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Abstract

We combine a camera, an optical fiber, and artificial intelligence into a single optical mag-
netometer for magnetic field imaging. This novel combination provides enhanced spatial res-
olution, a mobile configuration, and efficient, unbiased data processing capabilities. The mag-
netometer is based on an undergraduate laboratory Faraday rotation apparatus (a glass rod sur-
rounded by a solenoid), linked to a camera via a multimode optical fiber. To identify varying
magnetic field strengths, an image classification algorithm analyzes the fiber output ”speckle”
patterns that result from different magnetically-induced changes in probe beam polarization.
Initially, as we constructed and strengthened the algorithm, we simulated these polarization
changes using a waveplate. Later, we replaced the waveplate with the glass rod and solenoid.
Ultimately, we created a sensor with angular sensitivity of at least 1

256

◦, corresponding to mag-
netic fields of about 56 µT. Investigations are underway to check changes in polarization in
the range of 1

256

◦ to 1
4096

◦, which would correspond to magnetic fields from 56 µT to 3 µT.
In the future, we hope to replace the solenoid with a Rubidium vapor cell to create an atomic
magnetometer with enhanced sensitivity.

1 Introduction

1.1 Background
Magnetic field sensors have a wide vari-

ety of NASA-related applications, making them
an ongoing and prolific topic of inquiry within
the institution. The uses of magnetometers range
from structural health analysis of aerospace ve-
hicles and weather prediction to heartbeat mon-
itoring and weapon systems positioning.1 As
technology advances, the need for increasingly
sensitive magnetometers continues to propel re-
search on these devices. We propose a highly
sensitive, optical magnetometer that boasts en-
hanced imaging capabilities and a mobile con-
figuration. With these qualities, our device’s

applications will center on defect detection in
metal components, which can be useful in ar-
eas like vehicle design and passenger safety.

1.2 Motivation and Theory
The quest for better sensitivity is ongoing

in the field of magnetometry. Optical magne-
tometers enhance sensitivity by probing atoms
in a magnetic field with light. They then use
the atoms’ and/or light’s response to detect the
field.

We will focus on one traditional type of op-
tical magnetometer called a Faraday rotation mag-
netometer. This specific device relies on the
change in polarization that light undergoes when
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Figure 1: 2 A visualization of Faraday rotation,
where light (red arrow) of a polarization θ trav-
eling through a transparent medium subject to
an external magnetic field, B will rotate by an
angle, ϕ, proportional to B. Note that ϕ is much
smaller than shown here.

interacting with atoms in a material that is ex-
posed to a magnetic field. This phenomenon is
called Faraday rotation. Specifically, in a trans-
parent material like glass, a magnetic field, di-
rected along the direction of light propagation
will rotate the light’s polarization by an angle
ϕ, as shown in Figure 1.2 This angle of polar-
ization rotation is proportional to the magnetic
field B according to

ϕ = CVBl, (1)

where CV is the Verdet constant, which de-
pends on the material, and l is the length of the
material along which the light propagates.

In the traditional setup, a magnetic field is
imposed on the transparent material. A laser
shines through this material and then encoun-
ters a polarizer on the other size. The change in
laser polarization is then detected as a change
in intensity using a photodiode at the output.
Thus, the magnetic field is measured. Note,
however, that for a reasonably sized magnetic
field, the change in polarization is quite small.
Indeed, in the setup shown in Figure 1, a mag-
netic field of 11.1mT leads to a polarization ro-
tation on the order of 10−4 rad, or about 0.005◦.2

Figure 2: A comparison of the multimode fiber
output “speckle” patterns for 0◦ (left) and 45◦

(right) polarization angles.

