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Abstract

One main idea in software engineering is to reuse
existing software instead of building due to the
high cost. However, finding existing software that
accomplishes a specific use case can be difficult.
Code search has attempted to help this by allow-
ing keyword searching for code similar to earlier
search engines. Recent work has attempted to
leverage the semantics present in the query and
code.3,6, 12,15,16,20,29 However, these approaches
do not consider the context of methods with the
rest of the software. This context can be impor-
tant when performing a search for determining
the relevance of a returned result.16 To address
the current problems in code search we designed
Athena, a semantic code search engine that lever-
ages software’s context through a knowledge graph
and a graph neural network. To evaluate Athena,
we used the python language portion of the pop-
ular CodeSearchNet Challenge16 that contains a
large set of query-code pairs with the relevance of
the returned code to the query. We found that
Athena still lags behind previous techniques that
only work at the method level without additional
context. Specifically, out of 2,098 repositories,
Athena achieves an Normalized Discounted Cu-
mulative Gain (NDCG) score of 0.757 with the
most recent state of art achieving 0.999. We inves-
tigate the reasons behind this and discuss future
work to overcome them.

Introduction

Software has become pervasive in our society, from
running on our smartphones to controlling propul-
sion and control systems in spacecrafts. Without
software, none of the current scientific revolutions
would be possible. Therefore, it is important to
make sure high quality software is available to ev-
eryone to ensure the progress of innovation.

The sharing of advances in software has been
growing in popularity with big shifts in software

companies becoming more open sourced. This has
allowed for everyone to use their software as well
as helping to contribute their time to improving
the software. However, searching for software to
reuse is still challenging in today’s age.

To tackle this challenge, we introduce the cur-
rent implementation of Athena, a tool for im-
proving the relevancy of retrieved methods from
a given query method using a software knowledge
graph and graph neural network by capturing the
context methods that are being searched. Con-
text is important because similar to natural lan-
guage with J.R. Firth’s famous quote “[y]ou shall
know a word by the company it keeps”,8 look-
ing at a method’s context, i.e., the file, package,
and project it resides in, can give a deeper insight
as to its intent and functionality.16 Specifically,
we leveraged a software project’s call graph to
construct our software knowledge graph and used
GraphSage,14 a recently popular graph neural net-
work architecture that we couple with a pretrained
Transformer32 neural network for encoding each
method to generate the node embeddings in the
knowledge graph.

We evaluated Athena on the python portion
of the popular CodeSearchNet Challenge16 bench-
mark where the task is to retrieve the most rele-
vant methods to a given query such as ”how to sort
a list of numbers in ascending order?” Since Code-
SearchNet originally only contained query-method
pairs, we modified the challenge to also contain
the context of each of the methods to work with
Athena. Through our evaluation of 2,098 query-
method pairs, we found Athena performs worse
than the most recent previous state of the art ap-
proach that only uses a single method without any
additional context. Lastly, we investigate the rea-
son behind this and discuss future work to improve
Athena.

In summary, this paper discusses the following:

1. Athena, a novel approach to code search that
incorporates the context of methods for deter-
mining their relevancy to a user’s query;
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2. An evaluation of Athena compared to base-
lines on the popular CodeSearchNet chal-
lenge;

3. A modified version of the CodeSearchNet
Challenge that allows for evaluating ap-
proaches that consider the context of methods
for the task of code search;

4. And an analysis of the reasons for Athena
not achieving improved results over a previous
approach and a discussion of future work to
improve Athena.

Implementation

Athena Overview

Athena takes advantage of the rich information
present in the actual code and structural informa-
tion present in software projects’ call graphs by
combining them in a non-linear way using a Graph
Neural Network (GNN) algorithm. This combined
information is then used for calculating the simi-
larity between a user’s query and methods within
and across software systems for ranking the rele-
vancy of the methods.
Athena has three components, namely Neural-

based Representation, Structural Representation,
and Representation Fusing, as shown in Figure 1.
Each component is explained in the following sub-
sections.

