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Abstract

In the circular restricted three-body problem, low energy transit orbits are revealed by linearizing the governing dif-
ferential equations about the collinear Lagrange points. This procedure fails when time-periodic perturbations are
considered, such as perturbation due to the sun (i.e., the bicircular problem) or orbital eccentricity of the primaries.
For the case of a time-periodic perturbation, the Lagrange point is replaced by a periodic orbit, equivalently viewed as
a hyperbolic-elliptic fixed point of a symplectic map (the stroboscopic Poincaré map). Transit and non-transit orbits
can be identified in the discrete map about the fixed point, in analogy with the geometric construction of Conley and
McGehee about the index-1 saddle equilibrium point in the continuous dynamical system. Furthermore, though the
continuous time system does not conserve the Hamiltonian energy (which is time-varying), the linearized map locally
conserves a time-independent effective Hamiltonian function. We demonstrate that the phase space geometry of transit
and non-transit orbits is preserved in going from the unperturbed to a periodically-perturbed situation, which carries
over to the full nonlinear equations.

Keywords: Astrodynamics, Three-body problem, Low energy transfer, Tube dynamics, Lagrange points,
Perturbations

1. Introduction

In recent decades, investigations of the circular restricted
three-body problem (CR3BP) from a dynamical systems
point of view have revealed an intricate fabric of mani-
folds woven between planets and moons (Conley, 1968,
1969; McGehee, 1969; Llibre et al., 1985; Koon et al.,
2001b; Jaffé et al., 2002; Astakhov & Farrelly, 2004;
Gómez et al., 2004; Dellnitz et al., 2005; Ross, 2006; Ross
& Scheeres, 2007; Gawlik et al., 2009; Topputo, 2013;
Oshima & Yanao, 2014; Onozaki et al., 2017; Todor-
ović et al., 2020; Ren & Shan, 2012). These manifolds
separate low-energy transit trajectories that successfully
pass through neck regions of permitted motion about the
Lagrange points, thereby travelling between phase space
realms of interest, from non-transit trajectories that fail
to pass through the neck regions. The phase space struc-
tures that separate transit and non-transit trajectories ap-
pear when linearizing the governing differential equations
about the system’s equilibria in the co-orbiting (rotating)
frame, the collinear Lagrange points (particularly L1 and
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L2). Linearization nonetheless fails on generalizations of
the circular restricted three-body problem subject to time-
dependent perturbations, such as fourth-body effects (i.e.,
the bicircular problem) or orbital eccentricity of the pri-
maries, because the fixed Lagrange points are no longer
equilibria. Moreover, the instantaneous (moving) null
points of the time varying vector field are not trajectories
(Wiggins, 2003).

In this paper, we introduce a geometric framework for
analysis of transit phenomena in time-periodic restricted
three-body models like the bicircular problem (BCP)
or the elliptic restricted three-body problem (ER3BP)
as a natural counterpart to the time-independent circu-
lar R3BP (CR3BP). Higher-dimensional time-dependent
manifolds, which we refer to as Lagrange manifolds1,
dynamically replace the L1 and L2 points as the funda-
mental objects whose stable and unstable manifolds pro-
vide the template for low energy dynamical behavior near
the smaller primary. Under a time-periodic perturbation
of period T , the Lagrange manifold is a manifold in the
phase space diffeomorphic to S 1, that is, a periodic or-
bit with a (minimal) period equal to T (Guckenheimer

1As they are higher-dimensional analogs of the Lagrange points
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Figure 1: Schematic illustrating how the Lagrange manifold bifurcates
as astrodynamical models go from simplest and least accurate at the bot-
tom, increasing in fidelity to the real ephemeris. The bifurcation dis-
cussed in this paper is the transition from the equilibrium point to the
periodic orbit.

& Holmes, 2013). Additional perturbations, not consid-
ered here, would further alter the topology, as depicted
schematically in Figure 1.

Prior investigations into models more complicated than
the CR3BP have successfully found periodic and quasi-
periodic orbits in the vicinity of former Lagrange points
by employing single shooting or multiple shooting algo-
rithms (Gómez et al., 2003; Jorba et al., 2020). Studies
have found quasi-periodic orbits on the center manifolds
of these dynamical replacements (Jorba et al., 2020) and
have numerically demonstrated associated transit phe-
nomena (Jorba & Nicolás, 2020; Paez & Guzzo, 2021).

