 14: Validation of clusters and contact degree.

GeoSpread also exhibits a flattening trend, which is consistent with
ground truth. This highlights the ability of the model to capture
what-if scenarios of mitigation measures.

Next, we focus on hotspot locations. In Fig. 13(a), we present
the heat map of most visited locations in the Gangnam and Seocho
(ground truth). The most visited areas are in the northern part of
Gangnam and across the border between the two districts. These
hotspots correspond to the density of commercial buildings in these
areas. Fig. 13(b) and 13(c) show the heat maps of visits for simulated
populations of 10, 000 and 20, 000, respectively, and are consistent
with ground truth.

Additionally, we examine properties of clusters (i.e. outbreaks)
in the ground truth KCDC logs and the simulations in 7-day sliding
windows. Fig. 14(a) depicts the number of patients seen in infection
clusters. Fig. 14(b) shows the number of unique locations visited by
patients in infection clusters. Finally, we can see the contact degree
between patients in Fig. 14(c). The similarity in these curves further
validates the accuracy of the simulation.

5.1 Model Limitations
Although the model is validated using ground truth, incomplete
and/or missing data limit its generalization. Limitations include:
First wave data. This data is from the first wave of the disease in
South Korea. With South Korea having one of the best responses to
the disease globally, the mobility patterns reflect inevitably cultural
and demographic characteristics as well as policy decisions.
Privacy concerns. The KCDC data set is anonymized and no sensi-
tive data of monitored patients can be retrieved. No data about the
underage population is provided as well as movements of patients
from/to their private homes. To address this, we examine distribu-
tions from the German data set regarding household size, but this
still limits the scenarios that can be analyzed, e.g., the impact of
school closures. Note also that the per-patient mobility information
(and its statistics) are retrieved from the PatientRoute data set. We
have no way to evaluate how mobility statistics changed during
other waves of COVID-19.
Transportation. The KCDC data set does not show the trans-
portation mode of patients. We overcome this limitation by using
distributions from the German data set.

6 RELATEDWORK
COVID-19 has been studied extensively in recent months. COVID-
GAN [7] allows generating human mobility traces when differ-
ent real-world conditions apply (e.g., local policies). Epidemiologi-
cal/clinical data are collected in [28] via patient interviews to study
the spread of the virus in three Singapore clusters, this approach
by its nature is difficult to scale. A contact tracing system based on
blockchain is proposed in [27]. A numerical simulation is adopted
in [11] to evaluate the efficiency of a test-trace-and-isolate strategy
in containing the pandemic in Germany. A co-location model is
used in [37] to study the spread of SARS-CoV-2 with limited data.

Agent-based models (ABMs) are a simulation-based alternative
of mathematical models that incorporate human interactions [19].
ABMs are typically used for modeling pedestrian movements, hu-
man mobility during rare events (e.g., natural disasters), resource
usage, and to study the spread of diseases [12, 16, 26, 33]. The spread
of influenza in British and American households, schools, and work-
places ismodeled in [13] using census and land use data aswell as air
travel patterns. This work considers only international population
movements. ABMs parameterized by census data have been used to
capture the spread of COVID-19 in Australia [10, 29]. Using census
and age-distribution data from Germany and Poland, Bock et al. [8]
investigate the efficiency of mitigation strategies by accounting for
interactions within households. Census ABM-based frameworks
have been used to simulate the COVID-19 outbreak [17], evaluate
the efficiency of contact tracing [6], face masks [18], and testing
strategies [34]. Kim et al. [22] use synthetic, location-based social
network data to study how social behaviors affect the virus spread.
Geo-located data from social networks (i.e., Twitter) are used in [31]
to identify hotspots that facilitate the spread of infectious diseases
(i.e., Dengue). ABMs are used to model the spread of SARS-CoV-2
in small areas: crowded areas of supermarkets [36] and univer-
sity campuses [15]. Differently from our approach, no fine-grained
movement data is used in any of the above works. The above models
are parameterized using census or synthetic data while population
movement habits are captured at a coarse granularity.

Müller et al. [24, 25] use an ABM parameterized with synthetic
mobility traces (originally generated from mobile phone data) to
study the COVID-19 outbreak in Berlin and analyze the effect of
mitigation measures. This work is the closest to ours but uses no
detailed statistics on agent mobility during the pandemic.

7 CONCLUSIONS
In this paper, we extract human movement habits and dynamics
of real COVID-19 patients from the KCDC data set. We enrich
this analysis by analyzing and discussing detailed mobility data in
Berlin, Germany. The mobility information and statistics are used
to tune our ABM tool GeoSpread and investigate the COVID-19
outbreak in two districts of Seoul. Agent movements and behav-
iors are simulated using the statistics of actual human movements,
other structures (e.g., networks or graphs) are not required. The
proposed approach allows investigating scenarios under different
circumstances to identifying mitigation strategies.
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