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Abstract

Accurate vital sign detection systems are critical
for rapid emergency response and early identifica-
tion of diseases. However, vital sign monitoring
accuracy and intrusiveness often go hand-in-hand.
To address the need for accurate, non-intrusive vi-
tal sign detection, we introduce Apollo, a wear-
able vital sign monitoring system using sensors
made from conductive textiles. The current ver-
sion of theApollo system is capable of accurately
estimating respiration rate with a weighted aver-
age error rate of less than 1 breaths per minute
for sedentary activities, and a weighted average er-
ror rate of less than 1.5 breaths per minute while
subjects walk. The current version of Apollo is
capable of measuring heart rate with less than 5.5
beats per minute for certain sedentary activities,
and we thoroughly discuss possible design changes
to improve heart rate detection accuracy in later
versions of Apollo.

Introduction

When emergencies arise dealing with heart irregu-
larities or respiration difficulties, mere seconds can
be the difference between life and death. In non-
emergency scenarios, irregular heart or respiration
events can be symptoms of underlying diseases
which sometimes benefit from early-onset treat-
ment. As a result, the ubiquitous computing com-
munity has made a continuous effort over the past
decade to develop vital sign monitoring systems
that are real-time sensitive, accurate, and non-
intrusive. The first step when developing these
sensing platforms is measuring vital sign measure-
ment accuracy with healthy subjects.

One of the main challenges opposing such work
is that accuracy and intrusiveness tend to go hand-
in-hand. For example, the Holter monitor10 is
a highly-accurate, portable ECG device used by
medical professionals and astronauts alike. How-
ever, semi-flexible wires and electrode contacts re-

duces the level of comfort of the wearer. Smart-
watches are significantly more comfortable, but
measure heart rate with less accuracy than the
Holter monitor. Contactless means of measuring
vital signs are non-intrusive, but tend to be less
robust when subjects are in diverse environments.
To mitigate this accuracy/intrusiveness trade-

off, we introduce the fifth design generation of the
Apollo vital sign monitoring shirt which lever-
ages a combination of physical contact with the
wearer with soft conductive textiles to provide
an accurate vital sign monitoring system for the
wearer while being minimally intrusive. The prop-
erties of conductive textiles change upon applica-
tion of different types of physical stress such as
pressure or stretch forces; such forces include those
generated by expansion or compression of the chest
during respiration. Combined with modern signal
processing techniques, we can extract the respira-
tion and heart rate events using sensors built with
no rigid components.
We provide a preliminary evaluation of Apollo

using data collected from a small user study and
compare our results with prior works. Addition-
ally, we discuss the limitations of Apollo and in-
troduce possible solutions for future work as well
as specific medical applications.

In summary, this paper discusses the following:

1. Design and methodology for Apollo, a wear-
able vital sign monitoring shirt

2. Analysis of the accuracy of our design using
data collected from a small user study

3. A discussion of how Apollo compares to
prior research, and how we can further im-
prove our system

Vital Sign Monitoring Shirt
Design

In this section, we discuss the hardware used in
the assembly of Apollo as well as the hardware
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used to collect ground truth information during
our user study.

Base Clothing

Spandex-blend compression shirts are comfortable
and are worn for all manner of activities including
exercise, working, and sleeping. The base shirt
that is used forApollo is an Under Armour short-
sleeved athletic compression shirt; this base shirt
serves two purposes. First, compression material
is more form-fitting than regular non-compression
shirts and will conform to the wearer’s body shape.
People with different body shapes can fit into the
same-sized compression shirt without the material
being baggy in certain areas. This is often not
the case with non-compression shirts that are not
custom tailored to the wearer.
Second, the compression material increases the

probability that the pressure sensors and stretch
sensor remain in contact with the wearer at all
times regardless of level of activity. This is an im-
portant design consideration since higher intensity
activities such as running or biking will cause non-
compression materials to “flop around”.

