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Abstract 

While ecosystem health is improving in 
many estuaries worldwide following nutrient 
reductions, ambiguous trends in water clarity 
often remain. The Chesapeake Bay, a highly 
populated eutrophic estuary, is a crucial testbed 
for this issue. Efforts are needed to understand 
why downstream estuarine water clarity 
appears uncorrelated with watershed 
management actions, and these efforts require 
multiple metrics of clarity. To complement in 
situ measurements, satellite remote sensing 
provides an additional measurement platform 
to assess change over time. In this study, 
MODIS-Aqua remote sensing reflectance (Rrs) 
was evaluated from 2003-2020 at multiple 
wavelengths and spatial resolutions for surface 
waters of the Chesapeake Bay. Trends show an 
overall long-term darkening (decreased Rrs) in 
the upper estuary for all wavelengths yet 
brightening (increased Rrs) in the lower estuary 
for green wavelengths. Trends in band ratios 
show long-term decreasing red-to-green and 
red-to-blue ratios yet long-term increasing 
green-to-blue ratios. These trends are generally 
consistent with a long-term reduction in total 
suspended solids concentration without as clear 
a reduction in Chl-a. However, the spatial 
patterns in long-term trends for single bands 
(i.e., 645 nm) differ widely from the spatial 
patterns in trends in band ratios (i.e., 667/488), 
highlighting the importance of careful 
algorithm selection for long-term analysis of 
water clarity trends.   

 
1. Introduction 

Studying change in water clarity over 
time in estuaries is an integral part of assessing 
improvements from historically polluted 

conditions. Light availability in estuaries is a 
critical driver of primary production and 
ecosystem health, shaping important nursery 
habitats such as seagrass meadows, coral reefs, 
and oyster reefs. Low water clarity is often 
concurrent with pathogens and harmful algal 
blooms, impacting fisheries and human health. 
Many of the world’s estuaries have 
experienced widespread eutrophication and 
degraded water clarity (1). Some estuaries have 
recovered from past degradation in recent years 
(2). Despite nutrient reductions and related 
improvements in ecosystem conditions (higher 
oxygen, increased seagrass), in many estuaries, 
water clarity results still do not align with 
watershed cleanup efforts (3–5).  

The Chesapeake Bay (CB) serves as a 
prime case study for past eutrophication, recent 
improvements, and ambiguous clarity response 
requiring further analysis. In this estuary, water 
clarity is used in regional watershed 
management alongside chlorophyll-a (Chl-a) 
and oxygen to assess the health of the estuary 
(6), and watershed sediment and nutrient inputs 
are both actively managed for reduction (7). 
Clarity change following cleanup has been 
ambiguous: despite extensive management 
efforts and recent documentation of reductions 
in riverine nutrient inputs (8, 9), water clarity 
as monitored in situ by Secchi disk depth has 
declined in the CB over the last 30 years (10–
14). Current knowledge of water clarity from in 
situ observations fails to explain these 
incongruities. It is crucial that we understand 
the causes of discrepancies between 
management actions and water clarity results in 
the CB. 
A more thorough understanding of the spatial 
and temporal patterns in water clarity metrics – 
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including remote sensing reflectance – is 
needed to understand why long-term water 
clarity trends do not reflect watershed nutrient 
reductions. Since in situ data is limited by 
spatial coverage, cruise frequency, and 
methods changes (14, 15), satellite remote 
sensing data are needed. Remote sensors have 
been measuring surface reflectance for multiple 
decades and thus can substantially complement 
in situ programs. 

The CB has served as a testbed for 
remote sensing research, including effective 
use of the Moderate-resolution Imaging 
Spectroradiometer on NASA Earth 
Observation satellite Aqua (MODIS-Aqua) to 
estimate water quality variables light 
attenuation (Kd), total suspended solids (TSS), 
Chl-a, absorption by colored dissolved organic 
matter (aCDOM), and dissolved organic carbon 
(16–26). While most past studies focus on 
derived variables, uncertainties are high and 
may mask important particulate, planktonic, 
and dissolved contributions to long-term trends 
(27). Rrs values themselves have been used in 
other estuaries to explain general patterns (13, 
28), thus the Rrs approach is used in the 
present study for CB to study change over 
time.  