In this paper, we demonstrate that the linear dynam-
ics corresponding to transit and non-transit behavior in
T -periodically-perturbed versions of the CR3BP can be
reduced to a linear time-T map with the same dynamics
and geometry as that in the unperturbed CR3BP. This is
a significant simplification for understanding the geome-
try of transit orbits, as results from several decades ago
carry over in a straightforward manner, without requir-
ing higher-order expansions. In the phase space of the
map, the Lagrange manifold periodic orbit corresponds to
an index-1 fixed point with a 1-dimensional stable mani-
fold and 1-dimensional unstable manifold. Construction
of transit and non-transit orbits follows from established
methods dating to Conley in the 1960s (Conley, 1968,
1969). The geometry in the linearized regime extends to
the full nonlinear system, where the linear symplectic map
near the Lagrange manifold will be replaced by a nonlin-
ear symplectic map. Finding this nonlinear map is not our
current goal, but is an objective for future research. Ac-
cording to a theorem by Moser, the linear map provides
the basic geometric picture that carries over to the non-
linear case (Moser, 1958, 1973). We demonstrate our re-
sults by considering transit orbits near the Earth-Moon L1
cislunar point, the closest Lagrange point to Earth and a
likely future hub for a space transportation system (Con-
don & Pearson, 2001; Lo & Ross, 2001).

2. Classification of orbits in the circular
restricted three-body problem

2.1. Equations of motion

The CR3BP models the motion of a small mass or test
particle m3 in the gravity field of two massive bodies
m1 > m2. Masses m1 and m2 orbit their common cen-
ter of mass O in circular orbits. We consider here only the
planar CR3BP where m3 is free to move throughout the
m1-m2 orbital plane. Generalizing the following theory to
the spatial CR3BP is very straightforward in the unper-
turbed case, and so we consider descriptions of the spatial
unperturbed and perturbed cases to be beyond the scope
of the current work. The equations of motion are written
in a rotating reference frame with origin O. The x-axis of
the rotating frame coincides with the line between m1 and
m2 whereas the y-axis points in the direction of motion of
m2 (see Figure 2).

The non-dimensional equations of motion for m3 in
the planar CR3BP (our focus here) are autonomous
Hamilton’s canonical equations with Hamiltonian func-
tion (Koon et al., 2011),

HCR3BP =
1
2 (p2

x + p2
y) − xpy + ypx −

µ1

r1
−
µ2

r2
, (1)

where,

r1 =

√
(x + µ2)2 + y2, r2 =

√
(x − µ1)2 + y2, (2)

with µ1 = 1−µ and µ2 = µ the non-dimensional masses of
m1 and m2, where µ = m2/(m1+m2) is the mass parameter.

Figure 2: The models considered, viewed in the m1-m2 barycentered
average rotating frame.

2.2. The Lagrange points

The CR3BP, as an autonomous system, has five equilib-
rium points called Lagrange points as viewed in the rotat-
ing frame, as shown in Figure 3(a). The three equilibria
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lying on the x-axis, L1, L2, and L3, are index-1 saddle
collinear points; the remaining two, which form equilat-
eral triangles with m1 and m2, are the triangular points
(center × center points for µ ≲ 0.039). Because of their
connection with low energy orbits via transit from orbits
about m2 and about m1 and vice-versa, we focus on the
collinear points.

2.3. The Hill’s region and the Hamiltonian energy

Trajectories of the CR3BP conserve the Hamiltonian en-
ergy, HCR3BP = E, where E ∈ R is the initial Hamilto-
nian energy. The Hill’s region is the subset of position
space throughout which m3 has enough energy to travel.
The boundary of the Hill’s region, beyond which lies the
forbidden realm, is called the zero-velocity surface in the
spatial case and zero-velocity curve in the planar case
(Szebehely, 1967). The qualitative characteristics of the
corresponding Hill’s region naturally assign E to one of
five different intervals (see Figure 3(b)):

1. For E < E1, m3 is confined to either a subset of po-
sition space around m1 (the m1 realm), a subset of
position space around m2 (the m2 realm), or a sub-
set of position space outside m1 and m2 (the exterior
realm). In this situation, m3 cannot cross between
any of the three realms.