A significant drawback of this setup, how-
ever, is that using a photodiode as the sensing
device does not provide any spatial resolution
of the magnetic field. One solution is to replace
the photodiode with a CCD camera to image
the field.3 The downside here is that adding a
camera makes for a bulky sensor that would not
be compatible with, say, chip-scale manufactur-
ing.4

To solve this problem, we instead separated
the camera physically from the Faraday rota-
tion magnetometer using a multimode optical
fiber. Fibers are inexpensive and will allow a
portable, flexible device configuration. When
light travels down a multimode fiber, its differ-
ent modes scatter differently creating a kind of
“speckle” pattern intensity profile. Thus, when
the laser’s polarization changes, its intensity does
not change, but the speckle patterns do change,
because of interference inside the fiber. Figure
2 shows a comparison of the speckle patterns
for a 0◦ and 45◦ polarization. Therefore, we
can use the differing speckle patterns to identify
the beam polarizations corresponding to differ-
ent magnetic fields. Furthermore, using a fiber
eliminates the need for the polarizer that the
conventional setup requires.

The drawback, though, is that the speckle
patterns are complicated images. Also, when
the change in polarization is small, as it is when
magnetically-induced, the image features only
change by a small amount, which is almost en-
tirely undetectable visually. This problem in-
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vites the use of artificial intelligence (AI). Borhani
et al.5 and Wang et al.6 have shown that deep
learning can be used to classify the “speckle
patterns” that result from the propagation of an
input image through a multimode fiber. We used
a similar approach to identify the different speckle
patterns that result from different magnetically-
induced probe beam polarizations traveling through
an MMF.

Ultimately then, we trained an image classi-
fication algorithm to recover the laser polariza-
tion from different speckle pattern images. This
AI approach increases data processing power
for rapid field measurement and analysis.

2 Experimental Design
For the Faraday rotation magnetometer,

we used a modified version of TeachSpin Inc.’s
undergraduate laboratory Faraday rotation ap-
paratus, shown in Figure 3. The apparatus con-
tains a 10cm long, 5mm diameter, SF-57 glass
rod surrounded by a 15cm long solenoid that
connects to a power supply. The value of CV

for the glass rod is 23 rad/T. For the solenoid,
the calibration between input current, I , and
magnetic field, B is

B = (11.1mT/A) · I. (2)

For futher apparatus specifications, see the Teach-
Spin Faraday Rotation manual.2

For this work, we removed the laser, polar-
izer and photodiode that come attached to the
apparatus. We then inserted the remaining part
into our setup, as shown in Figure 4. Thus,
our experimental setup is as follows: A 780.24
nm diode laser travels through a modified ver-
sion of the TeachSpin Faraday rotation appa-
ratus. After the light travels down the multi-
mode fiber (MMF), a neutral density (ND) fil-
ter reduces the beam’s intensitiy to a level ap-
propriate for imaging. A CCD camera images
the resultant beam profile. The images are then
sent to the image classification algorithm. The

Figure 3: 2 TeachSpin’s undergraduate Faraday
rotation apparatus, consisting of, from right to
left, a laser, a solenoid connected to a current
supply and surrouding a glass rod, a polarizer,
and a photodiode.

Figure 4: The experimental setup for the optical
fiber-linked magnetometer using AI for mag-
netic field imaging.

MMF, ND filter, and CCD camera are all con-
tained in a cardboard box to shield from tem-
perature changes and ambient light. We also
concluded that the laser power should remain
constant during data acquisition and that a sin-
gle image dataset should be taken within the
same day to avoid significant drifting of the speckle
patterns in time, which would skew algorithm
performance.

After collecting the images, we rescaled them
from 1024x1280 pixels to 256x320 pixels using
interpolation. (This size was determined in pre-
vious work to be optimal for avoiding long al-
gorithm run times without sacrificing algorithm
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performance). We also normalized the images
so that their pixel values fell between zero and
one, taking care to avoid image saturation when
recording data. Finally, we imposed a circular
mask on each image. The mask was the size
of the beam and blocked out the regions of the
image outside the beam, thus ensuring that the
algorithm only analyzed the actual speckle pat-
tern during training.