This work expands upon past research 
in the CB by using Rrs rather than derived 
variables toward answering questions about 
change over time, in order to complement the 
ambiguous trends seen in situ. To date, there 
have been few studies of change over time in 
CB satellite-based remote sensing reflectance.  
Satellite estimates have been established for 
many water quality variables using multiple 
algorithms; however, these data are not often 
used to answer science questions about change 
over time in the mainstem Bay. Change over 
time has been investigated in cruise-based 
observations, yet in remote sensing, detailed 
analysis of long-term change has been limited 
to red-to-green ratio Chl-a (24), Rrs(645)-based 
clarity estimates (29), and mid-Bay Rrs(555) 
(13). Long-term trends have been heretofore 

unacknowledged for satellite Rrs at multiple 
bands and band ratios. Past studies of change 
over time in satellite-derived water quality, 
though useful, only extended to the early 2010s 
and focused on the mid-Bay; therefore, an 
estuary scale investigation of trends over time 
extending into recent years is required. 

The objective of the proposed work is 
to quantify water clarity change in the CB 
mainstem over the past two decades via remote 
sensing reflectance (Rrs) and band ratios from 
MODIS-Aqua. Since the goal of the proposed 
work is to examine long-term temporal trends, 
the accuracy and precision of water clarity 
variable estimates are less important than 
overall patterns. That is, trends and patterns in 
the remote sensing data are useful in answering 
research questions despite potential biases in 
the values themselves. We aim to answer the 
questions: How have Rrs(l) and band ratios 
changed over time in CB 2003-2020? What do 
those trends suggest in the context of long-term 
change? 

 

 
Fig. 1 Map of MODIS-Aqua satellite data extent and in 
situ validation stations. Long-term mean Rrs(645) at 
250m spatial res. is mapped in color. White points 
indicate in situ data locations (Table 1). 
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2. Methods 
2.1. Study area 

The CB is estuary drains an upstream 
watershed area of 116,000 km2 with forested, 
agricultural, and urban land use in six states. 
The Bay is fed by multiple large tributary 
rivers and is generally shallow (mean depth of 
7 m) with a deep central channel (> 30 m). In 
the present study, analysis focuses on the 
mainstem Bay and lower reaches of the large 
tributary rivers (Fig. 1). Spatially, satellite data 
points < 750 m from shore and in smaller 
tributaries were excluded, although often points 
farther from shore (~1 to 5 km) were also 
excluded due to additional data quality control, 
especially at 1km spatial resolution. 
 
2.2. In situ Rrs data 

To evaluate the Rrs satellite retrievals, 
we aggregated field observations in the 
mainstem CB obtained from the SeaWiFS Bio-
optical Archive and Storage System 
(SeaBASS) (30, 31).  In situ, Rrs at the water 
surface is quantified from concurrent values of 
upwelling radiance and downwelling 
irradiance, using two connected radiometers 
pointing downward into the water column and 
upward at the sky. Thus, Rrs is the surface ratio 
of upwelling radiance emerging from water to 
downwelling radiative flux in air (32, 33) in 
units of steradians (sr-1). In situ Rrs 
measurements were reported from a wide range 
of times and locations throughout the mainstem 
Bay, including multiple seasons in years 2005 
to 2014 (Fig. 1; Table 1).  
 
Table 1. List of field measurements used for validation. 

Cruise Time n* Reference 

CB_Plume_D01 May 2005 20 (25, 34)  
CB_Plume_D02 Nov 2005 2 (25, 34)  
BIOME_B02 Jul 2005 3 (25, 34)  
GEO-CAPE Jul 2011 29 (24, 26, 35)  
BOCP Aug 2013 6 (36)  
CB Light Tower 2005-2007 23 (37, 38) 
CB Valid. Cruise Aug 2013 1 

 

SABOR Jul 2014 1 (39, 40)  
  *Paired data points for 250m spatial resolution. 