Neural-based Representation

In Athena’s Neural-based Representation com-
ponent, each method, M , in a target software
project, P , is transformed into a distributed vec-
tor representation using some function fneural.
For this Neural-based Representation function,
fneural(M) = VM ,M ∈ P , we used a sentence-
transformer28 model that was trained on the Code-
SearchNet dataset using a contrastive loss27 so
that methods and their corresponding docstrings
are similar in vector space. Specifically, the text
in the method and docstring is converted into a
sequence of tokens using the Byte Pair Encod-
ing algorithm31 and converted into a continuous
distributed vector. These vectors are transformed
through the layers of the network into their final
representation and are then averaged to produce
a single vector that represents the entire method
or docstring. The cosine similarity metric is used
among the methods and docstrings in a batch and
matching method a docstring cosine similarities
are pushed to be as high as possible while mis-
matched methods and docstring cosine similarities
are pushed down via backpropagation.

Structural Representation

In order to capture the structural aspect of a
software system, we construct a knowledge graph
by using the project’s method-level call graph to
serve as our structural representation. More for-
mally, let G = (N,E) be a target software project
graph, where N represents the list of methods
in the project as nodes and E represents the
list of method calls between the methods in the
project. Additionally, in order to capture the nat-
ural language information present in software sys-
tems, i.e., the documentation of methods, we add
documentation nodes and associated edges to G.
Lastly, we add edges between methods that reside
in the same file regardless of if they call each other
as methods inside the same file usually implies that
they are related in some way. In Sec. 3 we perform
an ablation study of our design decisions to better
understand what improves or hampers Athena’s
performance.

To construct this method-level call graph, we
use call-graph 1, which is a tool that allows for
generating a call graph of a software system and
supports multiple programming languages.

Representation Fusing

Previous work suggest fusing semantic and struc-
tural information by taking a linear combination
of the two coupling metrics.10 However, this has
its drawbacks as discussed previously.17 For ex-
ample, if one of the metrics performs poorly for a
certain type of coupling, i.e., structural coupling
when evaluating methods that only have a hid-
den dependency, then it will drag down the overall
performance of the fused metric. To overcome this
drawback, we apply a content-aware GNN to com-
bine the two sources of information in a non-linear
manner. Specifically, we use the GraphSage14

GNN that considered the features of the nodes of
the graph for non-linearly combining both Neural-
based and Structural representations to generate
node vectors. This usage of content-aware GNNs
has shown promise in the Biomedical domain for
embedding Biomedical ontologies through work by
Kotitsas et al.18 Our novel contribution is through
the use of a pretrained Transformer model for gen-
erating the semantic embedding of the nodes, the
usage of GraphSage over node2vec11 as done in
Kotitsas et al.,18 and application of this approach
to the software engineering domain. We hypoth-
esize that having this non-linear interaction, from
two different information sources, allows Graph-
Sage to learn hidden semantic and structural pat-
terns at the method-level granularity.

Unlike node2vec, which learns node embedding

1https://github.com/WM-SEMERU/call graph
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Figure 1: The Athena approach.

Algorithm 1: GraphSage Algorithm Overview from original paper.14

Input: Some Call Graph G = (N,E) with node embeddings xn,∀n ∈ N
Output: Updated node embeddings zn,∀n ∈ N

1 h0
n := xn,∀n ∈ N

/* loop through the number of aggregation functions */

2 for k := 1...K do
/* loop through each node in the graph */

3 for n ∈ N do
/* Collect all the node embeddings from the neighborhood of n */

4 hk
N (n) := Aggregatek(h

k−1
m ,∀m ∈ N (n))

/* Concatenate the representation of the previous aggregation function and

the current one and transform it by the weight matrix W k */

5 hk
n := (W k · CONCAT (hk−1

n , hk
N (n)))

/* Normalize the vector to unit length */

6 hk
n := hk

n/∥hk
n∥2

/* Return the final representations of all nodes */

7 zn := hK
n ,∀n ∈ N

Figure 2: How GraphSAGE works.

that are specific to a single graph via a skip-gram
paradigm to make node embeddings that are close
to each other in the graph to have similar em-
beddings, GraphSage learns aggregation functions
that takes an existing node embedding and trans-
forms it based on its neighbors’ node embeddings.