3 Achieving Image
Recognition

Preliminary work was done to establish
baseline image recognition in our algorithm. We
will describe the details of the algorithm in Sec-
tion 4.1.

To achieve a functioning algorithm, we first
used a waveplate to simulate the polarization
rotation that a magnetic field would create. Thus,
to start off, in our experimental setup (Figure
4), we had no Faraday apparatus or power sup-
ply, but rather, just a half waveplate. With this
waveplate setup, we achieved angular sensitiv-
ity as low as 1

4

◦. We took 125 images each of 0
◦, 1

8

◦, 1
4

◦, 1
2

◦, and 1◦. For each angle, the train-
ing set contained 100 images, and the testing
set contained 25. A pause of 5 seconds sepa-
rated each image capture. We trained on these
images for 200 iterations.

The performance accuracies are shown in
Table 1. The performance was highly accu-
rate except in the 1

8

◦ case. A change of 1
8

◦ was
74% accurate, but this result is unreliable as
the change in polarization is on the order of
the waveplate’s precision. Errors could easily
have arisen here during waveplate rotation. Re-
placing the waveplate with the Faraday mag-
netometer avoided this problem later on since
we could implement precise current values cor-
responding to a specific magnetic field. Thus,
with the waveplate setup, we reached an angu-
lar sensitivity of 1

4

◦.

Training Polarizations Testing Accuracy
0 ◦ vs. 1 ◦ 1
0 ◦ vs. 1

2

◦ 0.86
0 ◦ vs. 1

4

◦ 0.9
0 ◦ vs. 1

8

◦ 0.74

Table 1: Image Classification Accuracies for
changes in polarization of 1◦, 1

2

◦
, 1
4

◦
, and 1

8

◦ us-
ing the waveplate.

4 Implementing a Faraday
Magnetometer

4.1 The Image Classification Algo-
rithm
For this work, we used a convolutional

neural network (CNN) developed in MATLAB
as our deep learning image classification plat-
form. A CNN distinguishes images by assign-
ing importance, or weight, to the images’ dis-
tinguishing features. The network’s structure
mimics that of a human brain, with different
layers connected by neurons.

The flow chart in Figure 5 is a visual rep-
resentation of the CNN we built for this work.
The algorithm consists of three convolutional
layers, each followed by a normalization layer
and a “pooling” layer. During the convolutional
layers, the algorithm scans the image matrices
using a “filter,” a matrix of weights smaller than
the image itself, which extracts the image’s most
important features. The normalization and pool-
ing layers collect these features into smaller ma-
trices that the algorithm categorizes. While this
cycle repeats over many iterations, the algorithm
assesses its categorizations for accuracy and up-
dates its prediction to reach optimal classifica-
tion. To further improve performance, the pro-
grammer may adjust the filter size and num-
ber of filters used in each layer. The “learning
rate,” or how fast the algorithm optimizes itself,
can also be changed for best performance. In
this work, we found an optimal learning rate of
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Figure 5: A flow chart representation of the im-
age classification algorithm used in this work.
Each colored box represents a layer in the neu-
ral network. Size and number of filters used in
each layer are noted.

10−5, which means that the algorithm updates
the filter weights by 10−3 % of the classifica-
tion error during each cycle. Learning rates fall
between 0 and 1. Our very low value reflects
the complexity of our image data.

In this work, we used “learning curves” to
monitor the training process. These curves are
plots of algorithm accuracy and loss versus train-
ing iteration. An ideal learning curve, shown in
Figure 6 (left) will show accuracy increasing to
100% and loss decreasing to zero. Accuracy
and loss behavior should more or less mirror
each other. Plateauing accuracy and/or increas-
ing loss, Figure 6, (right), indicate poor train-
ing.

The last layer of the classification process
is the Testing layer. Here, the algorithm is fed
new images that are similar to those it has been
trained on to see how well it performs after train-
ing. The algorithm then outputs a performance
accuracy, as a percent, which we use to assess
overall classification success.