2.3. Satellite Rrs data 
MODIS-Aqua Rrs data from January 

2003 to December 2020 were used to study 
long-term trends (Table 2), including ocean 
band and land band at visible wavelengths (41, 
42). Rrs at the water surface is calculated from 
the total radiance exiting the top of earth’s 
atmosphere through a process of atmospheric 
correction (AC) to remove the contributions of 
aerosols (43, 44), with subsequent removal of 
sun glint, whitecaps, and other artefacts. As a 
result, less than 10% of top-of-atmosphere 
reflectance is contributed by the ocean (45, 46).  
 
Table 2. MODIS-Aqua bands of interest for water 
quality studies in coastal and inland waters. 

Wavelength 
(nm)  

Band Bandwidth 
(nm) 

Spatial 
res. (m) 

412 8 405-420 1000 
443 9 438-448 1000 
469 3 ^  459-479 500 
488 10 483-448 1000 
531 11 526-536 1000 
547* 12 546-556 1000 
555 4 ^ 545-565 500 
645 1 ^ 620-670 250 
667 13 662-672 1000 
678 14 673-683 1000 

* Nominal band center for 547nm band is ~551nm. 
^ Land band. 
 

Data were processed from Level-1 
through Level-3 using a custom merging 
method. Traditional AC in highly turbid waters 
may cause data loss as bright sediment-laden 
waters alias as atmospheric haze or clouds due 
to high emission in the infrared, biasing aquatic 
retrievals toward low-turbidity conditions and 
underrepresenting data due to missing pixels. 
Therefore, a custom AC using shortwave 
infrared and near-infrared (SWIR/NIR) 
merging method was used to ensure that the 
high-turbidity data were included in the 
analysis. Following the methods of Aurin et al. 
(47) we used two AC methods, SWIR for high 
turbidity (HT) and NIR for low turbidity (LT) 
pixels, processing each scene to level-2 using 
both separate AC methods and then merging 
those scenes. For HT, we added the mode 
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offset for non-high-light pixels back to each 
entire scene. The present study diverged from 
Aurin et al. (47) in that the median negative 
offset was not added back to level-2 LT scenes, 
as it caused misalignment of Rrs values for the 
same band at different spatial resolutions (e.g., 
555 nm). Spatially, HT and LT Rrs data were 
processed to level-2 at the nominal spatial 
resolution of each band. Rrs(645) was 
processed to all spatial resolutions in order to 
facilitate the merging method. At all spatial 
resolutions, we merged the scenes along spatial 
guidelines set by Rrs(645) threshold value of 
0.01 sr-1 by  adding the LT pixels to the HT 
scene where Rrs(645) < 0.01 sr-1 to create the 
level-2B scene. Using these merging methods, 
up to twice as many scenes per month were 
included in monthly averages. Custom-
processed level-2B Rrs scenes were binned to 
level-3 monthly composites at the respective 
spatial resolutions for each band to facilitate 
trend analysis over a consistent spatial grid. 

Although many scenes were excluded 
from the dataset due to clouds and other 
artefacts, no seasonal bias in cloud cover was 
found. Approximately 4 to 8 scenes were 
included in each monthly composite. The 
number of points in monthly composites 
showed only very small variation between 
spatial resolutions, quantified by comparing 
Rrs(645) level-3 mapped images for 250m, 
500m, and 1km spatial resolutions. The slight 
decrease in points per month with coarsening 
spatial resolution was most relevant to coast-
adjacent pixels, for which long-term trends 
were not analyzed in the current study. 
 
2.4. Validation  

Validation of MODIS-Aqua Rrs for the 
CB region was performed using SeaBASS 
datasets 2005 to 2014 (Table 1). Matchups all 
fell within 6 hours of a MODIS-Aqua overpass. 
Satellite data at station locations were extracted 
via slightly different spatial matchup windows 
depending on the spatial resolution of the level-
3 file, using an aerial coverage of 

approximately 1.6, 2.25, and 1 km2 for the 
three respective spatial resolutions 250m, 
500m, and 1km. Rrs values were compared by 
individual bands at each wavelength’s nominal 
spatial resolution (Table 3) and at 1km (Fig. 2). 
Metrics for satellite skill assessment included 
the mean ratio, bias, mean absolute error 
(MAE), root mean squared error (RMSE), 
mean absolute percent difference (mean APD), 
and correlation coefficient (R).  
 
