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Abstract 
Unmanned aerial vehicles (drones) are becoming increasingly popular for monitoring the 

spread of invasive plant species such as Ailanthus altissima (tree of heaven) and Elaeagnus 
umbellata (autumn olive). Because drones provide imagery with high spatial resolution, it is 
essential to understand whether intra-individual and intraspecific variability in fine resolution 
images will impede the ability to differentiate plant species. I collected images of forest canopies 
in northwestern Virginia, where A. altissima and E. umbellata are common, using a spectroscopic 
imager on a drone. Spectral signals were extracted from well-lit and representative pixels from 
individual trees and shrubs of known identities within spectroscopic images. Intraspecific and 
interspecific variability were calculated, and a partial least squares regression was used to predict 
the probability that individual trees and shrubs were E. umbellata or A. altissima. E. umbellata had 
low intraspecific variability compared to interspecific variability, while A. altissima had higher 
intraspecific variability. Intraspecific variability impacted classification certainty; mean 
probabilities of A. altissima (15-20%) classification were much lower than those of E. umbellata 
(60-100%), but classification was 98% accurate. These results demonstrate that despite variability 
within fine resolution spectroscopic images, accurate detection of target invasive plant species is 
still possible. 
 

Introduction 
Across the state of Virginia, invasive, 

non-native plants are radically altering natural 
environments by inhibiting the growth of 
native species upon which native wildlife and 
insects depend. These widespread changes in 
species composition also have broader impacts 
on soil chemistry and forest canopies, with 
feedbacks on dynamics of carbon, nutrients, 
water, and energy. 

Land managers are making concerted 
efforts to control the spread of invasive plant 
species, a task that demands extensive 
ecosystem monitoring. Traditional approaches 
to ecosystem observation and monitoring are 
satellite-based and ground-based. Each 
approach, however, has caveats: satellite 
imagery covers large areas but cannot provide 
fine-scale details, while ground surveying, 
despite its ability to provide fine-scale details, 
is labor intensive, and only partially surveys 
broad areas. Unmanned aerial vehicles (drones) 

provide data on an intermediate scale, with 
much higher spatial resolution than satellite 
data and with more spatial coverage than 
ground surveys. As drones merge the benefits 
of more traditional satellite-based and ground-
based monitoring, they are becoming an 
increasingly popular means to observe 
ecosystems, including invasive plant species 
monitoring. 

Whereas drones are becoming 
increasingly popular as a vehicle for invasive 
plant species monitoring, spectroscopy has 
been and continues to be used for the remote 
sensing of plant and ecosystem observation. 
Spectroscopy, which includes a large number 
of narrower, contiguous bands, provides 
detailed spectral information (Chance et al., 
2016; Kaufmann et al., 2008), which is 
influenced by differences in biophysical and 
biochemical characteristics of plants 
(Matongera et al., 2016; Wang et al., 2020; 
Yang et al., 2016), including: pigments 
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(Mahlein et al., 2010; Xiao et al., 2014), such 
as chlorophyll (Asner & Martin, 2008; Chance 
et al., 2016; Thenkabail et al., 2014), 
anthocyanins, and carotenoids (Blackburn, 
2007); plant water and vegetation stress 
(Thenkabail et al., 2014); and leaf N, P, and K 
(Asner & Martin, 2008; Chance et al., 2016; 
Mutanga et al., 2004; Thenkabail et al., 2014). 
Thus, spectroscopic data, which serve as an 
indication of plant chemical and structural 
properties, vary within and across ecosystems 
(Martin & Aber, 1997; Ustin et al., 2004). 

Spectra are strongly related to certain 
biochemical and structural plant traits 
(Jacquemoud et al. 2009; Kattenborn et al. 
2019; Ollinger 2010). Generally, higher 
spectral variation is associated with species or 
trait variation (Palmer et al., 2002).  Rocchini 
et al. (2004) and Palmer et al. (2002) found a 
significant relationship between spectral 
heterogeneity and species richness. Certain 
wavelengths, such as those associated with 
upper-canopy pigments, water, and [N], can be 
analyzed to determine species diversity. 
Variations in these wavelengths denote 
biochemical diversity and, therefore, species 
diversity. Intraspecific (within a species) trait 
variability, however, is sometimes similar to or 
even greater than interspecific (among species) 
variation (Jung et al. 2010; Messier et al. 2010; 
Leps et al. 2011; Auger & Shipley 2013). 