Conductive Textile Sensors

There are two types of sensors sewn into our base
shirt: three pressure sensitive patches and one
stretch sensitive strip. The pressure sensitive fab-
ric3 used experiences a decrease in resistance when
pressure is applied, and the stretch sensitive fab-
ric14,15 experiences a decrease in resistance when
a stretching force is applied. When working with
conductive textiles, it is important to note that
these textiles have a maximum and minimum pos-
sible resistance which is dependent upon the di-
mensions of the fabric piece and the number of
layers of the fabric. After a certain amount of
force is applied, no additional resistance changes
will be measurable. We will call this the “satura-
tion limit” of the sensor.
To create a single pressure patch, we sew two

2in x 2in squares of pressure sensitive fabric back-
to-back. This increases the maximum amount of
pressure we can apply to a pressure patch be-
fore the saturation limit is reached. These pres-
sure patches are sewn on the inside of the shirt so
that chest and abdomen push the pressure patches
against the compression material of the base shirt.
Our stretch sensitive fabric comes sliced into

12cm x 12cm squares. We cut these fabric squares
into 12cm x 2cm rectangles which are then con-
nected end-to-end to create one long stretch sensor
(length depends on the size of the base shirt). Our
stretch sensor is sewn onto the outside of the shirt
primarily to avoid interfering with the connections
of the pressure patches.

(a) Sensor Layout

(b) Fabric Pressure Sensors

Apollo is in its fifth design phase; Figure 1a
shows the location of each fabric sensor and fig-
ure 1b shows the inside of a large-sized Apollo
shirt. Please note that the stretch sensitive fab-
ric is not show since the inside of the shirt is dis-
played and the stretch sensitive fabric is sewn to
the outside of the shirt. Stretch sensor 2 is run
vertically up/down the chest to allow for accurate
readings from users with varying body types. Dif-
ferent body types can fit into the same compres-
sion shirt. As a result, the chest or abdomen cir-
cumference of each user may vary. In preliminary
testing, we discovered that horizontal stretch sen-
sors placed around the circumference of the chest
and abdomen were less effective depending upon
the body type of the wearer.

We have four pressure patches 1A-D, but tech-
nically only three pressure sensors since 1A and
1C are in series. 1A and 1C are in series since
the signals generated by these patches individu-
ally were nearly identical during prototype tests.
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This is most likely the case because the chest ex-
pands symmetrically. 1B is placed near the cen-
ter of the abdomen and is particularly useful if a
user “belly breathes” rather than displaying chest
breathing.2 1D can be very useful for extracting
heart beat ballistic events if the user does not have
a large, protruding upper chest. This can create a
small gap between the compression material and
the neck at the neckline which reduces the contact
of the user with sensor 1D.

Control Patch

A control patch located on the left hip of the
Apollo shirt records voltage readings for all four
fabric sensors. These readings are transmitted via
Bluetooth Low Energy (BLE) to either a smart-
phone or another BLE capable device such as a
laptop. In order to remain as non-intrusive as
possible, the control patch uses as few rigid com-
ponents as possible. The control patch contains
a CurieNano1 microcontroller, a battery, four re-
sistors, and a voltage converter. These compo-
nents are encased in automotive headliner foam to
increase user comfort. The CurieNano is an Ar-
duino based microcontroller containing six analog
pins (for sensor measurements), a BLE module, a
6-axis accelerometer/gyroscope, and a 3-axis com-
pass. The control patch is detachable so that the
shirt can be washed.
Conductive thread4 is used to connect the con-

trol patch components to the fabric sensors; this
conductive thread is nearly as flexible regular
sewing thread and allows us to connect compo-
nents without wires.