2.5. Calculation of long-term trends  

Monthly composite images were used 
for trend analysis to maximize spatial coverage 
and use a constant temporal sampling interval 
for each year. Due to the spatial resolution 
characteristics of time series dataset (Table 2), 
analysis of trends in single bands used the 
nominal spatial resolution of each band. 
Analysis of trends in band ratios used the 
coarsest common spatial resolution of the two 
wavelengths in question, depending on band 
ratio shown. For example, Rrs(555)/Rrs(645) 
trends were calculated at 500m spatial 
resolution (the coarsest spatial resolution of 
those two bands), while trends in most band 
ratios, such as Rrs(667)/Rrs(488), were 
calculated at 1km spatial resolution.  At each 
wavelength and for each band ratio, spatially-
explicit trends were calculated for level-3 pixel 
locations (mapped/binned coordinates) that 
contained data for > 80% of the months in the 
time series from 2003 to 2020, i.e., > 173 of 
216 monthly images. Trends were calculated as 
linear regressions using the slope of the least 
squares fit (i.e., 48). Meaningful trends were 
assigned using an alpha level 90% confidence, 
i.e., p < 0.1.  

3. Results 
3.1. Validation results  

Comparison with in situ Rrs revealed 
generally close matches between satellite-
derived Rrs and observed conditions. Overall 
satellite Rrs very slightly underestimated in situ 
Rrs, with overestimation in the blue 
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Fig. 2 Mean and standard deviations of Rrs(λ) validation 
data points derived from MODIS-Aqua and measured in 
situ (n = 63), spanning multiple seasons and years 2005 
to 2013. MODIS-Aqua values represent the means and 
standard deviations for single-pixel validation points at 
1km spatial resolution. 

 
wavelengths (< 488 nm) and underestimation 
in the green through red wavelengths (> 488 
nm) (Table 3, Fig. 2). Skill was high for 
specific single bands, for example, the closest 
match to in situ Rrs was measured at 488 nm 
and 645 nm (Fig. 2). There was a small effect 
of spatial resolution on skill of satellite Rrs 
retrieval. Although satellite Rrs(645) was 
consistently lower than in situ Rrs(645), skill of 
satellite Rrs(645) decreased with coarsening 
spatial resolution (Table 3). 
 
 

 
Table 3. Validation of Rrs(l) for relevant MODIS-Aqua bands using in situ observed Rrs(l) vs. corresponding daily 
(<6 hours) satellite scene pixels or pixel window averages, including multiple skill metrics. 

Band (nm) Spatial res. n Mean ratio Bias  MAE  RMSE  Mean APD R 
412 

1 km  

63 1.4 0.0006 0.0013 0.0016 37% 0.58 
443 63 1.1 0.0003 0.0010 0.0014 12% 0.67 
488 63 1.0 0.00004 0.0010 0.0013 1% 0.75 
531 63 1.0 -0.0002 0.0012 0.0015 1% 0.67 
547 63 0.9 -0.0007 0.0015 0.0020 7% 0.61 
645 63 0.8 -0.0007 0.0012 0.0015 15% 0.70 
667 63 0.8 -0.0006 0.0010 0.0013 17% 0.70 
678 63 0.8 -0.0008 0.0011 0.0014 19% 0.72 
469 

500 m  
81 1.1 0.0002 0.0010 0.0014 15% 0.73 

555 81 0.9 -0.0009 0.0016 0.0021 9% 0.60 
645 81 0.8 -0.0006 0.0011 0.0015 12% 0.66 
645 250 m 85 1.0 -0.0001 0.0011 0.0014 6% 0.65 