Though imaging spectroscopy has been 
previously used to identify individual plant 
species (Mishra et al., 2017), particularly 
invasive species (Aneece & Epstein, 2017; 
Chance et al., 2016; Kganyago et al., 2017; 
Skowronek et al., 2017), using these 
spectroscopic sensors in concert with drones is 
a relatively new application for these 
technologies. Whereas a few drone-based 
studies have been successful in identifying 
individual plant species, this has been 
accomplished in large monocultures where the 
target plant is easily distinguished from the 
surrounding vegetation.   

Additionally, drones provide 
spectroscopic imagery with much higher 
spatial resolution than satellites. In very fine 
spatial resolution, spectral variation among 
pixels will be greater than in coarser spatial 
resolution, which experience a smoothing 
effect of extreme values (Palmer 2000, 2002). 
It is expected, then, that spectral variation will 
be greater with decreasing spatial resolution. it 
is essential to understand the mechanisms that 
allow for the detection of target invasive plant 
species within these fine resolution images. 

To explore the fundamental questions 
of whether variability caused by fine resolution 
spectroscopy impedes the ability to 
differentiate plant species, I collected images 
during the 2020 growing season from forest 
canopies in northwestern Virginia at the 
Blandy Experimental Farm (BEF), where 
invasive species are present and common. I 
address the following questions: 

(1) Do intra-individual and intraspecific 
variability of target invasive plant 
species impede the ability to 
differentiate among species? 

(2) Can the spectral signal from individual 
pixels be used to effectively detect 
target invasive plant species in an 
image? 

 
Methods 

Study Site 
Blandy Experimental Farm (BEF), a 

biological field station owned by the University 
of Virginia, is located in the Shenandoah 
Valley in northwestern Virginia (39.06oN, 
79.07oW). At 190 m elevation, BEF has a mean 
annual precipitation of 975 mm, a mean annual 
temperature of 12oC and a mean July high 
temperature of 31.5oC. It contains 80 ha of old 
fields in various stages of succession (Bowers, 
1997).  

Aerial spectroscopic data collection 
took place over three 1-ha fields at BEF, based 
on their abundance of invasive plant species. 
The fields are in early- to mid-successional 
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stages and are approximately 20, 25, and 30 
years in age (Figure 1; green, blue, and purple 
polygons, respectively). Each field is located 
on low-relief topography. The early 
successional field (E; green polygon in Figure 
1A, Figure 1B) contains abundant invasive 
shrubs, including E. umbellata (autumn olive) 
and Rhamnus davurica (buckthorn) within a 
heterogeneous matrix of forbs, graminoids, 
shrubs, and trees (including the invasive tree of 
heaven, A. altissima). The 25-year-old early-to-
mid-successional field (EM; blue polygon in 
Figure 1A, Figure 1C) contains abundant 
invasive shrubs, including E. umbellata, R. 
davurica, Lonicera maackii (bush or Amur 

honeysuckle) within a heterogeneous matrix of 
forbs, graminoids, shrubs, and trees, but with 
more prevalent trees and shrubs than the early 
successional field. The mid successional field 
(M; purple polygon in Figure 1A, Figure 2D) 
contains abundant invasive shrubs, including 
R.  davurica and L. maackii, along with 
abundant A. altissima, and L. japonica and C. 
orbiculatus vines among forbs and native trees. 

 
Data collection and image post-processing 

Spectroscopic images were collected 
using a DJI Matrice 600 drone equipped with a 
high-precision GPS system and an imaging 
spectrometer (Nano-Hyperspec, Headwall 

B 

C D
D 

Figure 1. A. Locations of fields in which spectroscopic data were collected during the 2020 growing season. A field 
in early secondary succession (E), an intermediate early-to-mid successional field (EM), and a mid-successional field 
(M), shown in green, blue, and purple, respectively. B. Early successional field (E), which is about 20 years in age 
and contains abundant invasive shrubs, including E. umbellata (pictured on the left) and R. davurica. C. Early-to-mid 
successional field (EM), which is about 25 years in age and contains abundant invasive shrubs, including E. umbellata, 
R. davurica (pictured in the foreground), and Lonicera mackii. D. Mid-successional field (M), which is about 30 years 
in age and contains abundant invasive shrubs, including R. davurica, and L. mackii, along with A. altissima (pictured). 

