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Biological threats have become relevant over 

the last year since the onset of COVID19. 

These threats are addressed by finding the 

necessary mechanisms of the human body to 

affect them through external methods: vaccines 

and drugs, among others. Through the 

development of biology-focused analytical 

tools, ParaView, a data visualization tool, can 

also be extended to face biological threats. Not 

only can the research times of such treatments 

be decreased, but also these tools can be 

provided to a broad range of researchers. By 

developing the ability to conduct gene 

regulatory network (GRN) reconstruction in 

ParaView, researchers are better able to 

produce new medications faster. GRNs can 

currently be derived from the information 

found in cells through machine learning and 

probabilistic graphical models. The current 

methods are imperfect and do not factor in 

supplementary genetic data. Given the 

supplemental data, a data mining approach can 

be developed. Unlike previous methods, the 

proposed work relies upon two independent 

data types to make conclusions supported by 

more than one form of data. This paper shows 

that a dual data approach is possible in GRN 

reconstruction. This also provides an analysis 

of the differences between space and Earth 

gene expression. 

 

Introduction 

The COVID19 pandemic has brought 

about a perspective shift for many people 

regardless of its impact. COVID19 has shown 

that our existing methods to study biological 

threats do not entirely protect us and our ways 

of life. Given the improvements to vaccine 

development, effective countermeasures were 

produced at an unprecedented turnaround 

time; however, the global economy was still 

significantly affected. Given the unfortunate 

reality, developing the ability to research the 

parts of an affected cell quickly is a challenge 

that must be addressed to speed up the 

pipeline for facing current and future 

biological threats.  

COVID19, like many viruses, relies on 

proteins to support its ability to infect and 

further replicate within the human body. 

Proteins are small cogs in the biological 

machine. Proteins can bind to other proteins, 

which is how changes are triggered in the 

body. For instance, a virus has proteins that 

connect to the cells they will infect, allowing 

them to enter. The instruction manual to build 

a protein is called a gene.  Genes are stored in 

an extensive library of other protein-coding 

instructions called a genome. This genome is 

made up of a molecule called DNA.  A cell 

leverages its DNA by making copies of genes 

in the form of a molecule called RNA. These 

RNA molecules are then used to make 

proteins. However, an organism's genes are 

not all available to be read at any given time. 

That is the primary reason that muscle and 

liver cells act, behave and look like they do. 

Capturing the RNA molecules in a cell 

enables a researcher to ultimately capture the 

RNA molecules or reads that pertain to the 

active genes in a cell or sample. The active 

genes in a cell make up a gene expression 

profile. Numerous regulatory factors control if 

a gene is active. By finding the network of 



 

Leonard  2 
 

genes that interact with each other, we can 

discover what a cell is working on at any 

given time. 

Furthermore, we can better predict 

what happens if we expose that cell to a 

stimulus. However, this prediction is 

complicated by the numerous regulatory 

factors that control a gene's expression. This 

makes capturing the regulatory link between 

genes a nontrivial task. Two such factors are 

promoters and enhancers, regions of DNA that 

pertain to a target gene and can be 

manipulated to either encourage or inhibit the 

expression of a target gene. One such 

manipulator is broadly called DNA 

methylation. DNA methylation data captures 

the presence of methyl groups bound to 

specific areas in the DNA. The presence of 

methyl groups often has a negative 

relationship with gene expression1-3. As such, 

if there is a large amount of DNA methylation 

in a promoter or enhancer region, a gene may 

not be expressed even if it would be 

otherwise. Also within the promoter or 

enhancer regions are motifs. Motifs are 

binding points for proteins that help to express 

genes. By capturing the methylation levels in 

an enhancer, we can assume that the genes 

controlled by that enhancer will be affected. 

Currently, capturing all of the states of all the 

regulatory factors for a particular gene is 

impossible. Due to limited technology, high 

costs, and other factors, data for each 

regulatory factor cannot be generated for 

many experiments. This makes deriving a 

GRN much more complex as the regulatory 

environment has to be treated like a black box. 