Helpful background information on convo-
lutional networks can be found in the overview
paper by Albawi et al.7 Other more informal
sources include webpages by Adit Deshpande8

Figure 6: On the left is an example of a optimal
learning curve, and the right is an example of a
suboptimal learning curve. Plotted are training
accuracy (top) and loss (bottom) vs. training
iteration.

and Sumit Saha.9

4.2 Faraday Magnetometer Bench-
mark Angular Sensitivity Tests
Having concluded that our algorithm could

distinguish different laser polarizations success-
fully, we replaced the waveplate in our setup
with the Faraday magnetometer, as shown in
Figure 4. We first created a calibration of laser
polarization rotation vs. current supplied to the
solenoid, and we used this calibration through-
out the remaining work.

We conducted benchmark tests for angular
sensitivity in the new setup to ensure that algo-
rithm performance was comparable to when us-
ing the waveplate. We took images of 0◦, 0.5◦,
1◦, 1.5◦, and 2◦. As before, the training sets
for each angle consisted of 100 images and the
testing sets consisted of 25. A pause of 3 sec-
onds separated each image capture, and train-
ings were conducted for 100 iterations. All pos-
sible combinations of angles were tested, and
the training plots were ideal in all cases, with
four examples shown in Figure 7.

Table 2 shows that the performance accu-
racy was 100% in all cases except two. In-
terestingly, these two cases still demonstrated
ideal learning curves (Figure 7 top left and bot-
tom right). From here, we can conclude that, so
far, the algorithm can generally distinguish be-
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Figure 7: Learning Curves for determining
benchmark angular sensitivity using the Fara-
day magnetometer. The top left plot shows
training to distinguish between 0.5◦ and 1◦, the
top right shows 1◦ and 1.5◦, the bottom left
shows 1◦ and 2◦, and the bottom right shows
0◦ and 0.5◦.

tween changes in polarization as small as half a
degree.

4.3 Improving Angular Sensitivity
With these promising results, we tested

the algorithm’s response to smaller angles taken
using the Faraday magnetometer setup. As with
the waveplate, we tested differences in polar-
ization of 1

2

◦, 1
4

◦, and 1
8

◦. As shown in Table
3, the algorithm was 100% accurate in distin-
guishing a 1

2

◦ change in polarization, as before.
However, for a 1

4

◦ change, it was only 66% ac-
curate with 100 iterations, and for a 1

8

◦ change,
it was 84% accurate with 100 iterations. Inter-
estingly, increasing the number of iterations to
200 changed the 1

4

◦ accuracy to 74 % and de-
creased the 1

8

◦ accuracy to 72%.
Interestingly, the training plots (Figure 8)

were ideal in terms of accuracy. However, we

Training Polarizations Testing Accuracy
0 ◦ vs. 0.5 ◦ 0.92
0 ◦ vs. 1 ◦ 1

0 ◦ vs. 1.5 ◦ 1
0 ◦ vs. 2 ◦ 1

0.5 ◦ vs. 1 ◦ 0.8
0.5 ◦ vs. 1.5 ◦ 1
0.5 ◦ vs. 2 ◦ 1
1 ◦ vs. 1.5 ◦ 1
1 ◦ vs. 2 ◦ 1

1.5 ◦ vs. 2 ◦ 1

Table 2: Image Classification Accuracies for
the benchmark Faraday magnetometer tests.

Training Number of Testing
Polarizations iterations Accuracy (%)

0 ◦ vs. 1
2

◦ 100 1
0 ◦ vs. 1

4

◦ 100 66
0 ◦ vs. 1

8

◦ 100 84
0 ◦ vs. 1

4

◦ 200 74
0 ◦ vs. 1

8

◦ 200 72

Table 3: Image Classification Accuracies for
Fractional Angles Using the Faraday Magne-
tometer.
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Figure 8: Learning Curves for determining an-
gular sensitivity using the Faraday magnetome-
ter. The topmost plot shows training to distin-
guish between 0◦ and 1

2

◦, the second row shows
0◦ and 1

4

◦ for 100 and 200 iterations (left and
right, respectively), and the bottom row shows
0◦ and 1

8

◦ for 100 and 200 iterations (left and
right, respectively).

note that the loss did not decrease to zero, as it
did in Figure 7. This may be contributing to the
inconsistent accuracies.