Ground Truth Hardware

The ground truth for heart beat ballistic signals
is recorded using a Polar H10 heart rate moni-
tor.5 The Polar H10 has been validated against
ECG to record heart rate, RR interval data, and
timestamps of heartbeats with an error less than 2
milliseconds. The Polar H10 is worn at the base of
the sternum just below the pectoral muscles. To
collect ground truth data for respiration, subjects
in our study wore a microphone inside their N95
or equivalent mask to record respiration audio.

Related Work

Research into non-intrusive vital sign monitoring
systems can be separated into two different cat-
egories: direct physical contact and contactless
methods. There are advantages and disadvantages
for each category. Methods involving direct phys-
ical contact tend to be more robust to environ-
mental changes since the system moves with the

wearer; systems requiring contact with the users
are inherently more intrusive than systems that
are contactless. Contactless vital sign monitor-
ing systems can be highly influenced by changes
in the environment, but are by definition non-
intrusive. Since Apollo is a wearable vital sign
sensing platform, we limited our related work to
include only other wearable devices. Since our
platform only monitors heart and respiration rate,
we’ve excluded wearable devices that only moni-
tor body temperature, blood oxygen levels, and/or
blood pressure from our related work as well.

Direct Contact Methods for Vital
Sign Monitoring

Acoustic Based Sensing Platforms: Micro-
phones integrated into wearables have been shown
to collect sufficient audio data to detect both
heart rate9,29 and respiration rate.20,32 However,
noise from uncontrolled environments can intro-
duce noise into the audio generated by heart beat
ballistic signals and audio from expansion/con-
traction of the diaphragm.

Accelerometer Based Sensing Platforms:
Accelerometers are one possible type of sensor
that can be used to extract heart and respiration
rate. Several works have used 3-axis accelerome-
ters placed in varying locations on the chest/ab-
domen to record diaphragm motion during respira-
tion,7,11,12,16–18,23,26 achieving between 80-100%
accuracy for estimating respiration rate for seden-
tary activities such as sitting or lying down. Ac-
celerometers have been shown to detect heart beat
ballistic signals causing micro-vibrations through
the chest and abdomen. Chest-worn16,18,23 and
wrist-worn33 systems have achieved less than
5bpm and 9bpm error, respectively. Accelerom-
eters show promise as viable sensing platforms to
estimate heart and respiration rate; however, they
are yet to be validated for high intensity activities.

Conductive Materials Based Sensing
Platforms: Conductive textiles/materials inte-
grated into clothing or sensing patches provide
non-intrusive sensing platforms with minimal rigid
components. Respiration rate can be measured
using textile based stretch sensors,22,34 graphene-
based humidity sensors,24 textile based pressure
sensors,19,26,27 or textile based ECG sensors.6,27

The two works most closely related to Apollo are
Phyjama19 and Phymask.27 Phyjama obtained a
heart rate error of less than 2.5beats per minute
(bpm) and a respiration rate of less than 1bpm
during their sleep study. Phymask boasts an im-
pressive heart rate error of 1.7bpm with a respira-
tion rate error of 1bpm.

With conductive textiles, durability is the pri-
mary concern especially with the possibility of sen-
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Figure 2: Raw Signal Filtering Using Butterworth
Filters

sor degradation from being washed multiple times.
Continued research into increasing the robustness
of conductive textiles certainly necessary.

Signal Processing and Vital
Sign Estimation

The signal data collected from the four textile sen-
sors can be influenced by more than just respira-
tion and heart beat ballistic events: posture, body
shape, body movement, and even talking can add
noise to the data stream. As such, signal process-
ing methods must be used to extract the heart and
respiration rates from the raw data signals.