The only information to work on is often gene 

expression data.  

Currently, existing algorithms take in 

gene expression data and build a gene 

regulatory network or GRN4-8. At present, 

gene expression data is captured by breaking 

open a cell and then taking out all RNA 

molecules and counting them up. However, 

this data collection method does not capture 

multiple moments in time for a cell, as once a 

cell is broken, it does not continue to produce 

RNA. This stagnates what a cell was doing, 

making it unclear how its gene expression 

profile may have changed. As a result, 

scientists gather numerous cells under the 

same or similar conditions and capture their 

gene expression data. This method attempts to 

catch more than one cell to develop a more 

comprehensive picture of how that cell's gene 

expression profile is behaving. This introduces 

a limitation to current methods. Unfortunately, 

because they use gene expression data, false 

positives are generated. In Figure 1 is a simple 

example of a problem that is caused by this 

limitation. 

Due to this flaw and many others, the 

removal of such errors is a crucial focus for 

GRN reconstruction algorithms. One approach 

is to develop more sophisticated models that 

are better able to decipher the links between 

genes. However, this approach will always be 

limited by the current data collection's flaw. 

Another demands more data be created over a 

period of time; however, this is a costly 

practice. Thus, we believe that by 

appropriately integrating the data of regulatory 

factors, errors are reduced. This works by 

factoring in several aligned pieces of 

biological evidence that all actively participate 

in a gene's regulation. The regulatory factor 

data in question is DNA methylation data 

which has been shown to affect the regulation 

of genes1-3. 

In extension, the development of 

universal or easy-to-access tools for analyzing 

and studying current and future problems is 

highly demanded. Given the nature of today's 

mass focus to solve a biological threat, the 

need to develop easily accessible high-quality 
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analysis tools is higher than ever. Currently, 

ParaView exists as one such tool that enables 

many people to visualize their data. However, 

ParaView is limited due to its lack of niche 

biological analysis and visualization plugins. 

By developing ParaView in this area, it will be 

able to support biologists more when facing 

current and future threats. Currently, GRN 

reconstruction represents an algorithmic idea 

of reverse-engineering the cell's inner 

machinery. A GRN can tell a researcher the 

genes which have a role in the regulation of 

other genes. In conjunction with new 

improvements in parallel mesh generation 

algorithms on proteins, the need to flesh out 

the underlying GRN controlling a target 

protein's creation is one more piece of the 

puzzle.  

 

Methodology 

 Within this work, two plugins for 

ParaView will be laid out. One is referred to 

as In-depth Protein Tooltip, and another is 

referred to as GRN analysis.  

 

In-depth Protein Tooltip 

 Within ParaView, there exist many 

tools for viewing various types of scalar and 

vector data. However, these tools often lack 

some of the finer details needed for the 

analysis of protein structure. The development 

of a plugin that was easy to use and integrated 

with existing ParaView functionality was 

considered the primary focus. This tool would 

then need to be able to study an essential part 

of protein structure. That being the cavities 

within proteins. The tool allows a user to 

hover over areas of selected data points and 

then generate a tooltip that would calculate the 

mean, standard deviation, and variance of the 

selection point's values, along with other 

metrics. A user can then observe cavities 

while also quickly and intuitively 

understanding the distributions of various 

protein-specific values within these cavities. 

The development can be broken down into 

three steps. The first requires the data points 

within a cavity to be extracted. The second 

needs the basic statistic values like mean, 

median, etc., to be calculated. The third and 

final step calls for the basic statistics to be 

visualized as a tooltip when a user hovers over 

a set of selected data points.  