 
3.2. Change over time in Rrs at single bands 

Generally, Rrs at all wavelengths 
decreased over time in the upper Bay and 
increased in the lower Bay, although the spatial 
extent, magnitude, and meaningfulness of those 
trends varied among wavelengths (Fig. 3). For 
the 412 nm band, the upper Bay region saw 
long-term meaningful decreases in Rrs, with 
the region of decreasing Rrs extending down-
estuary to the Rappahannock shoal. However, 
Rrs(412) in the lower Bay increased over time 
at scattered locations near the eastern Bay and 
Bay mouth (Fig. 3a). Rrs(443) decreased over 
time in the upper Bay with the region of long-
term decrease extending to the latitude of the 
Potomac river mouth. Rrs(443) showed long-

term increases in the lower Bay from the Bay 
mouth up-estuary on the eastern side of the Bay 
to Tangier island (Fig. 3b). Long-term 
decreases in Rrs(469) were found throughout 
the mainstem Bay north of the Potomac river; 
meanwhile, increases over time were found 
near the Bay mouth (Fig. 3c), though not as 
spatially extensive as the increases found for  
Rrs(443) or Rrs(488). For blue wavelengths 
(412, 443, and 469 nm) long-term decreases 
were also seen in the lower Potomac River. 
Rrs(488) decreased in the upper Bay, followed 
by an area of no trend, with an additional small 
region of decreasing Rrs(488) at the latitude of 
the mouth of the Patuxent river. Larger 
magnitude (>0.0001 sr-1 yr-1) increases in 



Turner 6 

Rrs(488) were found for most of the lower 
Bay, extending spatially up-estuary to Tangier 
island and reaching east-to-west across most of 
the mainstem Bay (Fig. 3d). Upper Bay 
decreases and lower Bay increases in 
Rrs(531,547,555) (Fig. 3e-g) closely resembled 
spatial patterns in Rrs(488), except all three 
green wavelengths additionally showed a 
region of meaningful long-term increase in Rrs 
in the lower James River. Decreases in 
Rrs(645) were found in the upper Bay 
extending down-estuary to just above the 
Choptank River mouth, with an additional 
small region of decreased Rrs(645) level with 

the mouth of the Patuxent River. Most of the 
lower Bay lacked any long-term trend in 
Rrs(645), except for a region of large-
magnitude decrease in the James River (Fig. 
3h). Rrs(667) and Rrs(678) showed a few 
decreasing areas in the upper Bay, a few 
increasing areas near the Bay mouth, yet 
overall few meaningful trends (Fig. 3i, 6j).  In 
short, a darkening (lower Rrs over time) was 
found for the upper Bay and some tributary 
rivers, especially at 469nm, while a brightening 
(higher Rrs over time) was found for the lower 
Bay Rrs, particularly at the green wavelengths 
(488, 531, 547, and 555 nm)

 
Fig. 3 Trends over time in Rrs(l) from 2003 to 2020 for bands 412 nm through 687 nm according to least-squares 
fits over all pixels with >80% of monthly images at the nominal spatial resolution of each band, i.e., h) Rrs(645) at 
250m, c) Rrs(469) and g) Rrs(555) at 500m, and all other bands at 1km. Small black dots indicate statistically 
meaningful trends (p < 0.1).  
 
3.3. Change over time in band ratios  
 Band ratios showed a wide range of 
results, with many showing heterogeneous 
spatial patterns in increases and decreases over 
time. Overall, multiple red-to-green ratios and 
red-to-blue ratios showed consistent, spatially 
widespread decreases (Fig. 4a,b), while some 
green-to-blue ratios showed consistent, 
spatially widespread increases (Fig. 4c). Long-
term decreases were found throughout the 