Respiration Rate Estimation

We have four sensors that are sensitive to breath-
ing, so we can generate a respiration rate estima-
tion for each sensor individually. Estimating res-
piration rate for each individual sensor requires
three steps. First, we use fast fourier transform
(FFT) on the sensor waveform to extract the dom-
inant frequencies; we select the most dominant fre-
quency in the range of 12 to 40 breaths per minute.
12 to 40 breaths per minute accounts for an activ-
ity range from sedentary to high intensity. Once
we have the dominant frequency, we use a 5th-
order lowpass Butterworth filter8 using our domi-
nant frequency to remove higher frequencies from
the sensor waveform. Figure 2 shows the transfor-
mation from the original (normalized) waveform
for a section of data collected from pressure sensor
1AC and the filtered waveform.
The dominant FFT frequency within the range

of normal respiration is used to select sliding win-
dow distance used by SciPy’s peak detection al-
gorithm31 or the PYAMPD peak detection algo-
rithm.28 The results achieved with each of these
algorithms were nearly identical. Figure 3 shows
a plot of the filtered voltage readings from stretch

sensor 2 while a subject was standing. The blue
lines represent the timestamps for our inhalation
events and the orange lines represent the peaks
found by the peak detection algorithm. Slight dif-
ferences between the ground truth and our peaks
is a result of our method for labeling audio data.
We discuss this in the next subsection.

Figure 3: Standing Respiration Peak Comparison

Respiration Rate Ground Truth
Labeling

Respiration audio was recorded while subjects
wore Apollo. To label the ground truth data,
initial timestamps for breath events were gener-
ated by first running a peak detection algorithm
on the audio waveform with a minimum distance
of D where D is the average number of data points
between inhalation and exhalation. This distance
is calculated manually through visual inspection
of the audio signal. Since the audio sampling rate
is 44000Hz, 1.5 seconds between inhalation and
exhalation would result in a D of 66000. Visual
inspection of the resulting plots, such as the one
shown in Figure 4, were conducted to ensure no
peaks were missed. For sections of audio data
where external noise was an issue, manual label-
ing by listening to the audio was required. Since
the study was conducted in a quiet environment,
the highest peaks in the audio waveform usually
resulted from respiration events.
The exact timestamp for the start of inhalation

is not very important; what matters is that each
inhalation event is recorded since the primary met-
ric used by most related works concerning respira-
tion detection is breaths per minute error (breaths
PME). As a result, the label for an inhalation
event is placed at the time where the inhalation
produced the largest spike in the audio waveform
(loudest point of inhalation).

Heart Rate Estimation

Heart rate estimation is more difficult than esti-
mating respiration rate for multiple reasons. First,
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Figure 4: Automated Ground Truth Labeling for
Respiration Rate

the force exerted on the pressure sensors from
heart beat ballistic signals is significantly smaller
than the force applied from expansion of the di-
aphragm. As such, noise introduced by small body
movements or body position changing makes heart
rate estimation difficult.
Respiration rate is slower than heart rate, and

heart and respiration rate are directly correlated
with one another.30 As such, we can perform fil-
tering to remove low frequencies by applying a
highpass Butterworth filter to remove frequencies
lower than 40breaths/minute (1.5Hz) which also
happens to be the same as our minimum selected
heart rate threshold of 40beats/minute. We can
further decompose our original waveform by also
applying a lowpass Butterworth filter to remove
frequencies above our maximum heart rate thresh-
old of 180beats/minute (0.33Hz). Figure 5 shows
how the sensor data transforms during this pro-
cess.

Figure 5: Sensor 1AC Transformed Using Lowpass
and Highpass Filters

At this point, heart beat ballistic signals should
appear as peaks. However, this method of data
processing is susceptible to noises within the
0.33Hz-1.5Hz range, and not all peaks will be as-
sociated with heart beats. Small body movements
can generate peaks in this frequency band as well.

Ideally, we would apply machine learning to this
task to extract the number of heart beats in a
given time window. However, we lack both di-
versity of data (cannot prove that our models gen-
eralize) and enough data to train a model suffi-
ciently. We discuss this problem more in-depth
below. For now, we use an adaptive peak detec-
tion algorithm28 with an adaptive window size de-
termined by the dominant frequency in the heart
rate range using FFT. We run FFT every 10 sec-
onds to determine if the dominant frequency in the
heart rate range changes. This adaptive window-
ing also helps reduce how noise affects our method
because noise should be episodic.