A 



HUELSMAN 4 

Photonics, Bolton, MA). The imaging 
spectrometer has a spectral range of 400 to 
1000 nm (in the visible and NIR portions of the 
electromagnetic spectrum), with a spectral 
resolution of 2 to 3 nm over 270 spectral bands. 
Flight plans over each field were created using 
Universal Ground Control Software (UgCS), in 
which the drone would fly in straight lines at a 
consistent height of 48 m above the ground to 
obtain images with 3 cm pixels that could later 
be pieced together to form a larger image. The 
imaging spectrometer was programmed to 
capture images along the flight plan using 
HyperSpec III software (Headwall Photonics, 
Bolton, MA).  

Images were collected in the middle of 
the growing season in late June (DOY 178), 
midday between 10h and 15h to reduce impacts 
of bidirectional reflectance distribution 
function (BRDF) effects and under consistent 
sky conditions. This date of collection was 
chosen for its proximity to when the National 
Ecological Observatory Network (NEON) 
collects spectroscopic images using a fixed-
wing aircraft with coarser resolution 
(approximately 1 m resolution, compared to 
0.03 m resolution). Collected spectroscopic 
images were adjusted for incoming and 
scattered solar radiation using a sampled dark 
reference at the time of flight and a reference 
tarp located in the flight scene, respectively. 
Using HyperSpec III software, terrain and 
perspective effects were removed with a digital 
elevation model provided by the US Geological 
Survey, and a mosaic of multiple images was 
created.   
 
Image sampling 

Individuals of 16 tree and shrub species 
and plant assemblages (A. altissima, Celastrus 
orbiculatus, E. umbellata, Gleditsia 
triacanthos, Galium verum, Maclura pomifera, 
Juglans nigra, Juniperus virginiana, Lonicera 
japonica, Lonicera maackii, Pinus virginiana, 
Rhamnus davurica, rubus sp., Solidago 
altissima, Symphoricarpos orbiculatus, and 

graminoids) were identified in each of the three 
fields (E, EM, and M) using a high-precision 
GPS and used to catalogue individuals within 
imagery.  

The dataset used to examine intra-
individual and intraspecific variability 
consisted of a subset of 8 of the tree and shrub 
species (A. altissima, R. davurica, E. 
orbiculata, G. triacanthos, M. pomifera, J. 
nigra, L. maackii, and J. virginiana) from the 
three fields. If a given species was present in 
images of a field, up to five individuals were 
selected for analysis. In cases where fewer than 
five individuals were present, as many as were 
present were sampled. The dataset used to 
differentiate A. altissima and E. umbellata 
consisted of up to eight individuals of each 
species from each field where present.  

Within the images, 15 well-lit and 
representative pixels were selected for spectral 
sampling from each individual. To remove 
outliers, a mean was taken across all 
wavelengths for each reflectance spectrum of a 
pixel, and a mean was calculated in a similar 
fashion for all 15 pixels from each individual. 
Any pixel within an individual that differed 
more than 20% from the mean of the individual 
was removed from the dataset. This removed 
approximately 10% of pixels from observation. 

Intraspecific (among individuals within 
a species) spectral variability was quantified 
using a CV, using the variability among the 
means of each individual compared to the 
grand mean of the species. The CV was 
calculated across all wavelengths for each 
species. Interspecific (among species) spectral 
variability was also quantified using a CV, with 
the variability among the means of each species 
compared to the grand mean of all species 
across all wavelengths. 

To examine the composition of spectral 
variability I used a nested analysis of variance 
(ANOVA) to partition the variance into 
different levels: inter-community (among the 
plant communities in fields), intraspecific 
(among the individuals within a species), and 
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intraindividual (among the pixels within an 
individual canopy). The nested ANOVA was 
performed using the mean reflectance across all 
wavelengths from blue (450-500 nm), green 
(501-565 nm), yellow-orange (566-625 nm), 
red (626-679), red edge (680-750 nm), and 
near-infrared (751-950 nm) spectral regions.  

To differentiate A. altissima and E. 
umbellata, individuals from Fields E and M 
were used to train an algorithm using Partial 
Least Squares Regression (PLS-R). To create 
an algorithm to detect A. altissima, pixels 
known to be A. altissima were recoded into 
1’s, representing a 100% probability that those 
pixels are A. altissima, and all other pixels 
were recoded into 0’s, representing a 0% 
probability that those pixels are A. altissima. 
The same process was followed for E. 
umbellata. Once an algorithm was established, 
using reflectance at each wavelength to 
predict the probability a pixel is the species of 
interest for A. altissima and E. umbellata, 
individuals of known identities from Field EM 
were used to test the effectiveness of each 
algorithm.  