This process is outlined in Algorithm 1 with de-
tailed comments for each step. This learning of ag-
gregation functions, the W k matrix in the above
Algorithm, rather than the node embeddings di-
rectly allows GraphSage to be trained on a set of
graphs and then tested on graphs it has never seen,
which is not possible with node2vec. More for-
mally, GraphSage optimizes the neural network,
i.e., weight matrices W k, using the following loss
via stochastic gradient descent and backpropaga-
tion:

−log(σ(zTnzm))−Q·Emneg∼Pneg(m)log(σ(−zTnzmneg ))

(1)

This loss is applied to all zn’s in the graph G
and pushes the node embeddings of nearby nodes
in the graph close to each other while at the same
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Table 1: Hyperparameters used for training
Athena.

Hyperparameter Value

# Nodes per Aggregate Function 10

# of Layers 2

# of Node Embedding Dimensions 768

# of Hidden Channels 64

Optimizer SGD + ADAM

Learning Rate 1E − 5

Batch Size 256

Epochs 50

time pushing nodes that are far away, which are
sampled using the Pneg(m) distribution, far apart
by tuning the weight matrices W k. Fig. 2 gives
a visual representation of this Algorithm where
the different colored arrows represent the differ-
ent aggregation functions being used to combine
the node embeddings.

Implementation Details

You can find our selected hyperparameters in Tab.
1. We used a pretrained sentence-transformer
model 2 that was trained on the task of match-
ing a method with its docstring, which was from
the CodeSearchNet dataset. For implementing
the Representation Fusing GraphSAGE model, we
used Pytorch Geometric7 and modified their ex-
ample implementation 3. For managing data and
training our model, we used Pytorch Lightning.5

All training was done on an Ubuntu 20.04 server
with a single A100 NVIDIA GPU with 40GBs of
VRAM, 128 CPU cores, and 1TB of RAM.

Evaluation

This section describes the procedure for evaluat-
ing how effective Athena is at the task of code
search. Specifically, we wish to measure the abil-
ity of Athena to return highly relevant software
methods to a natural language query. To accom-
plish this, we used an existing benchmark in the
software engineering field called CodeSearchNet
Challenge.16 This benchmark covers a total of
99 natural language queries in English and has
associated relevant and irrelevant methods that
have been labeled by human annotators across
six programming languages, namely, Go, Java,
JavaScript, PHP, Python, and Ruby. Since Code-
SearchNet Challenge only involves methods and
Athena works at the software system level, we

2https://huggingface.co/flax-sentence-embeddings
/st-codesearch-distilroberta-base

3https://github.com/rusty1s/pytorch geometric/blob
/master/examples/graph sage unsup.py

modified the challenge to allow Athena access to
the entire software system rather than only single
methods. We discuss this process in the following
subsection. To guide our evaluation, we proposed
the following research question:

RQ1: How well is Athena able to find relevant
methods to a given natural language query?

Data Collection

3.1.1 Project Selection

We focused only on the Python portion of the
CodeSearchNet Challenge due to Python being
one of the most popular programming languages
and being supported by the tool we use to gener-
ate the call-graph. To convert the single method
CodeSearchNet Challenge into the software system
version that Athena requires, we went through
each method in the benchmark and found its as-
sociated GitHub repository url, downloaded the
repository, and attempted to generate the soft-
ware system’s call-graph. Any repositories that
we could not generate the call-graph for were re-
moved. This resulted in a total of 2,098 reposito-
ries to evaluate Athena on.
To train Athena, we used 250 software systems

that we obtained from the Python portion of the
CodeSearchNet Dataset used for training models.
We followed the same process of converting the
single method dataset to one capable of training
Athena via software system call-graphs.