2. For E1 < E < E2, a neck region opens up around the
L1 point that permits travel between the m1 and m2
realms.

3. For E2 < E < E3, another neck region opens up
around the L2 point that permits travel between the
m2 and exterior realms.

4. For E3 < E < E4, yet another neck region opens up
around the L3 point that permits travel between the
m1 and exterior realms.

5. For E4 < E, the forbidden realm completely disap-
pears.

Thus, regions around the collinear Lagrange points play
an important role in controlling transit between realms.
We typically consider the second or third cases, in which
transit between realms is possible but is governed by man-
ifold structures associated with L1 and in the latter case
L2.

2.4. Linearization about L1 and L2

Linearizing the Hamilton’s equations about L1 or L2, the
eigenvalues of the linear system are a purely real pair,
±λ, and a purely imaginary pair, ±iν, where λ, ν >
0, which makes such points index-1 saddles (Marsden
& Ratiu, 1999). The corresponding generalized eigen-
vectors, when properly re-scaled, provide a symplectic
eigenbasis (Zhong & Ross, 2020). In the symplectic

(a)

(b)

Figure 3: (a) The Lagrange points of the CR3BP for µ = 0.3. (b) The
five cases of the energetically accessible regions (i.e., Hill’s region) by
CR3BP Hamiltonian energy.

eigenbasis with corresponding coordinates and momenta
(q1, p1, q2, p2), the linearized equations simplify to,

q̇1 = λq1, ṗ1 = −λp1,
q̇2 = νp2, ṗ2 = −νq2.

(3)

which are Hamilton’s canonical equations with corre-
sponding quadratic Hamiltonian function,

H2 = λq1 p1 +
1
2ν(q

2
2 + p2

2). (4)

As (3) is linear, its solution is readily obtained and must
conserve the quadratic Hamiltonian function (4).

2.5. Geometry of the linearized equilibrium region

The two canonical planes associated with (3) are un-
coupled: the q1-p1 canonical plane has saddle behavior
whereas the q2-p2 canonical plane has center behavior, as
shown in Figure 4.

Choose a fixed, small h > 0 such that H2 = h. Because
1
2ν(q

2
2 + p2

2) ≥ 0, a forbidden region in the saddle pro-
jection arises for each h. The boundary of the forbidden
region is given by the hyperbolas q1 p1 = h/λ; the shape
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Figure 4: The two canonical planes of the dynamics in the symplectic
eigenbasis in the neighborhood of a collinear Lagrange point; orbits la-
beled T transit from one realm to another, while those labeled NT do not.

of the area outside this boundary reproduces the neck re-
gion found in the full equations of motion (Conley, 1968),
as shown in Figure 4.

For some small constant c > 0, initial conditions along
the line p1−q1 = +c lie entirely within one realm whereas
initial conditions along the line p1 − q1 = −c lie entirely
within the other. For details, see Koon et al. (2011) and
references therein. We refer to these boundaries as n1 and
n2, respectively (see Figure 4).

Orbits present in the neighborhood of the equilibrium
point can be classified (Conley, 1968) according to their
behaviors in the saddle projection (see Figure 4):

1. The point at the origin of the saddle projection corre-
sponds to the center manifold of the Lagrange point.
Each trajectory within the center manifold is a pla-
nar periodic orbit called a Lyapunov orbit about the
equilibrium point.

2. The q1-axis and the p1-axis of the saddle projec-
tion correspond to trajectories that asymptotically
approach the Lyapunov orbits as t → −∞ or t →
+∞, respectively. These sets of trajectories are the
unstable and stable manifolds, respectively, of the
Lyapunov orbit of energy h, or, together, the asymp-
totic orbits.

3. The hyperbolic trajectories in the first and third quad-
rants, when integrated, intersect both p1 − q1 = +c
and p1 − q1 = −c. Because they pass from one realm
to the other, they are called transit orbits.

4. The hyperbolic trajectories in the second and fourth
quadrants are unable to intersect both p1 − q1 = +c
and p1−q1 = −c. As they do not pass from one realm
to the other, they are non-transit orbits.

This qualitative picture in the linearized case carries over
to the nonlinear setting via a theorem of Moser (Moser,
1958, 1973).

