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Abstract 

Understanding floodplain surface water 

processes is important due to the ever-

increasing risk of high flow events and 

flooding, but has always been challenging 

because of spatiotemporal variability. One of 

the most elusive parameters to quantify is how 

vegetation obstructs flow by introducing 

friction into the system, also known as 

roughness. By utilizing unoccupied aerial 

systems lidar remote sensing and two-

dimensional hydrodynamic modeling, my 

research aims to better understand how 

roughness varies with water depth, seasonally 

and in between individual flood events. For this 

presentation, I detail the progress I have made 

on this study: field data collection, lidar data 

collection, lidar corrections, creating the final 

digital elevation model (DEM), and creating a 

hydrodynamic model. Future steps 

demonstrate how I will use the hydrodynamic 

model to compare to my field data, along with 

how I plan to use the lidar data to represent 

floodplain vegetation roughness. 

1. Introduction 

1.1 Motivation 

High flow events and flooding are expected to 

increase in both frequency and magnitude due 

to global climate change (Groisman et al., 

2001; Hirabayashi et al., 2013; Karl et al., 

2008). Thus, understanding surface water 

processes is essential for accurate flood 

predictions. One of the most variable physical 

parameter is roughness by vegetation resisting 

flow, also known as Manning’s roughness 

coefficient (𝑛), which decreases velocities and 

increases flood depths (Hession and Curran, 

2013). Vegetation along streams is difficult to 

measure because of variability in time and 

space. Vegetative roughness is not accurately 

quantified or monitored in research or industry 

due to lack of geospatial data integration, 

resulting in inept flood peak estimations 

leading to inadequate flood mitigation or costly 

overpreparation. 

1.2 Research objective 

These shortcomings will be addressed by using 

unoccupied aerial systems (UAS) to investigate 

the impact that vegetation seasonality, 

heterogeneity and structure have on floodplain 

roughness through the coupling of remote 

sensing with flood modeling. This will be done 

by utilizing several tools to study flood-

vegetation interactions including, two-

dimensional (2D) hydrodynamic modeling 

with inputs from light detection and ranging 

(lidar). 

1.3 Background 

By utilizing lidar and the UAS platform, we are 

able to fully account for riparian vegetation 

variability in space (across the floodplain and 

vertically through the vegetation structure) and 
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time (seasonal die-off, scour and post-flood 

herbaceous vegetation flattening). Lidar 

utilizes near infrared light pulses that are then 

deflected off objects back to the sensor. The 

sensor records how long it takes the pulse to 

return, and then calculates elevation by using 

the speed of light. This then creates a 3D point 

cloud, that penetrates the canopy and detect the 

ground. 

1.4 Initial results 

Preliminary data have shown the benefits of 

using UAS lidar data to derive spatial 

distributions of roughness or Manning’s 𝑛 in 

raster form for input to hydrodynamic models. 

This has been published in a peer-reviewed 

journal (Prior et al., 2021). This initial study did 

not account for vegetation health, roughness 

alternations between floods or between 

seasons, or depth-dependent roughness. The 

study utilized one point cloud and compare 

modeled results to seven flood events. 

2. Methods 

2.1 Field site 

All data has been collected at the Virginia Tech 

(VT) Stream Research, Education, and 

Management (StREAM) Lab (Figure 1). This 

outdoor laboratory is a 2.1 km restored section 

of Stroubles Creek used for interdisciplinary 

research. This site offers the desired riverscape 

complexity and long-term stage data, thus 

allowing for model validation and calibration. 

 

Figure 1. (a) Map of the VT StREAM Lab. (b) 

View of the first sampling bridge during a flood 

event, (c) floodplain velocity sensor, (d) in-

stream velocity sensor. 

2.2 Field data 

At StREAM Lab, there is in-situ monitoring to 

assess the long-term effects of the stream 

restoration completed in 2010. There are three 

monitoring bridges where stage and water 

quality parameters are continuously measured 

every 15 minutes (Figure 1b). There are 

eighteen groundwater wells with pressure 

transducers and eight floodplain pressure 

transducers (HOBO, Onset Computer 

Corporation, Bourne, MA, USA) measuring 

water elevations every 15 minutes (Figure 1). 

Sontek-IQ Plus uplooking acoustic Doppler 

velocity meters (Sontek—a Xylem brand, San 

Diego, CA, USA) were deployed throughout 

the stream, with three deployed in the channel 

(Figure 1d) and one in the floodplain (Figure 

1c). The velocity sensors, placed in the 



Prior  3 

thalweg, recorded an average velocity profile 

over a duration of 2 min and reported this 

average velocity profile every 5 min. Vertically 

averaged velocity was estimated by fitting a 

logarithmic curve (Garcia, 2008; Keulegan, 

1938) to the profile and then average velocity 

was determined from the curve fit. This was 

done to account for unmeasured regions in the 

velocity profile, such as near the bed and at the 

water surface (Garcia, 2008). Lastly, when 

possible the extent of the flood was flagged and 

surveyed to determine water surface elevations 

at the peak flow throughout the study area. 