mainstem Bay for eight red-to-green band 
ratios (Table 4). The largest magnitude and 
most spatially widespread decreases of these 
eight ratios were Rrs(645)/Rrs(531) (Fig. 4a), 
Rrs(645)/Rrs(547), and Rrs(678)/Rrs(547). 
Similarly, long-term decreases for three red-to-
blue ratios were observed (Table 4). The 
largest magnitude decrease (< -0.005 yr-1) was 
seen for Rrs(645)/Rrs(488), for which the 
region of decrease extended from the Bay 
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mouth up-estuary to the eastern Bay above the 
Potomac River mouth (Fig. 4b). In contrast, 
long-term increases were observed for four 
green-to-blue ratios. Of these increasing green-
to-blue band ratios, the trend in 
Rrs(488)/Rrs(469) was the largest in magnitude 
and most spatially widespread, reaching from 
the Bay mouth through almost the entire 
estuary (Table 4). Rrs(531)/Rrs(469) also 
showed widespread increasing trends from the 
Bay mouth up-estuary to the Patuxent River 
mouth (Fig. 4c).  

 
Table 4. Trends over time in band ratios. 

Ratio type l1 l2 Trend* PercBay** 

Red-to-green 

678 555 - 30% 
645 555 - 29% 
678 547 - 30% 
667 547 - 20% 
645 547 - 32% 
678 531 - 33% 
667 531 - 25% 
645 531 - 34% 

Red-to-blue 
645 488 - 30% 
667 488 - 21% 
678 488 - 26% 

Green-to-blue 

555 469 + 20% 
531 469 + 33% 
488 469 + 52% 
547 469 + 26% 

* Where – or + indicate long-term decrease or increase. 
**Percent of water pixels analyzed exhibiting a 
meaningful long-term trend (p < 0.1). 
 

4. Discussion 
4.1. Relevance to established algorithms 

Using a red-band approach, i.e., 
Rrs(645) at 250m, we found a long-term 
decrease in the upper Bay and James River but 
no trend in most of the mainstem Bay (Fig. 3h). 
This red-band approach has historically been 
the most widely used index of water clarity in 
CB and estuaries with similar turbidity 
conditions (19, 49). Our findings suggest that 
clarity is improving more substantially in the 
upper Bay than the lower Bay, according to the 
single-band red-Rrs approach.  

Red-to-green ratios have been used in 
past studies of estuaries to estimate Chl-a, TSS, 

and turbidity; our findings would suggest a 
decrease in these variables over time for the 
mainstem Bay. Le et al.(24) used a “red-green 
chlorophyll index (RGCI)” based on the ratio 
Rrs(667)/Rrs(531) later employed by Ioannou 
et al. (50). In our study, we found that the 
relevant band ratio for this RGCI has decreased 
over time in the lower Bay, albeit with some 
spatial heterogeneity (Fig 7g). Reisinger et 
al.(51) used the red-to-green ratio 
Rrs(645)/Rrs(555) to estimate TSS in order to 
analyze a long time series in the coastal waters 
of the northern Gulf of Mexico. The 
corresponding ratio in our study (Fig. 4b) 
showed spatially widespread decreases over 
time for the mainstem CB, especially between 
the mainstem and eastern Bay south of the 
Patuxent River and north of the mouth of the 
James. Wang et al. (52) analyzed turbidity in 
the Pearl River estuary using a red-to-green 
ratio algorithms which, in our results,  shows a 
long-term decrease (Table 4). Together, these 
findings suggest a potential improvement in 
water clarity  over time according to red-to-
green Rrs band ratios.  