Relevant Method Retrieval

To answer RQ1, we selected a total of 2,098 repos-
itories from the CodeSearchNet Challenge bench-
mark’s Python portion. Each repository has the
main method that has a relevancy score to a given
natural language query that Athena will rank
again other methods in other repositories for the
same query. Since, the natural language query is
not part of the call-graph, it is not immediately
able to be vectorized by Athena to perform the
cosine similarity calculation that we use to rank
the relevancy of each method in the benchmark
to the query. To overcome this issue, we inserted
the natural language query as though it was docu-
mentation into the graph by adding edges between
a node representing the query and each method.
We then vectorized the natural language query
using the same sentence-transformer model used
for the method and docstring vectors. Athena
is finally applied to this newly augmented graph
with the natural language query node and updates
each node based on the learned aggregation func-
tions. Once each node has been updated, the nat-
ural language query and method from the original
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benchmark node vectors are compared using co-
sine similarity to get their relevancy to each other.
Once this process is done for each method from
the original benchmark across the different repos-
itories they belong to, the similarity scores are
ranked. This is then repeated for each natural lan-
guage query so that we have a list of queries and
a ranked list of the most relevant methods to each
query as computed by Athena. These rankings
are then compared to the ground truth. Specifi-
cally, we used Normalized Discounted Cumulative
Gain (nDCG) to calculate how close Athena’s
performance is to the ground truth. nDCG is the
same metric used by the original CodeSearchNet
Challenge benchmark. It is calculated using the
following formula:

DCG =

p∑
i=1

2reli − 1

log2(i+ 1)
(2)

IDCG =

|RELp|∑
i=1

reli
log2(i+ 1)

(3)

nDCG =
DCG

IDCG
(4)

Where DCG is the non-normalized discounted
cumulative gain and is a metric representing how
relevant the top most ranked retrieved documents
are. The normalized version is this value divided
by the ideal discounted cumulative gain (IDCG)
where the position of the returned documents are
sorted by their relevancy such that the top rele-
vant document is in the first position. Usually,
this relevancy score is binary, either relevant (1) or
irrelevant (0). However, for CodeSearchNet Chal-
lenge, there is a 0 to 3 scale of relevancy with 3
being the most relevant. This does not impact the
nDCG calculation.

Results

In this section we discuss the results from our eval-
uation and the limitations of Athena.

Relevancy Results Discussion

Tab. 2 show the results of Athena and previous
approaches for the Python portion of the Code-
SearchNet Challenge benchmark. The results are
not perfectly comparable since some of the meth-
ods needed to be thrown out to work withAthena
due to the repository they came from being un-
able to have a call-graph generated. However,
there should not be a large change in the num-
bers due to the low amount of methods needing
to be thrown out. As shown, Athena still lags
behind the other approaches that rely only on the

Table 2: Statistics of the different libraries used in
our evaluation.

Model nDCG
TF-IDF 58.3
Athena 75.7
CodeBERT 84.0
SentenceTransformer 84.4
GraphCodeBERT 87.9
cpt-code M 99.9

method information, instead of the software sys-
tem information, with the only exception being
our baseline TF-IDF model. We believe this to
be due to the size of the Athena model being
significantly smaller than the other models, espe-
cially cpt-code M, and trained with many more
examples. Additionally, there has been previous
research showing that graph neural networks suf-
fer from an over-smoothing issue.19 Specifically,
Graph Convolutional Networks, of which Graph-
Sage is a specific kind, have a difficulty when in-
creasing layers, both in training stability as well
as over-smoothing the features of the nodes. This
means that nodes tend to look very similar to their
neighbors. This is a desirable quality for classi-
fication problems, where you may wish to label
all nodes in a neighborhood with the same label.
However, for search, this present a problem with
nodes not having enough differentiation and so ir-
relevant results might be returned.