To address these inconsistent results, we tried
increasing the size of the testing and training
sets to 500 images in each. We also ensured that
images were placed into the testing and train-
ing sets randomly. These changes led to 100%
accuracy in detecting a change in polarization
as small as 1

256

◦. The ideal learning curves and
performance results are shown in Figure 9 and
Table 4, respectively. Thus, we conclude that
for these complicated speckle patterns, a train-
ing set larger than 100 images is essential to

Training Polarizations Testing Accuracy
0 ◦ vs. 1

8

◦ 1
0 ◦ vs. 1

16

◦ 1
0 ◦ vs. 1

32

◦ 1
0 ◦ vs. 1

64

◦ 1
0 ◦ vs. 1

128

◦ 1
0 ◦ vs. 1

256

◦ 1

Table 4: Image classification accuracies for
changes in polarization as small as 1

256

◦ using
the Faraday magnetometer.

success.
When taking our images, we set a current

of 7.3mA to correspond to the 0◦ polarization
rotation. Using our current-to-polarization cal-
ibration of the apparatus, a current of 12.4mA
corresponded to a polarization of 1

256

◦. Using
Equation 2, therefore, a 1

256

◦ change in polar-
ization corresponds to a change in magnetic field
of about 56µT.

Investigations to test even smaller changes
in magnetic field are underway. We are cur-
rently looking at changes in polarization from
1

256

◦ to 1
4096

◦, which would correspond to mag-
netic fields from 56 µT to 3 µT. So far, it is pos-
sible that the algorithm will be able to detect
polarizations smaller than 1

256

◦ without modi-
fication. Ultimatley, we would like to detect
fields on the nano-Tesla scale.

5 Conclusion
Using our optical fiber-linked Faraday mag-

netometer, we detected a change in polarization
as small as 1

256

◦ with 100% accuracy. This sen-
sitivity corresponds to a magnetic field of about
56µT.

Ultimately, our unique magnetometer design
combines the structural and informational ad-
vantages of a fiber + camera setup with the effi-
cient, unbiased data processing power of AI for
enhanced spatial resolution and physical com-
pactness. This approach provides a powerful
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Figure 9: Learning Curves for determining an-
gular sensitivity using the Faraday magnetome-
ter. The top left plot: training to distinguish be-
tween 0◦ and 1

8

◦; top right: 0◦ and 1
16

◦; middle
left: 0◦ and 1

32

◦; middle right: 0◦ and 1
64

◦
.; bot-

tom left: 0◦ vs. 1
128

◦; bottom right: 0◦ and 1
256

◦
.

magnetic field sensing technique that will give
researchers, engineers, and technicians enhanced
information about an external magnetic field,
with high sensitivity and speed. With its com-
pactness and portability, our sensor is a ver-
satile device, practical in settings that require
mobility and small size. The main application
will be in structural defects detection of, say,
air and space vehicles, buildings and bridges,
or pipelines and storage tanks.

Our sensor offers two exciting avenues for
further improvements. A long-term possibility

is to replace the glass rod and solenoid with
a Rubidium atomic vapor cell. Using gaseous
atoms will further improve sensitivity through
the use of quantum light-matter interactions. If
this implementation is successful, another pos-
sibility is to replace the atomic medium with a
crystal. In this case, the device may instead be
used to measure a high magnetic field, where
an optical fiber would make for an ideal probe.
With the compactness of our setup, using a crys-
tal could also offer the option of a chip-scale
device.
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