These field data were used to calibrate (velocity 

sensors), validate (wells), and compare (flood 

extents) to the hydrodynamic model. 

2.3 Lidar data 

The UAS system utilized for lidar surveys was 

a Vapor35 (AeroVironment, Simi Valley, CA, 

USA) with a YellowScan Surveyor Core lidar 

unit (Monfeerier-sur-Lez, France). The lidar 

unit consists of a Velodyne VLP-16 laser 

scanner (Velodyne, San Jose, CA, USA) and a 

GNSS-inertial Trimble APPLANIX APX-15 

(Trimble, Richmond Hill, ON, Canada). To 

plan and conduct Vapor35 flights, we used the 

wePilot1000 flight control system and the 

weGCS ground control system software 

(weControl SA, Courtelary, Switzerland). The 

lidar flights were flown at a 30 m altitude, with 

20 m flight-line spacing, which was 

recommended by YellowScan staff for 

optimum point spacing and density. 

The YellowScan system is ultralight (2.1 kg) 

which is the allowable payload limit for the 

Vapor35. The lidar system can record two 

returns per pulse and uses a wavelength of 905 

nm. The Velodyne VLP-16 and the 

APPLANIX unit allow for one button data 

acquisition. After the flight, data was corrected 

using a local CORS base station, and was 

outputted into a LAS file format in UTM zone 

17N. 

2.3.1 Lidar corrections 

On initial inspection of the lidar data, 

misalignment in both the vertical (z) and 

horizontal (xy) directions were apparent when 

comparing scanlines from each flight (Figure 

2b and 2c). Each flight consists of four to six 

scans that are then merged together to create 

the final point cloud. These misalignments 

were most apparent when inspecting sampling 

bridges, but are also present at other human-

made objects in the floodplain, such as fence 

posts, gates, the weather station, and cars. 

 

Figure 2. Lidar misalignment demonstrated at 

two sample bridges with the different color 

point clouds representing different scanlines 

within one flight. (a) image of the first 

sampling bridge, (b) vertical misalignment 

occurring at the first sampling bridge between 

two scans, (c) horizontal misalignment 

occurring at the second sampling bridge 

between four scans. 

To correct these misalignments, the 

CloudCompare software 

(https://www.danielgm.net/cc/ ) was used to fix 

the misalignments by aligning to 2018 Virginia 

Geographic Information Network (VGIN) lidar 

and surveyed bridge points. First, a minimum 

filter was applied to our data and to the VGIN 

https://www.danielgm.net/cc/
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lidar. Once both the minimum filtered points 

were produced, iterative closest point (ICP) 

was used to minimize the difference between 

the two clouds of points. This produces a 

transformation matrix, which was then applied 

to our original point cloud. This shifted the 

point cloud to be more aligned with the VGIN 

lidar data. Manual adjustment was then done to 

better align with the surveyed bridge points. 

This was then done for each scan, until all scans 

were aligned and merged (Figure 3a). 

Next, the point cloud was then passed through 

a Python code that utilized the Simple 

Morphological Filter (SMRF) to classify 

ground points (Pingel et al., 2013). SMRF was 

modified to better account for the high density 

of points, along with the local topography 

(window size = 2, slope threshold = 0.15, 

elevation threshold = 0.1, elevation scaler = 

1.25 and cell size = 0.5). Along with classifying 

ground, vegetation was classified as low, 

medium and high by utilizing the above ground 

height that was previously calculated by SMRF 

(low vegetation < 1 m, medium vegetation 

between 1 m and 3 m, high vegetation > 3 m). 

These vegetation height thresholds can easily 

be changed in the future. A portion of the 

classified point cloud can be seen in Figure 3b. 

The points were then used to create a digital 

elevation model (DEM). 

 

Figure 3. Final point cloud colored by Z 

coordinate value (a and c), and classification 

(b). 

2.3.2 Final DEM 

The point cloud file was then imported into 

ArcGIS Pro (version 2.9.2). It was filtered to 

just include the points classified as ground 

(Figure 4b). The ground points were then used 

to create a DEM raster by using the “LAS 

Dataset to Raster” tool, where the interpolation 

type was set to binning, cell assignment was set 

to nearest and void fill method was set to 

natural neighbor. Raster size was set to 15 cm. 
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Next, bathymetric cross-sections surveyed all 

along the stream were then used to create a 

raster of stream bathymetry using the “Topo to 

Raster.” The bathymetry raster and the DEM 

raster were then combined using the “Mosaic 

to New Raster” tool (Figure 4d). 

