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Abstract

In the circular restricted three-body problem, low energy transit orbits are revealed by linearizing the governing dif-
ferential equations about the collinear Lagrange points. This procedure fails when time-periodic perturbations are
considered, such as perturbation due to the sun (i.e., the bicircular problem) or orbital eccentricity of the primaries.
For the case of a time-periodic perturbation, the Lagrange point is replaced by a periodic orbit, equivalently viewed as
a hyperbolic-elliptic fixed point of a symplectic map (the stroboscopic Poincaré map). Transit and non-transit orbits
can be identified in the discrete map about the fixed point, in analogy with the geometric construction of Conley and
McGehee about the index-1 saddle equilibrium point in the continuous dynamical system. Furthermore, though the
continuous time system does not conserve the Hamiltonian energy (which is time-varying), the linearized map locally
conserves a time-independent effective Hamiltonian function. We demonstrate that the phase space geometry of transit
and non-transit orbits is preserved in going from the unperturbed to a periodically-perturbed situation, which carries
over to the full nonlinear equations.

Keywords: Astrodynamics, Three-body problem, Low energy transfer, Tube dynamics, Lagrange points,
Perturbations

1. Introduction

In recent decades, investigations of the circular restricted
three-body problem (CR3BP) from a dynamical systems
point of view have revealed an intricate fabric of mani-
folds woven between planets and moons (Conley, 1968,
1969; McGehee, 1969; Llibre et al., 1985; Koon et al.,
2001b; Jaffé et al., 2002; Astakhov & Farrelly, 2004;
Gómez et al., 2004; Dellnitz et al., 2005; Ross, 2006; Ross
& Scheeres, 2007; Gawlik et al., 2009; Topputo, 2013;
Oshima & Yanao, 2014; Onozaki et al., 2017; Todor-
ović et al., 2020; Ren & Shan, 2012). These manifolds
separate low-energy transit trajectories that successfully
pass through neck regions of permitted motion about the
Lagrange points, thereby travelling between phase space
realms of interest, from non-transit trajectories that fail
to pass through the neck regions. The phase space struc-
tures that separate transit and non-transit trajectories ap-
pear when linearizing the governing differential equations
about the system’s equilibria in the co-orbiting (rotating)
frame, the collinear Lagrange points (particularly L1 and
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L2). Linearization nonetheless fails on generalizations of
the circular restricted three-body problem subject to time-
dependent perturbations, such as fourth-body effects (i.e.,
the bicircular problem) or orbital eccentricity of the pri-
maries, because the fixed Lagrange points are no longer
equilibria. Moreover, the instantaneous (moving) null
points of the time varying vector field are not trajectories
(Wiggins, 2003).

In this paper, we introduce a geometric framework for
analysis of transit phenomena in time-periodic restricted
three-body models like the bicircular problem (BCP)
or the elliptic restricted three-body problem (ER3BP)
as a natural counterpart to the time-independent circu-
lar R3BP (CR3BP). Higher-dimensional time-dependent
manifolds, which we refer to as Lagrange manifolds1,
dynamically replace the L1 and L2 points as the funda-
mental objects whose stable and unstable manifolds pro-
vide the template for low energy dynamical behavior near
the smaller primary. Under a time-periodic perturbation
of period T , the Lagrange manifold is a manifold in the
phase space diffeomorphic to S 1, that is, a periodic or-
bit with a (minimal) period equal to T (Guckenheimer

1As they are higher-dimensional analogs of the Lagrange points
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Figure 1: Schematic illustrating how the Lagrange manifold bifurcates
as astrodynamical models go from simplest and least accurate at the bot-
tom, increasing in �delity to the real ephemeris. The bifurcation dis-
cussed in this paper is the transition from the equilibrium point to the
periodic orbit.

& Holmes, 2013). Additional perturbations, not consid-
ered here, would further alter the topology, as depicted
schematically in Figure 1.

Prior investigations into models more complicated than
the CR3BP have successfully found periodic and quasi-
periodic orbits in the vicinity of former Lagrange points
by employing single shooting or multiple shooting algo-
rithms (Ǵomez et al., 2003; Jorba et al., 2020). Studies
have found quasi-periodic orbits on the center manifolds
of these dynamical replacements (Jorba et al., 2020) and
have numerically demonstrated associated transit phe-
nomena (Jorba & Nicolás, 2020; Paez & Guzzo, 2021).