 

GRN Analysis 

 Currently, ParaView cannot 

reconstruct a GRN. In addition, the 

visualization of a GRN is a nontrivial task. As 

such, the development of a GRN analysis 

process and a more GRN focused 

visualization plugin is necessary. By natively 

incorporating a GRN analysis tool within the 

ParaView framework, a user needs only gather 

the data necessary to run the GRN 

reconstruction algorithm. Initially, a user 

would be forced to run both GRN 

reconstruction and then modify the output of 

that GRN reconstruction to be fed and 

visualized in another biology-related 

visualization software like Cytoscape.   

The current approaches to GRN 

reconstruction utilize gene expression data. 

However, that data is one small piece of the 

puzzle. Acting upon gene expression is 

numerous known and unknown biological 

features, all of which alter it. Developing an 

approach that can integrate gene expression 

and relevant biological factors, it would then 

follow that forging of a regulatory link 

between two genes is more reliable given the 

multiple different sources of data arriving at a 

similar conclusion. Therefore, we present a 

data mining algorithm that factors in both 

gene expression data and DNA methylation 

data to reconstruct a GRN.  
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 This method ultimately looks to link 

both the enhancers and promoters to a target 

gene. The motifs within the enhancer and 

promoter regions are then used to find 

regulatory links between the target gene and 

the motifs' genes. This method is conducted at 

the transcript level due to more than one 

promoter being present for a gene. However, 

at the transcript level, each transcript of a gene 

can pertain to a unique promoter. A gene has 

multiple transcripts or variations either 

because they have unique start sites or their 

instructions are truncated somehow. Thus, a 

gene has numerous transcripts, which all result 

in unique but largely similar proteins. The 

gene regulatory network reconstructed with 

this method is at the gene level so that genes 

will have links between genes based on its 

transcripts' links. Therefore, a gene may have 

several transcripts, each transcript linking to 

another gene, and the result would be that 

gene linking with all of the other genes.  

 The link between the promoter and a 

particular transcript is done by looking at the 

transcription start site (TSS).  The TSS is 

where a gene starts being transcribed from 

DNA. In the case that promoters are 

overlapping, the center for each promoter is 

calculated, and the promoter center closest to 

the TSS is considered that transcript's 

promoter. At this point, the motifs and their 

corresponding gene transcripts are collected. 

The expression of the motif's transcript is then 

correlated through Pearson correlation with 

the target transcript. This correlation is 

between the motif transcript's gene expression 

for each sample and the target transcript's 

gene expression for each sample. If the 

correlation coefficient is above a certain 

threshold, negative or positive, that motif 

transcript is considered a regulator of the 

target transcript linking the two genes for 

which those transcripts pertain. 

 A transcript's promoter is calculated 

and used as a midpoint for a 200kb(200,000 

nucleic acids) regulatory region to link 

enhancers to their target gene. All of the 

enhancers within this regulatory region are 

considered potentially connected to the target 

transcript and collected. The link between 

each enhancer and transcript is then tested 

through Pearson correlation, with the target 

transcript's expression being correlated with 

the enhancer's methylation level across all 

samples. As with the promoter, if the 

correlation coefficient is above a set threshold, 

it is considered an active enhancer in 

regulating that target transcript. Given that an 

enhancer is deemed to be active, the motifs in 

the enhancer are linked in the same way that 

the promoter motifs were linked to the target 

gene.   

  

Results 

In-depth Protein Tooltip 

 After the start of the implementation of 

the Indepth Protein Tooltip, it was found out 

that a simpler alternative was possible. This 

alternative required the utilization of several 

filters within ParaView. The alternative 

method called for the use of the threshold 

filter, which would then extract all the points 

within a cavity as they all have an 

identification value that sets which cavity they 

are a part of. The following steps are trivial 

parts of ParaView, with the calculation of 

basic statistics already being part of ParaView. 

As for the visualization of a tooltip. After the 

trick with the threshold filter was found, the 

need for a tooltip was minimal due to the ease 

at which a user could access the cavity 

distribution information once they knew how. 

The setup for this approach is depicted in 

Figure 2.  
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GRN Analysis 

 The validation and differential analysis 

of the data used in testing the GRN 

reconstruction algorithm is shown in Figure 3. 