3. Lagrange manifolds in periodically-perturbed systems

3.1. Periodically-perturbed systems

In the analysis which follows, we consider periodically-
perturbed non-autonomous dynamical systems of the
form,

ẋ = F(x, t; ϵ), where x ∈ U ⊂ Rn, t, ϵ ∈ R. (5)

where F is periodic in time t; that is, there exists a minimal
period T such that F(x, t; ϵ) = F(x, t + T ; ϵ) for all t, and
ϵ is a perturbation parameter such that F(x, t; ϵ) → f (x)
as ϵ → 0, where f is an autonomous system. A special
form of F(x, t; ϵ) is f (x) + g(x, t; ϵ), where g(x, t; ϵ) → 0
as ϵ → 0.

In a periodically-perturbed system, we can define the
phase as θ = ωt mod 2π, where ω = 2π/T . The system
can then be written in autonomous form,

ẋ = F(x, θ; ϵ),
θ̇ = ω.

(6)

where we note that time has been turned into a cyclic vari-
able, θ ∈ S 1.

3.2. Flow maps

Consider an arbitrary trajectory of the system (5) with ini-
tial condition x(t0) = x0. Define the corresponding flow
map, ϕ(·), as,

x(t0) 7→ x(t) = ϕ(t, t0; x0). (7)

Consider the family of time-T stroboscopic maps Pt0 :
U → U defined as,

x0 7→ Pt0 (x0) = ϕ(t0 + T, t0; x0). (8)

For a time-periodic Hamiltonian system, Pt0 is a symplec-
tic, stroboscopic map of the phase space over one period.
It can equivalently be written with the parameter as the
initial phase θ0 = ωt0 as Pθ0 . Note that Pt0 (x0) has an
inverse,

x0 7→ P−1
t0 (x0) = ϕ(t0 − T, t0; x0). (9)

3.3. State transition and monodromy matrices

The state transition matrix Φ(t, t0; x0) linearly approxi-
mates the flow map, ϕ(t, t0; x0). That is, it maps how
trajectories slightly displaced from a reference trajectory
x(t) evolve from time t0 to t. For simplicity of notation,
the dependence of the state transition matrix on its initial
condition x0 = x(t0) is suppressed. For (5), Φ(t, t0) is the
solution to the initial value problem

Φ̇(t, t0) = DF(x(t), t; ϵ)Φ̇(t, t0), Φ(t0, t0) = In, (10)
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where In is the n×n identity matrix and DF is the Jacobian
of F.

For a periodic orbit, the monodromy matrix is,

Mθ0 = Φ(t0 + T, t0), (11)

which maps small initial displacements from the periodic
orbit at phase θ0 (initial time t0) to their resulting displace-
ment after one period (Jordan & Smith, 2007). For Hamil-
tonian systems, the monodromy matrix defines a linear
symplectic map (Lichtenberg & Lieberman, 1992).

3.4. Lagrange periodic orbits replace Lagrange points

In perturbed systems where the perturbation is time-
periodic and sufficiently small, equilibrium points are ex-
pected to bifurcate to periodic orbits. This result follows
from the Averaging Theorem (Guckenheimer & Holmes,
2013). The Lagrange points of the CR3BP consequently
bifurcate into periodic orbits in the presence of periodic
perturbations. These periodic orbits, because they dy-
namically replace the Lagrange points, by definition form
a class of Lagrange manifolds. The behavior near a La-
grange point is determined via linearization of the contin-
uous differential equations. By contrast, the behavior near
a Lagrange periodic orbit is determined via monodromy
matrix calculation, which yields a discrete linear map.

A Lagrange periodic orbit has the same period as the
perturbation. We can compute a Lagrange periodic orbit
by solving a zero-finding problem: choose x̄ that mini-
mizes the quantity |x̄ − P0(x̄)| to within a certain tolerance
(where for convenience we choose the zero phase map,
P0). For example, an optimization method was used to
find the Earth-Moon L1 Lagrange periodic orbit in the el-
liptic problem (Section 6).

To obtain periodic orbits with arbitrary perturbation
sizes, we can combine this methodology with continua-
tion. By artificially decreasing the magnitude of the per-
turbation to nearly zero, calculating the Lagrange man-
ifold using the approach described, and then increasing
the magnitude of the perturbation slightly and using the
previous initial condition as an initial guess, it is possi-
ble to ”continue” the Lagrange periodic orbit out of the
Lagrange point.