Respiration Rate Ground Truth

The PH10 provides the ground truth data we will
compare our heart rate estimations against. Fig-
ure 6 shows a plot of the raw ECG signal provided
by the PH10. To label the heart beat ground
truth, we first ran FFT on the raw ECG signal
to extract the dominant frequency. Then, we used
the peak detection algorithm provided by Python’s
SciPy module with a minimum distance set using
this dominant frequency. A researcher manually
verified plots of all PH10 data to ensure that all
peaks were correctly found.

Figure 6: Automated Ground Truth Labeling for
Heart Rate

Preliminary Evaluation

In this section, we describe our small user study
and report the our initial results for Apollo.

User Study

We conducted a small user study with three sub-
jects. Subject information is displayed in Table 1.
Subjects were asked to wear the Apollo shirt
whilst A. seated with their normal sitting posture
in a chair, B. stand in place while every minute
perform a 360° turn, and C. pace back and forth
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Subject ID Height Sex Shirt Size
S1 6’ 0” M XXL
S2 6’ 0” M L-XL
S3 6’ 1” M M-L

Table 1: User Study Demographics

down an empty hallway. Subjects were not told
to hold still and were allowed to use their hands
during the tests.
The walking test is included to determine the

level of noise vibrations from the heel striking the
floor will introduce into the sensor data. It stands
to reason that these vibrations will primarily af-
fect the pressure sensors as vibrations travel up the
body. In all, we collected nearly 3.5 hours of data
across all three subjects. Subjects 2 and 3 partic-
ipated in the study for 15 minutes each, with the
bulk of our data coming from subject 1.
Impact of Covid-19: Covid-19 certainly im-

pacted our ability to collect data both in terms
of diversity of subjects and number of subjects.
Remote data collection was attempted, but ulti-
mately data collection needed to be done in-person
to ensure data collection was successful for both
Apollo and the ground truth sources. For in-
person data collection, strict Covid-19 protocols
were observed in accordance with our institutional
review board protocol with William & Mary.

Respiration Evaluation

Breaths PME is the most commonly used metric in
the ubiquitous computing community for evaluat-
ing systems measuring respiration rate. Any sys-
tem with breaths PME <= 1 is considered highly
accurate.
Figure 9 shows a breakdown of our resulting

breaths PME by subject and by user study task.
Unsurprisingly, some sensors performed better de-
pending upon the body position of the user during
a specific task. As shown in Figure 9a, Sensor 2
performs the best in the standing position. We
discuss the high error for subject 3 below. The
error for walking for subjects 1 and 2 is accept-
able, and show promise that sensor 2 is capable of
measuring respiration rate while a subject is not
sedentary. Note: sensor 1B is not shown as there
was an issue with the sensor for subjects 2 and 3
where the sensor reached the force saturation limit
when users fully inhaled leading to a loss of data.
This sensor is currently being modified to have a
higher force saturation limit.
In Figure 9b, sensor 1D sees a sharp increase

in error for the sitting position, likely due to the
fact that the shoulder blades move forward when
sitting so there is less tension of the compression
material of the base shirt. Sensor 1D provided an

(a) Comparison of Error for Sensor 2

(b) Comparison of Error for Sensor 1D

(c) Comparison of Error for Sensor 1AC

Figure 7: Sensor Respiration Error by Subject and
Task

exceptionally clear waveform when standing and
walking for subject 3, and our filtering and peak
detection method correctly captured each respira-
tion event. The higher inaccuracy for subject 1
with sensor 1D can likely be attributed to the fact
that subject 1 has a BMI of 39.1 meaning that
the chest protruded outward creating an air gap
between the chest and the pressure sensor.