After validating the data, a necessary step to 

remove inactive transcripts and normalize 

their expression values, the data was then run 

in the GRN reconstruction algorithm depicted 

in Figure 3. Icam1 and Trpc1, two genes, were 

selected, and their direct regulating genes are 

pictured in Figures 4 and 5. The edge color 

depicts a positive, green, or negative, red, 

relation with the target gene. The edge width 

within these figures is calculated from the 

correlation between the regulating gene and 

the target gene's gene expression. That value 

is raised to the power of four and multiplied 

by five to increase the differences between 

different correlations. These two genes were 

selected due to studies that indicated them as 

important genes in the microgravity and 

muscle environment9-11. The Icam1 gene 

encodes an intercellular adhesion protein. It 

has been shown that altering the shape of a 

cell can alter its function12. This 

mechanotransduction pathway is of 

considerable interest when observing cells in 

microgravity conditions. Currently, cells are 

under the pressure of gravity which works 

against them to form a shape that has evolved 

over the time humans have walked the planet. 

However, when exposed to microgravity 

conditions, the shape of cells may be altered. 

If the shape is altered, it stands to reason that 

the cell's typical pathways are affected, and a 

protein coded by Trpc1 and Icam1 would be 

directly in the middle of that change in the 

process. The differential analysis made it clear 

that control (on Earth) and case (in space) data 

showed a marked difference in their gene 

expression activity, as shown in Figure 6. The 

further study into these two methods and the 

extension and further study of the proposed 

GRN reconstruction method are points of 

future work. The ParaView plugin portion of 

this work remains as future work.  

 

Conclusion 

 The development of tools to further 

expand and enable scientists to address new 

biological threats is a way to improve our 

response times in the future. Through further 

study of new environments, the mechanisms 

that control the human body are slowly 

revealed. Further investigation into the 

expression of genes in a microgravity 

environment visualizes the body's reaction to 

an extreme setting and is a point for future 

work and analysis. 

  

Dataset Preparation 

 

 The data used in this paper comes from 

the GLDS-99 dataset within GeneLab (NASA 

GeneLab Data Systems : 

/genelab/accession/GLDS-99/). The gene 

expression or RNA-seq data was preprocessed 

using TrimGalore for trimming, STAR for 

mapping, and RSEM for quantification of 

transcripts. FastQC was used for quality 

control. For the DNA methylation or WGBS-

seq data TrimGalore was used for trimming 

and Bismark was used for mapping. The 

methylation values were for CpG sites within 

the data and each CpG site was required to 

have three overlapping reads before the 

methylation value was considered. Putative 

enhancers/promoters13 had motif finding run 

on them by Homer on these regions to gather 

the potential TFs.  
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Figure 1. Gene A regulates Gene B and Gene 

C. As such, Gene B and C could have similar 

expression levels. In current models, this can 

result in a false positive link being created 

between Gene B and C because their gene 

expression levels are highly correlated. In 

reality, Gene A should have a link to Gene B 

and Gene C, and Gene B should not be linked 

to Gene C. 
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b) 

 
c) 

 
Figure 2. a) a image of the protein with 

different categories highlighted in different 

colores b) an extraction of one specific cavity 

depticted in blue in a) and b). c) The basic 

statistics for the data with the blue cavity in b) 

calculated by ParaView. 

 

 
Figure 3. Principal Component Analysis 

between control and case samples shows a 

separation between control (GC) and case 

(FLT) samples.  

 

 

 
Figure 4. Transcription factors for the Trpc1 gene. 
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Figure 5. Transcription factors for the Icam1 gene.  

 

 

 
Figure 6. Gene expression activity graph 

shows a higher activity in case samples (FLT) 

then control samples (GC). 

 

         

    
     

     

     

     

     

    

    

     

    

     
         

    

      

     

     
    

   

    

    

      

    