Unlike as in the elliptic problem, our initial condition
for the bicircular problem was obtained via personal com-
munication with the authors of Jorba et al. (2020), who
utilized a multiple-shooting and continuation method.

4. Linear 4D symplectic map near
elliptic-hyperbolic point

4.1. Definitions

Suppose a fixed point of the time-T map P0 has been iden-
tified and it is of elliptic-hyperbolic type, corresponding

to a periodic orbit of saddle-center type of period T of a
T -periodic 2 degree of freedom Hamiltonian system. Let
x = (q1, p1, q2, p2) denote the displacement from the fixed
point within the domain of the map P0. The linearization
of P0 about the fixed point (i.e., the monodromy matrix)
can be put into a symplectic eigenbasis. Suppose that
(q1, p1, q2, p2) are coordinates with respect to this sym-
plectic eigenbasis, where the first canonically conjugate
coordinate pair (q1, p1) corresponds to the hyperbolic (or
saddle) directions and the second canonically conjugate
coordinate pair (q2, p2) corresponds to the elliptic (or cen-
ter) directions. In other words, the dynamics for small x
are given by a linear 4-dimensional symplectic map,

x 7→ Λx (12)

where Λ is a symplectic matrix of the block diagonal
form,

Λ =


σ 0 0 0
0 σ−1 0 0
0 0 cosψ sinψ
0 0 − sinψ cosψ

 , (13)

for σ > 1 and for some ψ ∈ S 1.

4.2. The effective quadratic Hamiltonian

Proposition 1. The discrete map x 7→ Λx is identical to the
time-T map of the linear Hamilton’s canonical equations
generated by an effective quadratic Hamiltonian,

H̃2 = λ̃q1 p1 +
1
2 ν̃(q

2
2 + p2

2), (14)

where,

λ̃ = 1
T lnσ > 0, ν̃ = 1

T ψ > 0. (15)

The proof is quite straightforward and has been omitted
due to space considerations.

4.3. Geometry of the linear map

Because H̃2 is qualitatively identical to H2 from (4), the
solution geometry under Λ is qualitatively the same as
a discrete time-T map of the dynamics near a collinear
Lagrange point of the CR3BP. The primary difference in
interpretation is that solutions are now discrete, but still
belong to families of continuous curves in the saddle and
center canonical projections, as shown in Figure 5. Note
that the two canonical planes are uncoupled. All the qual-
itative results related to the four types of orbits from Sec-
tion 2.5 carry over to the discrete case. In particular, hy-
perbolas in the saddle projection corresponding to transit
and non-transit orbits can be identified.
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Figure 5: The two canonical planes of the dynamics under the mapping
x 7→ Λx; the orbits here are discrete solutions of a map (represented as
large dots in one of the transit curves) as compared to continuous orbits
in Figure 4.

4.4. Connection with Lagrange periodic orbits

A T -periodic Hamiltonian perturbation of the CR3BP will
give rise to a Lagrange periodic orbit of period T of
saddle-center type. Therefore, the geometry at each phase
will follow the geometry given above, including in the full
nonlinear map of the motion (Wiggins, 2003).

Thus, the CR3BP perturbed by a periodic Hamilto-
nian perturbation will have the transit structure described
herein. Below, we consider two particular examples: the
bicircular problem (which includes the effect of an addi-
tional mass) and the elliptic restricted three-body prob-
lem.

5. Transit orbits in the bicircular problem

5.1. Equations of motion of the BCP

The bicircular problem (BCP) is a generalization of the
CR3BP that describes the motions of four gravitationally
interacting bodies m0, m1, m2, and m3 where m2 < m1 and
where m3 has negligible mass. In the inertial frame, m1
and m2 trace circular orbits around their center of mass
O; similarly, m0 and O trace circular orbits around their
common center of mass (Cronin et al., 1964; Simó et al.,
1995). The equations of motion are written in the CR3BP
rotating reference frame so that m1 and m2 are still fixed.
The large mass m0 is not fixed in the rotating frame but
appears to trace a circle around O (see Figure 2).