In Figure 9c, sensor 1AC worked exceptionally
well for the sitting position. We hypothesize that
this is a result of 1AC being located at the bottom
of the chest so sensor 1AC was able to maintain
contact with the chest even when the compression
material on the chest reduced pressure on sensor
1AC. However, sensor 1AC experienced higher in-
accuracy during walking. We believe that this is a
result of movement of the pectoral muscles as they
experience vibrations during normal gait.

Sources of Error For Respiration Estima-
tion: There are several possible sources of er-
ror that explain the differences in accuracy be-
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Figure 8: Subject 2: Sensor Comparison While
Sitting

tween pressure sensors (1AC, 1D) and the stretch
sensor (2). The most obvious sources of error
are body posture, body measurements/shape, and
body movement. We see a sharp increase in error
for the stretch sensor for subject 3 when comparing
standing respiration to sitting respiration. Sub-
ject 3 slouched while sitting which created slack
in the stretch sensor. As a result, chest movement
from respiration only minimally stretched this sen-
sor. However, pressure sensor 1AC still remained
in contact with the chest even while subject 3
slouched. Figure 8 shows the difference between
data recorded for sensor 1AC and sensor 2 for a
slice of time while subject 3 was sitting. As can
be seen, the respiration waveform is significantly
less noisy for sensor 1AC.
Body movement during walking can introduce

noise as well. Stretch sensor 2 appears to be rel-
atively resistant to body movement based upon
only a slight increase in error for walking respi-
ration detection for subject 1. However, exagger-
ated arm movement exhibited by subject 3 during
walking introduce additional peaks in the data for
sensor 2. When the arm swings, the shirt fabric
is pulled which also pulls on sensor 2. A possible
mitigation for this is to use a sleeveless compres-
sion shirt as the base shirt for Apollo instead of
a short-sleeved compression shirt. With the arm
no longer in a sleeve, arm movement should not
pull on the chest area of the shirt as much.
As expected, body type changes the placement

of the sensors on the body. A protruding chest vs
a flat chest certainly changes how sensor 1D will
contact the body which is why the error decreases
as chest size decreases from subject 1 to subject 3
for standing and walking activities.

Heart Rate Evaluation

The results for heart rate estimation are not as
encouraging as the results for respiration rate es-
timation. Several factors led to Apollo below

state-of-the-art results for conductive textile based
heart detection systems. We show our results and
discuss possible sources of error with the hope that
other researchers can avoid these problems in the
future.
Sensor 2 extracted heart rate with an average of

4.88, 5.11, and 5.76 beats PME for subjects 1, 2,
and 3, respectively. Error for this sensor increases
sharply for sitting and walking tasks likely due to
body posture and the natural movement of the
body while walking.
Sensor 1D extracted heart rate for subject 1

with an error of 6.38 beats PME which rises
sharply for walking likely due to large amounts
of chest movement while walking. Sensor 1D sur-
prisingly performed the best for subject 3. This
appears to be an outlier and is not indicative that
sensor 1D is accurate for estimating heart rate dur-
ing walking
Sensor 1AC shows the most promise for extract-

ing heart rate. The overall chest mass decreases
from subject 1 to subject 3; with less tissue to
absorb the vibration from the heart beat, sensor
1AC was able to estimate the heart rate of sub-
ject 3 with 0.96 beats PME while subject 3 was
standing.
Sources of Error For Heart Rate Estima-

tion:
It is clear that the conductive textile sensors

have poorer accuracy for heart rate estimation
when the wearer is not sedentary. Vibrations in-
troduced from the heel striking the floor while
walking, the arms swinging, and the chest twisting
all appear to introduce considerable noise into the
data recorded by each sensor. Posture definitely
affects the accuracy of Apollo as well. Slouch-
ing reduces the amount of pressure the compres-
sion material uses to force the pressure patches to
remain flush with the body of the wearer. As a
result, the transmission of the heart beat ballistic
force to the pressure patch is weaker.