Threats to Validity

Internal Validity. The biggest threat to inter-
nal validity comes from the usage of the Code-
SearchNet Challenge benchmark for evaluating the
ability of Athena to perform code search. This
threat is limited by having the labels given to the
relevance of methods to natural language queries
being manually annotated by developers. Ad-
ditionally, this benchmark has been used exten-
sively in the software engineering field for observ-
ing progress.
The accuracy of call-graph generation is another

threat to interal validity as we heavily rely on the
on it. The tool we use for generating it has been
tests for different types of software systems and
their call-graphs and has been manually verified
for some projects. Therefore, we are fairly confi-
dent the call-graph construction process.
External Validity. Due to the small number of

natural language queries, 99, present in the Code-
SearchNet Challenge benchmark, it is not possible
to say how generalizable an approach that per-
forms well on this benchmark will perform on var-
ious other natural language queries a developer
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might use. Future work will be needed to curate
larger sets of natural language queries, preferably
in other languages besides English, to help create
a more robust benchmark. An additional exter-
nal validity threat is the usage of Python only for
Athena. Since we did not evaluate on other pro-
gramming languages, it is unclear whether it would
work for programming languages such as Java or
C. However, the sentence-transformer model we
used to generate the initial node embeddings was
trained on multiple programming languages, so we
believe there would be similar performance among
other programming languages with Athena.

Related Work

Existing approaches have attempted to solve
code search using classical keyword matching for
computing syntactical similarity,1,2, 4, 21–24,33e.g.,
Term-Frequency Inverse Document-Frequency
(TFIDF).30 However, natural language and soft-
ware have little overlap in their vocabulary and
their structure. Therefore, previous techniques
such as keyword matching and TFIDF that
rely on finding commonalities in the vocabu-
lary of queries and methods resulted in poor
performance.9,13,35,36

To overcome this limitation a lot of recent tech-
niques compute semantic similarity such as using
WordNet for finding synonyms of words as in Li et
al.20 Sachdev et al.29 used word2vec,25 a neu-
ral network that uses machine learning to rep-
resent words as continuous vectors, to generate
word embeddings for natural language and soft-
ware. Additionally, many recent approaches have
used deep learning for code search3,6, 12,15,16 us-
ing a variety of different types of architectures and
learning methods. The closest to ours is work by
Feng et al.6 since we are using their CodeBERT
model as the foundation forAthena’s Neural Rep-
resentation component. However, similar to the
other deep learning approaches for code search,
CodeBERT does not consider the context meth-
ods reside in. We extend their work by including
this additional context since software developers
consider this important information when consid-
ering whether a method is relevant to a search
query.16 Lastly, recent work26 has achieved re-
markably high results on the CodeSearchNet Chal-
lenge showing that scaling up models and training
data really helps the task of code search as well as
showed we as a community may need to work on
a new more challenging benchmark.

Conclusion and Future Work

In this paper we presented Athena, a Graph Neu-
ral Network that using a software project knowl-
edge graph to learn the semantic and syntactic in-
formation present in the software project’s meth-
ods. This learned information is then leveraged to
retrieve methods relevant to a given query method.
We evaluated Athena on a modified version of
the popular CodeSearchNet Challenge benchmark
using the common Normalized Discounted Cumu-
lative Gain (nDCG) metric for search tasks and
found Athena still lags behind previous state of
the art methods. Additionally, we discussed po-
tential reasons for why the worse performance and
the underlying issue with Graph Convolutional
Networks that Athena uses.
Future work. For future research, we in-

tend to look into other model architectures be-
sides Graph Neural Networks that can still lever-
age graph data such as GraphBERT.34 Graph-
BERT uses a standard Transformer, but modified
the input of graphs to work with the architecture.
We hope this will overcome the over smooth issue
that is present in Graph Neural Networks while
still keep the additional context that a software
system’s call-graph gives the model. Additionally,
we will be performing more in-depth analysis of
the current Athena model and future Athena
models to better understand success and failure
cases.
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