The non-dimensional equations of motion for m3 in the
BCP are, unlike the equations of motion for the CR3BP,
specifically time-periodic (Koon et al., 2011). They are
Hamilton’s canonical equations for a Hamiltonian,

HBCP = HCR3BP + Hm0 (t), (16)

where the time-dependent perturbation is,

Hm0 (t) =
µ0

a2
0

(
x cos θm0 (t) + y sin θm0 (t)

)
−

µ0

r0(t)
(17)

where,

r0(t)2 = (x − a0 cos θm0 (t))2 + (y − a0 sin θm0 (t))2,

θm0 (t) = −ωm0 t + θm00
(18)

where µ0, a0, ωm0 , θm0 , θm00, and r0 are the mass, dis-
tance, angular velocity, current angle, initial angle of
m0, and distance from the particle, respectively, in non-
dimensional units. The period of m0 about the origin is
T = 2π/ω where the frequency is ω = ωm0 for this sys-
tem. Note that the resulting equations of motion are of the
form (5) where µ0 corresponds to ϵ.

This model has been used to model a small celestial
body or spacecraft (m3) in the gravity field of the Earth
(m1) and Moon (m2) when perturbed by the effect of the
Sun (m0) (Simó et al., 1995). The parameters in this case
are µ = 0.01215, µ0 = 328900.54, a0 = 388.81114, and
ωm0 = 0.925195985520347 in non-dimensional units.

The BCP reduces to the CR3BP when gravitational per-
turbations from m0 are negligible; that is, when the terms
due to m0 go to zero, which occurs when µ0 → 0 or when
a0 → ∞. The CR3BP also approximates the BCP when
ωm0 → ∞ as the perturbation averages out for sufficiently
large angular velocity.

5.2. The instantaneous Lagrange points

As discussed previously, the perturbation from m0 funda-
mentally removes the equilibrium points (see Figure 6).
Because the BCP is non-autonomous, the vector field as-
sociated with the equations of motion varies with t or,
equivalently, θm0 . Setting the right side of the BCP equa-
tions of motion to zero yields an instantaneous zero of the
vector field that varies with the independent variable, trac-
ing out a path that repeats every 2π in the Sun angle θm0 .
Such points are not equilibria, and this path is not a tra-
jectory; particles with initial conditions along it diverge
quickly. One must consider the Lagrange periodic orbit
which dynamically replaces the Lagrange point.

5.3. Dynamics near the Sun-Earth-Moon BCP L1 p.o.

The initial condition of the Sun-perturbed Earth-Moon
BCP’s L1 Lagrange periodic orbit can be found nu-
merically using a zero-finding procedure (Jorba et al.,
2020).Figure 6 depicts its path in position space. The
eigenvalues of the monodromy matrix from 0 to T are of
the elliptic-hyperbolic form given previously, with σ =
4.2874 × 108 and ψ = 3.0273. Note that the monodromy
matrix could be calculated starting at a different initial
phase.
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Figure 6: The BCP Earth-Moon L1 periodic orbit (black) compared with
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of the BCP vector field. The former is a trajectory; the latter is not. Both
have doubly-looping structures over a single period of the perturbation,
but at the resolution shown, even in the inset, only the periodic orbit’s
two loops are visible.

The monodromy matrix of the Lagrange periodic orbit
from 0 to T can transformed into its symplectic eigenba-
sis, which is in the form of (13). As a result, we can con-
struct initial conditions that are transit or non-transit be-
tween the Earth and Moon realms when integrated in the
full nonlinear equations of motion with Hamiltonian (16).
In Figure 7(a), the black hyperbola represents the calcu-
lated boundary of the forbidden realm, as shown schemat-
ically in Figure 5; the red line contains initial conditions
that should transit whereas the blue line are initial con-
ditions that should not transit. In Figure 7(b), the corre-
sponding red trajectories are transit orbits, starting in the
Moon realm and going to the Earth realm, whereas the
blue trajectories are non-transit orbits. Trajectories going
from the Earth realm to Moon realm could just as easily be
constructed by starting on the other boundary, n2, instead
of n1.

The spherical cap of transit orbits (labeled ΓT) in the
bicircular model is mapped forwards and backwards for
one period in Figure 8. Under the stroboscopic map P0,
the set undergoes considerable distortion, but the topol-
ogy, which is equivalent to that of a spherical cap, is
still preserved. This setup is analogous to the description
of Poincaré section transit orbit intersections previously
computed in the Earth-Moon CR3BP (Koon et al., 2001a).