 

Figure 4. Process of going from a classified 

point cloud (a) to the final DEM (d) by isolating 

just the ground points (b), creating a surface 

from the ground points and utilizing surveyed 

cross-sections of bathymetry (c). 

2.4 Model creation 

Next, a hydrodynamic model was created in 

Hydrologic Engineering Center's River 

Analysis System (HEC-RAS). First, the DEM 

raster was imported in as a new terrain. A 

shapefile outlining the expected 2D flow area 

was created in ArcGIS Pro and imported into 

HEC-RAS. The 2D flow area mesh was created 

with 1 m cells. The boundary conditions were 

then created, with the upstream boundary 

condition being a flow hydrograph of flows 

that we have observed in the field, and the 

downstream boundary condition being normal 

depth with a friction slope of 0.0025. 

A shapefile of the break lines and the 

refinement regions were created in ArcGIS Pro 

and imported into HEC-RAS (Figure 5). The 

break lines represent where there are natural 

changes in the topography (i.e. from inset 

floodplain to the main floodplain). The 

refinement region allows the user to create a 

finer mesh. This was done for the main 

channel, so that the 2D mesh in the channel 

consisted of 0.5 m cells. 

 

Figure 5. Zoom in of model and differing areas. 

A raster of roughness values was created in 

ArcGIS Pro and was imported in as landcover. 

Only two roughness values were used: 0.04 for 

the channel and 0.5 for the floodplain, which 

were previously determined through model 

calibration in (Prior et al., 2021). Lastly, 

reference points were imported into HEC-RAS 

as a shapefile containing all locations of the 

field sensors (Figure 6). Having reference 

points makes it easier to output modeled results 

exactly where the field sensors are located. 
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Figure 6. Model overview with reference areas 

showing where in-field sensors are located, and 

the gray grid showing the 2D flow area. 

5. Future steps 

Creating this model was a fundamental step in 

my research since it will now be used in all 

proceeding steps and analysis. The first project 

using this model will be to determine if DEM 

resolution and the nominal grid size of the 2D 

flow area greatly affect model outputs. These 

model outputs include flood extent, velocity 

and water surface elevation. This work will 

allow me to determine the most appropriate 

resolution for the DEM and 2D flow are, both 

of which will be used in future steps. 

I also plan to utilize the entire point cloud to 

estimate roughness, and not just simplify the 

lidar information into a 2D space such as a 

raster. Equations developed by (Fathi-

Maghadam and Kouwen, 1997; Kouwen, 1988; 

Kouwen and Li, 1980) will be applied to the 

point cloud directly surrounding the second 

velocity sensor located in the channel. Lidar 

will provide vegetation height information, 

while the normal depth and the velocity will be 

provided by the velocity sensor. Separately, I 

will also apply machine learning techniques to 

the point cloud as the water surface elevation 

changes to see if machine learning can output a 

similar roughness value to the velocity sensor 

data. Comparing machine learning results to 

the established equations will better inform us 

on how roughness changes with water surface 

elevation (i.e. depth-dependent roughness), and 

how the point cloud can help estimate these 

values. 

Once this is better understood, roughness 

rasters that represent roughness at various 

water surface elevations can be created and 

inputted into the 2D HEC-RAS model. 

Additionally, the DEM resolution along with 

the 2D flow area resolution will have been 

better constrained by the first study. These 

depth specific roughness rasters will further 

allow us to better understand and model depth-

dependent roughness. 

Additionally, interseasonal roughness can be 

further investigated since my lab group has 

been collecting seasonal lidar data since 2017. 

I can determine what affect vegetation die-off 

from seasonal change has on flood extent, 

water surface elevations and velocities through 

evaluation of the field data and hydrodynamic 

modeling. Another potential project could be to 

investigate how roughness changes between 
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floods due to scour and flattening of 

herbaceous vegetation. I would need to collect 

lidar before and immediately after a flood event 

to best represent current conditions. This has 

yet to be done since we are constrained to UAS 

flights during specific weather conditions. 

My research will evaluate the effects that water 

depth and seasonality have on vegetative 

roughness. Once vegetation roughness is better 

understood, new connections can be 

established on how ecohydraulics may affect 

relationships among sediment transport, biota 

habitat and surface water hysteresis. 

Additionally, this research will better constrain 

best practices for hydrodynamic modeling, 

which has societal implications for forecasting 

flood events. Other beneficiaries include 

infrastructure resiliency, stream restoration, 

riparian buffer zone design and watershed 

management planning. Thus, this work will not 

only improve modeling efforts of floodplains 

but aid management decisions in mitigating 

flood risks. 
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