Red-to-blue ratios have related closely 
to in situ Kd and TSS in past studies; from our 
results, decreasing red-to-blue ratios may 
indicate improved water clarity over time, 
particularly in the lower Bay. Wang et al. (16) 
estimated a Kd(490) product for coastal waters 
based on the underlying band ratio 
Rrs(667)/Rrs(488), which, calibrated to in situ 
TSS-Kd relationships, also estimated CB TSS 
with relatively high skill (22). Siswanto et al. 
(53) independently used the same band ratio, 
Rrs(667)/Rrs(488), to estimate TSS in the East 
China Sea. In the present study, results show 
that this particular band ratio is decreasing in 
the lower CB, yet trends are spatially patchy 
(Table 4). Other previously used red-to-blue 
ratio water clarity algorithms did not yield 
meaningful trends over time in our analysis.  
For example, a high-resolution Kd(490) 
product developed for the CB (54) employing 
the ratio Rrs(645)/Rrs(469) did not yield any 
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spatially consistent nor meaningful trends over 
time in our results. In short, red-to-blue ratios 
suggest that water clarity is improving, 
especially in the lower Bay, yet conclusions are 
less strongly supported than for red-to-green 
ratio findings. 
 Green-to-blue band ratios are related to 
algorithms used to retrieve both aCDOM and 
Chl-a. For example, O’Reilly et al. (55) 
describe the OC2 algorithm, which can 
additionally be used to estimate Chl-a from 
high-resolution (500m) MODIS imagery with 
the band ratio Rrs(555)/Rrs(469). The results 
of the present study point to a long-term 
increase in CB for the band ratio relevant to 
this Chl-a algorithm (Fig. 5b). These results 
suggest a long-term increase in Chl-a as 
measured by green colored pigment 
concentration.  
 
4.2. Implications 

Considering improvements to nutrient 
and sediment loading to the Bay, the estuary 
likely has two different responses to nutrients 
vs. sediments, as evidenced by long-term 
trends.  The results of the present study show 
that Rrs(645), the most commonly used for 
water clarity variables, is decreasing over time 
in the upper Bay and the James River (Fig. 3h). 
These results may indicate that decreasing 
watershed sediment inputs may be realized in 
the more turbid sections of the Bay closest to 
river inputs. Also, red-to-green and red-to-blue 
ratios suggest improved water clarity in our 
results (Table 4). However, reduced sediment 
inputs do not always directly improve water 
clarity in the Bay according to all metrics. 
Modeling studies show that decreased sediment 
inputs can increase light availability to enhance 
organic matter production, increasing the 
concentration of organic suspended solids in 
surface waters in the mid-Bay (56). Therefore, 
while watershed nutrient reductions have 
parallel consequences in the downstream 
estuary, watershed sediment reductions could 
co-occur with seemingly misaligned effects in 

 
Fig. 4 Example trends over time in band ratios, including 
a) red-to-green, b) red-to-blue, and c) green-to-blue 
ratios. 
 
the estuary. The results of our work partially 
support this theory, since Rrs in the green 
bands (Fig. 3) and green-to-blue ratios (Fig. 4c) 
were found to be increasing over time in the 
lower Bay. 

No two estuaries are alike, and 
underlying geology may play a strong role in a 
given region’s optical complexity and 
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subsequent success of water quality satellite 
retrievals. The use of region-specific analyses 
is critical, especially when management entities 
may incorporate more remote sensing for 
future decision making.  The CB is not only 
optically complex, but the optically active 
constituents themselves are geochemically 
complex due to the geology and hydrology of 
the region. Other coastal regions such as Long 
Island Sound (57, 58) show successful 
retrievals of Rrs-derived variables, even with 
highly variable river inputs, but only if the 
constituent type is homogenous for that region. 
This homogeneity of constituents, common in 
northern latitudes that have experienced glacial 
scour, lends itself to more accurate empirical 
relationships between Rrs and water quality 
variables. The same cannot be said of the CB, 
whose tributary rivers drain multiple diverse 
watersheds. The watershed of the CB includes 
rocky uplands and coastal plains with very 
different underlying geologies that lead to 
varied river chemistry (59) and likely to 
diverse types of dissolved and particulate 
matter entering the Bay from the different 
tributary rivers. 

Results of this study show that the time 
scale of a given research question is critical for 
algorithm selection in optically complex 
estuarine waters. In contrast to studying long-
term trends in the CB, short-term applications 
of remote sensing data can provide powerful 
insights.  Impactful short-term uses for satellite 
remote sensing in the Bay include aquaculture 
siting and monitoring, comparing coastal bays, 
river plume extents, and other focused 
applications. The results of this study further 
support the idea that at long time scales, remote 
sensing of water clarity can complement, but 
not replace, in situ monitoring. 
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NASA SeaBASS data archive 
(https://seabass.gsfc.nasa.gov/).  
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