(units of )

(u
n

it
s 

o
f 

)

(a)

Lagrange

Periodic

Orbit

(b)

Figure 7: (a) Numerically determined initial conditions for transit and
non-transit orbits found by looking in the q1-p1 saddle canonical plane
at initial phase θ = 0. H̃2 = 10−6 and c = 10−4. Compare with schematic
shown in Figure 5. (b) The initial conditions integrated in the full equa-
tions of motion showing transit and non-transit behavior.

6. Transit orbits in elliptic restricted three-body problem

6.1. Equations of motion in the ER3BP

The elliptic restricted three-body problem (ER3BP) is a
generalization of the CR3BP that drops the restriction that
m1 and m2 move on circular orbits about their barycenter
(Broucke, 1969; Szebehely, 1967). Instead, m1 and m2
move in more realistic elliptical orbits around their cen-
ter of mass O. We write the equations of motion in the
rotating reference frame which rotates uniformly with the
mean angular motion (ω = 1); that is, we utilize the same
rotating frame as used for the CR3BP. Most authors ana-
lyzing this system utilize a “pulsating” coordinate system
(Broucke, 1969; Gawlik et al., 2009), which we have cho-
sen not to do despite the considerable utility of this coor-
dinate system; our aim is to bring about the commonalities
of both the ER3BP and BCP and to provide ourselves with
a useful toy model for our analysis.

Due to non-zero eccentricity, in this frame, m1 and
m2 move periodically about their CR3BP locations; their
movements are given by the true anomaly φ of the system
as a function of time (see Figure 2 for the geometry). The
equations of motion are Hamilton’s canonical equations
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Figure 8: The spherical cap of transit orbits, ΓT, is mapped forwards
and backwards in the bicircular model and then projected into x-y-px
space.
with Hamiltonian,

HER3BP =
1
2 (p2

x + p2
y) − xpy + ypx −

µ1

r1(t)
−

µ2

r2(t)
, (19)

where the same non-dimensional units as in the CR3BP
are used. Compared to the circular problem Hamiltonian,
(1), the distances ri are now explicit functions of time,

r2
i (t) =

∣∣∣∣∣∣
([

x
y

]
+

1 − µi

1 + e cosφ(t)
R(t)

[
cosφ(t)
sinφ(t)

])∣∣∣∣∣∣2 ,
with R(t) =

[
cos t sin t
− sin t cos t

]
,

(20)

where φ(t) is the solution to the differential equation,

φ̇ =
(1 + e cosφ)2

(1 − e2)3/2 , (21)

with initial condition φ(0) = φ0. For the Earth-Moon sys-
tem, we use e = 0.0549006. Using the mean anomaly as
the phase θ, the equations of motion are of the form (5)
with T = 2π/ω = 2π and with e corresponding to ϵ. Note
that HER3BP from (19) becomes HCR3BP from (1) as e→ 0.

6.2. Dynamics near the Earth-Moon ER3BP L1 p.o.

The Earth-Moon eccentric problem’s L1 Lagrange peri-
odic orbit, obtained via a zero-finding algorithm (sec-
tion 3.4), is depicted in Figure 9. We show the BCP L1
manifold for comparison, which is an order of magnitude
smaller in amplitude.

The eigenvalues of the monodromy matrix from 0 to T
are of the elliptic-hyperbolic form given in Section 4.1,
with σ = 8.3659 × 107 and ψ = 1.9863. Constructing a
symplectic eigenbasis from the monodromy matrix yields
initial conditions that transit or fail to transit between the
Earth and Moon realms when integrated in the full non-
linear equations of motion—that is, Hamilton’s canonical
equations with Hamiltonian HER3BP given in (19).

Earth-Moon
line

ER3BP
     Lagrange
periodic orbit

BCP
     Lagrange
periodic orbit

Earth Moon

Figure 9: The ER3BP Earth-Moon L1 periodic orbit (large, dark green)
and the BCP L1 periodic orbit (black) in the position space (average
rotating frame, CR3BP coordinates). The ER3BP L1 periodic orbit is
singly-looping, not doubly-looping as in the BCP.