Discussion and Future Work

Improving Respiration Rate
Estimation Accuracy

The peaks in the waveforms for each of the sensors
resulting from respiration are significantly larger
than the peaks resulting from heart ballistic sig-
nals; such a marked increase in peak size can be
attributed to the larger forces exerted upon the
sensors by diaphragm movement during breathing.
As such, both the pressure sensors and stretch sen-
sor achieved acceptable performance. We believe
that further performance increases can be achieved
by incorporating posture and overall body move-
ment detection so that respiration rate is esti-
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(a) Comparison of Error for Sensor 2

(b) Comparison of Error for Sensor 1D

(c) Comparison of Error for Sensor 1AC

Figure 9: Sensor Heart Rate Error by Subject and
Task

mated using the sensor most accurate for that
body position. Switching to a sleeveless compres-
sion shirt will also reduce noise created by arm
movements. A stretch sensor run vertically down
the latissimus dorsi muscle may also be beneficial
since this muscle moves during respiration.

Improving Heart Rate Estimation
Accuracy

The heart beat ballistic signal can be especially
weak depending upon body type. Body types with
large muscle or fat compositions around the chest
and abdomen will most likely result in weaker sig-
nals since the heart beat signal must propagate
through more tissue. Phyjama19 determines heart
beat from the least noisy pressure sensor which
is usually the sensor the wearer is directly laying
against. Coupled with the lack of movement dur-
ing sleep, a much clearer heart beat signal can be
detected. It is entirely possible that the compres-

sion shirt does not press our pressure sensors 1AC,
1B, and 1D against the skin enough to accurately
read these signals. It may be necessary to switch
to conductive textile patches that function as ECG
sensors as mentioned in the related work section.
The other option is to attach an adjustable strap to
the base shirt to tighten over the pressure sensors
though this would make the design more intru-
sive. We suspect that our pressure sensors would
perform better for heart rate estimation if more
pressure was used to ensure the sensors maintain
contact with the chest.

Future Work

Work on Apollo is currently ongoing. With
Covid-19 restrictions being modified or lifted, we
plan to enroll more participants in our study. Ad-
ditionally, we plan to conduct a separate user
study with medium to high levels of activity in-
cluding: climbing stairs, jogging, sprinting, and
performing push-ups. The primary reasoning for
such a user study is to evaluate the potential for
Apollo to be used to monitor vital signs during
exercise which could be useful for emergency de-
tection for the elderly.
Machine learning continues to be an excellent

way of extracting patterns from complex data.
Convolutional neural networks (CNN) and recur-
rent neural networks (RNN) have repeatedly been
show to be excellent choices for time-series data
prediction tasks. We will test heart rate estima-
tion using neural networks once our pool of subject
data is sufficiently large.
We are in the fifth generation of Apollo de-

sign. We will continue updating the design as
niche scenarios are encountered. Body tempera-
ture is another critical vital sign to monitor, and
several recent works have experimented with fab-
rication of temperature sensitive conductive tex-
tiles.13,21,25 We will attempt to integrate such
fabrics into our design should they become com-
mercially available.

Conclusion

In this paper, we presented Apollo, a wearable
vital sign detection system using conductive tex-
tiles. Strategically placed fabric based pressure
and stretch sensors sewn into a compression shirt
can measure changes in the chest and abdomen as-
sociated with respiration and heart rate. Through
a small user study, Apollo was capable of es-
timating respiration rate with a minimum error
rate of 0 breaths PME and a maximum error of
3.53 breaths PME depending upon which sensor
is used for respiration estimation. Apollo was
capable of estimating heart with a minimum error
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rate of 0.96 beats PME, but the overall conclusion
is that Apollo struggled to estimate heart rate
while the wearer moved or slouched. We touched
on design faults and scenarios that contribute to
inaccurate vital sign estimates, and we thoroughly
discussed solutions to these issues.
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