In this paper, we demonstrate that the linear dynam-
ics corresponding to transit and non-transit behavior in
T-periodically-perturbed versions of the CR3BP can be
reduced to a linear time-T map with the same dynamics
and geometry as that in the unperturbed CR3BP.This is
a signi�cant simpli�cation for understanding the geome-
try of transit orbits, as results from several decades ago
carry over in a straightforward manner, without requir-
ing higher-order expansions. In the phase space of the
map, the Lagrange manifold periodic orbit corresponds to
an index-1 �xed point with a 1-dimensional stable mani-
fold and 1-dimensional unstable manifold. Construction
of transit and non-transit orbits follows from established
methods dating to Conley in the 1960s (Conley, 1968,
1969). The geometry in the linearized regime extends to
the full nonlinear system, where the linear symplectic map
near the Lagrange manifold will be replaced by a nonlin-
ear symplectic map. Finding this nonlinear map is not our
current goal, but is an objective for future research. Ac-
cording to a theorem by Moser, the linear map provides
the basic geometric picture that carries over to the non-
linear case (Moser, 1958, 1973). We demonstrate our re-
sults by considering transit orbits near the Earth-MoonL1

cislunar point, the closest Lagrange point to Earth and a
likely future hub for a space transportation system (Con-
don & Pearson, 2001; Lo & Ross, 2001).

2. Classi�cation of orbits in the circular
restricted three-body problem

2.1. Equations of motion

The CR3BP models the motion of a small mass or test
particle m3 in the gravity �eld of two massive bodies
m1 > m2. Massesm1 and m2 orbit their common cen-
ter of massO in circular orbits. We consider here only the
planar CR3BP wherem3 is free to move throughout the
m1-m2 orbital plane. Generalizing the following theory to
the spatial CR3BP is very straightforward in the unper-
turbed case, and so we consider descriptions of the spatial
unperturbed and perturbed cases to be beyond the scope
of the current work. The equations of motion are written
in a rotating reference frame with originO. Thex-axis of
the rotating frame coincides with the line betweenm1 and
m2 whereas they-axis points in the direction of motion of
m2 (see Figure 2).

The non-dimensional equations of motion form3 in
the planar CR3BP (our focus here) are autonomous
Hamilton's canonical equations with Hamiltonian func-
tion (Koon et al., 2011),

HCR3BP = 1
2(p2

x + p2
y) � xpy + ypx �

� 1

r1
�

� 2

r2
; (1)

where,

r1 =
q

(x + � 2)2 + y2; r2 =
q

(x � � 1)2 + y2; (2)

with � 1 = 1� � and� 2 = � the non-dimensional masses of
m1 andm2, where� = m2=(m1+m2) is the mass parameter.

Figure 2: The models considered, viewed in them1-m2 barycentered
average rotating frame.

2.2. The Lagrange points

The CR3BP, as an autonomous system, has �ve equilib-
rium points calledLagrange pointsas viewed in the rotat-
ing frame, as shown in Figure 3(a). The three equilibria
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lying on the x-axis, L1, L2, and L3, are index-1 saddle
collinear points; the remaining two, which form equilat-
eral triangles withm1 and m2, are thetriangular points
(center� center points for� . 0:039). Because of their
connection with low energy orbits via transit from orbits
aboutm2 and aboutm1 and vice-versa, we focus on the
collinear points.

2.3. The Hill's region and the Hamiltonian energy

Trajectories of the CR3BP conserve the Hamiltonian en-
ergy, HCR3BP = E, whereE 2 R is the initial Hamilto-
nian energy. TheHill's region is the subset of position
space throughout whichm3 has enough energy to travel.
The boundary of theHill's region, beyond which lies the
forbidden realm, is called thezero-velocity surfacein the
spatial case andzero-velocity curvein the planar case
(Szebehely, 1967). The qualitative characteristics of the
corresponding Hill's region naturally assignE to one of
�ve di � erent intervals (see Figure 3(b)):

1. ForE < E1, m3 is con�ned to either a subset of po-
sition space aroundm1 (the m1 realm), a subset of
position space aroundm2 (the m2 realm), or a sub-
set of position space outsidem1 andm2 (the exterior
realm). In this situation,m3 cannot cross between
any of the three realms.

2. ForE1 < E < E2, aneck regionopens up around the
L1 point that permits travel between them1 andm2

realms.
3. For E2 < E < E3, another neck region opens up

around theL2 point that permits travel between the
m2 and exterior realms.

4. ForE3 < E < E4, yet another neck region opens up
around theL3 point that permits travel between the
m1 and exterior realms.

5. For E4 < E, the forbidden realm completely disap-
pears.

Thus, regions around the collinear Lagrange points play
an important role in controlling transit between realms.
We typically consider the second or third cases, in which
transit between realms is possible but is governed by man-
ifold structures associated withL1 and in the latter case
L2.

2.4. Linearization aboutL1 andL2

Linearizing the Hamilton's equations aboutL1 or L2, the
eigenvalues of the linear system are a purely real pair,
� � , and a purely imaginary pair,� i� , where �; � >
0, which makes such points index-1 saddles (Marsden
& Ratiu, 1999). The corresponding generalized eigen-
vectors, when properly re-scaled, provide asymplectic
eigenbasis (Zhong & Ross, 2020). In the symplectic

(a)

(b)

Figure 3: (a) The Lagrange points of the CR3BP for� = 0:3. (b) The
�ve cases of the energetically accessible regions (i.e., Hill's region) by
CR3BP Hamiltonian energy.

eigenbasis with corresponding coordinates and momenta
(q1; p1; q2; p2), the linearized equations simplify to,

�q1 = � q1, �p1 = � � p1,

�q2 = � p2, �p2 = � � q2.
(3)

which are Hamilton's canonical equations with corre-
sponding quadratic Hamiltonian function,

H2 = � q1p1 + 1
2 � (q2

2 + p2
2): (4)

As (3) is linear, its solution is readily obtained and must
conserve the quadratic Hamiltonian function (4).