Using the probability of all pixels from 
each individual tree, shrub, or plant 
assemblage, a mean was calculated, to 
demonstrate the overall probability that the 
individual was the species of interest, on a scale 
from 0 to 1, 0 representing 0% probability that 
the individual is the species of interest and 1 
representing a 100% probability that the 
individual is the species of interest. This was 
done for all individuals using the algorithm to 
detect both A. altissima and E. umbellata. 
 

Results 
Variability 

In A. altissima, the intraspecific 
spectral variability exceeds interspecific 
spectral variability in green, yellow-orange, 
and some red (around 525 to 650 nm) spectral 
regions and again at the red edge (around 700-
720 nm). Intraspecific variability is nearly 
double interspecific variability around 590 nm 

and 610 nm (yellow-orange spectral region), 
and 700 nm (red edge spectral region). In E. 
umbellata intraspecific spectral variability does 
not exceed interspecific spectral variability in 
any wavelengths, though around 640 nm (red 
spectral region) and 700 nm (red edge spectral 
region), intraspecific and interspecific 
variability are nearly equal (Figure 2).   

For both species, the spectral regions 
with greatest intra-individual variability are the 
green (501-565 nm) and red edge (680-750 
nm). The relative contribution of intra-
individual variability in the green spectral 
regions in autumn olive (88%) is greater than 
that of tree of heaven (70%). The contribution  
of intra-individual variability in the red edge in 
both species was 99%, while intraspecific 
variability accounted for approximately 0.8% 
of total variability for both species (Figure 3). 
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Figure 2. Ratio of intraspecific (among individuals within a 
single species) to interspecific (among species) coefficient of 
variation (CV; the variation normalized by mean) for every 
wavelength. Spectra are split into visible, red edge, and near-
infrared regions. Ratio values over 1 indicate variability that 
is greater among individuals of a species than among species. 
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Detection 
The algorithm to detect E. umbellata 

(autumn olive) performed with much higher 
confidence than the algorithm to detect A. 
altissima (tree of heaven; Figure 4A). The 
mean probability that each E. umbellata 
individual would be classified correctly as E. 
umbellata ranged from 64% to 100% (Figure 
4A).  The mean probability that A. altissima 
individuals would be correctly classified as A. 
altissima ranged from 16% to 22% (Figure 5). 
Although the probabilities were lower for the 
A. altissima detection algorithm than for the E. 
umbellata detection algorithm, the  
probabilities were overall greater for 
individuals that were A. altissima than for 
individuals that were not. Only one individual 

A 

B 

Figure 4. Accuracy of the algorithm to detect A) E. umbellata 
(autumn olive) and B) A. altissima (tree of heaven). Each point 
represents the mean probability of classification of an individual 
tree or shrub, taken from multiple pixels within the individual. The 
x-axis shows actual identities of each individual tree or shrub, 
which are also color-coded by species. Tree of heaven (purple) and 
autumn olive (light green) are the focal species. 
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Figure 3. The results of partitioning of variance among 
communities (“inter-community”, shown in orange), 
among individuals within a species (“intraspecific”, 
shown in gold) and within individual canopies (“intra-
individual”, shown in light blue). The % variance is 
based on the relative contribution of that category to the 
total variance from all categories. The spectral regions 
are: blue (450-500 nm), green (501-565 nm), yellow-
orange (566-625 nm), red (626-679), red edge (680-
750 nm), and near-infrared (751-950 nm). 
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appears to be a false positive: a L. maackii 
(bush honeysuckle) individual, which had an 
overall probability of 15% classification as A. 
altissima and was within range of the 
classification of A. altissima individuals 
(Figure 4B).  
 

Discussion 
The relatively low intraspecific 

variability compared to interspecific variability 
of E. umbellata likely resulted in high certainty 
and accuracy of classification. The high 
intraspecific variability of A. altissima 
compared to interspecific variability, likely 
resulted in much lower certainties of 
classification probability. Regardless, the mean 
probability that A. altissima individuals would 
be classified as such was still generally higher 
than other species, with the exception of a 
single individual (L. maackii).  This leads to the 
conclusion that although intraindividual and 
intraspecific variability can impact detection of 
invasive plant species of interest, it does not 
impede the ability to detect them. 

To our knowledge, this is the first effort 
to identify and map invasive plant species 
within heterogeneous vegetation communities 
of the northern Blue Ridge region in Virginia. 
From this project our team expects to produce 
an effective methodology in utilizing 
spectroscopy to identify and locate targeted 
invasive plants, particularly the invasive tree A. 
altissima (tree of heaven) and shrub E. 
umbellata (autumn olive) from aerial images. 
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