In Figure 10(a), the black hyperbola represents the cal-
culated boundary of the forbidden realm in the saddle pro-
jection. The red line corresponds to initial conditions, ΓT,
that should transit whereas the blue line is initial condi-
tions that should not transit, ΓNT. In Figure 10(b), the
trajectories in the full equations of motion are shown. As
expected, the red trajectories are transit orbits, starting in
the Moon realm and going to the Earth realm, whereas the
blue trajectories are non-transit orbits.
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Figure 10: (a) Initial conditions for transit and non-transit orbits found
by looking in the q1-p1 saddle canonical plane in the symplectic eigen-
basis. H̃2 = 10−8 and c = 4 × 10−5. (b) The initial conditions integrated
backwards and forwards in the full equations of motion, as shown, start-
ing at phase (mean anomaly) θ = 0. (c) The initial conditions from part
(a) integrated backwards and forwards in the full equations of motion
for θ = π

3 . Note that the transit theory still holds at a different phase. (d)
The integrated initial conditions for θ = 2π

3 .

Although we have shown examples of systematically
finding transit and non-transit orbits for the BCP and the
ER3BP at a single phase in the periodic perturbation, the
method works equally well at other phases. We illustrate
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this at two additional initial phases for the initial condi-
tions in parts (c) and (d) of Figure 10 for the ER3BP.

7. Discussion and Conclusion

We demonstrate that the linear dynamics correspond-
ing to transit and non-transit behavior in T -periodically-
perturbed versions of the circular restricted three-body
problem can be reduced to a linear time-T map with
the same orbit geometry as is now well-known in the
CR3BP, going back to Conley and McGehee (Conley,
1968; ?). Dynamically replacing the index-1 Lagrange
equilibrium point of the autonomous system is a period-
T Lagrange periodic orbit, analyzed via a time-T strobo-
scopic Poincaré map. in the phase space of the map, the
Lagrange periodic orbit corresponds to an index-1 fixed
point, or elliptic-hyperbolic point. As we consider only
the planar (two degree of freedom) problem, the Lagrange
periodic orbit has a 2-dimensional center manifold, 1-
dimensional stable manifold, and 1-dimensional unstable
manifold.

In the extended phase space of the perturbed models
(that is, including the phase of the perturbation, or cyclic
time), the transit and non-transit orbits form open sets
bounded by the stable and unstable manifolds to the La-
grange periodic orbit. These results carry over to the full
nonlinear system, where the linear symplectic map near
the Lagrange periodic orbit is replaced by the full nonlin-
ear symplectic map.

Moreover, a method for elucidating the geometry of
transit orbits in generalizations of the circular restricted
three-body problem experiencing periodic perturbations
is given. The Conley-McGehee representation is re-
interpreted in terms of a discrete mapping rather than con-
tinuous dynamics (in Section 4). The theory was demon-
strated in two examples of perturbed models: the bicircu-
lar problem and the elliptic restricted three-body problem.

We illustrated our results by considering transit orbits
near the Earth-Moon L1 cislunar point, the most easily
accessible Lagrange point from Earth and a likely focus
for future space endeavours (Condon & Pearson, 2001;
McCarthy & Howell, 2020; Oshima et al., 2017). Cislu-
nar space also has significant natural connections to the
Sun-Earth L1 and L2 regions (Lo & Ross, 2001; Koon
et al., 2001a), which can be explored using geometric
techniques rather than less direct, optimization-based ap-
proaches (Assadian & Pourtakdoust, 2010; Onozaki et al.,
2017).

There are several potential avenues for further investi-
gation. This study only considered one possible topologi-
cal class of Lagrange manifolds, periodic orbits generated
by a single periodic perturbation. Additional perturba-
tions will lead to additional bifurcations in the topology
of the Lagrange point dynamical replacement (see Figure

1). For instance, quasi-periodic Lagrange manifolds in
systems with two or more perturbations of incommensu-
rate period will generate hyperbolic structures controlling
transit (Gómez et al., 2003; Bihan et al., 2017; Jorba et al.,
2020).

Another possibility for further study involves combin-
ing periodic perturbations with general non-conservative
(e.g., dissipative, solar sail) effects (Zhong & Ross, 2020).
Our approach applies to the geometry of transition dy-
namics in other periodically-perturbed (or driven) systems
governed by Hamiltonian dynamics, including chemical
systems, ship dynamics, solid state physics, and structural
systems (Naik & Ross, 2017; Wu & McCue, 2008).
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