2.5. Geometry of the linearized equilibrium region

The two canonical planes associated with (3) are un-
coupled: theq1-p1 canonical plane has saddle behavior
whereas theq2-p2 canonical plane has center behavior, as
shown in Figure 4.

Choose a �xed, smallh > 0 such thatH2 = h. Because
1
2 � (q2

2 + p2
2) � 0, a forbidden region in the saddle pro-

jection arises for eachh. The boundary of the forbidden
region is given by the hyperbolasq1p1 = h=� ; the shape
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Figure 4: The two canonical planes of the dynamics in the symplectic
eigenbasis in the neighborhood of a collinear Lagrange point; orbits la-
beled T transit from one realm to another, while those labeled NT do not.

of the area outside this boundary reproduces the neck re-
gion found in the full equations of motion (Conley, 1968),
as shown in Figure 4.

For some small constantc > 0, initial conditions along
the linep1 � q1 = +c lie entirely within one realm whereas
initial conditions along the linep1 � q1 = � c lie entirely
within the other. For details, see Koon et al. (2011) and
references therein. We refer to these boundaries asn1 and
n2, respectively (see Figure 4).

Orbits present in the neighborhood of the equilibrium
point can be classi�ed (Conley, 1968) according to their
behaviors in the saddle projection (see Figure 4):

1. The point at the origin of the saddle projection corre-
sponds to the center manifold of the Lagrange point.
Each trajectory within the center manifold is a pla-
nar periodic orbit called aLyapunov orbitabout the
equilibrium point.

2. The q1-axis and thep1-axis of the saddle projec-
tion correspond to trajectories that asymptotically
approach the Lyapunov orbits ast ! �1 or t !
+1 , respectively. These sets of trajectories are the
unstable and stable manifolds, respectively, of the
Lyapunov orbit of energyh, or, together, theasymp-
totic orbits.

3. The hyperbolic trajectories in the �rst and third quad-
rants, when integrated, intersect bothp1 � q1 = +c
andp1 � q1 = � c. Because they pass from one realm
to the other, they are calledtransit orbits.

4. The hyperbolic trajectories in the second and fourth
quadrants are unable to intersect bothp1 � q1 = +c
andp1� q1 = � c. As they do not pass from one realm
to the other, they arenon-transit orbits.

This qualitative picture in the linearized case carries over
to the nonlinear setting via a theorem of Moser (Moser,
1958, 1973).

3. Lagrange manifolds in periodically-perturbed systems

3.1. Periodically-perturbed systems

In the analysis which follows, we consider periodically-
perturbed non-autonomous dynamical systems of the
form,

�x = F(x; t; � ); where x 2 U � Rn; t; � 2 R: (5)

whereF is periodic in timet; that is, there exists a minimal
periodT such thatF(x; t; � ) = F(x; t + T; � ) for all t, and
� is a perturbation parameter such thatF(x; t; � ) ! f (x)
as� ! 0, wheref is an autonomous system. A special
form of F(x; t; � ) is f (x) + g(x; t; � ), whereg(x; t; � ) ! 0
as� ! 0.

In a periodically-perturbed system, we can de�ne the
phaseas� = ! t mod 2� , where! = 2�=T. The system
can then be written in autonomous form,

�x = F(x; � ; � ),
�� = ! .

(6)

where we note that time has been turned into a cyclic vari-
able,� 2 S1.

3.2. Flow maps

Consider an arbitrary trajectory of the system (5) with ini-
tial conditionx(t0) = x0. De�ne the corresponding �ow
map,� (�), as,

x(t0) 7! x(t) = � (t; t0; x0): (7)

Consider the family of time-T stroboscopicmapsPt0 :
U ! U de�ned as,

x0 7! Pt0(x0) = � (t0 + T; t0; x0): (8)

For a time-periodic Hamiltonian system,Pt0 is a symplec-
tic, stroboscopic map of the phase space over one period.
It can equivalently be written with the parameter as the
initial phase� 0 = ! t0 as P� 0. Note thatPt0(x0) has an
inverse,

x0 7! P� 1
t0 (x0) = � (t0 � T; t0; x0). (9)

3.3. State transition and monodromy matrices

The state transition matrix� (t; t0; x0) linearly approxi-
mates the �ow map,� (t; t0; x0). That is, it maps how
trajectories slightly displaced from a reference trajectory
x(t) evolve from timet0 to t. For simplicity of notation,
the dependence of the state transition matrix on its initial
conditionx0 = x(t0) is suppressed. For (5),� (t; t0) is the
solution to the initial value problem

�� (t; t0) = DF(x(t); t; � ) �� (t; t0); � (t0; t0) = In; (10)
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