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Abstract

Remote sensing continues to gain relevance in
modern society in part due to the development
of new image processing methods and imagery
platforms. The rise of convolutional neural net-
works (CNNs) for processing imagery has coin-
cided with an increase in publicly available remote
sensing imagery, expanding the envelope of possi-
bility when processing satellite imagery. For many
use cases, it is desirable to have remote sensing
imagery with high temporal and spatial resolution.
The temporal resolution of GOES imagery at 15
minutes is unmatched in other publicly available
products, but GOES’s spatial resolution of 2 km
per pixel is too coarse for many use cases. Con-
versely, VIIRS-I imagery has the high resolution
needed for many applications, but the temporal
resolution limits time-sensitive applications.

Our contribution combines two disparate ar-
eas of research by applying state-of-the-art CNN-
based super-resolution techniques to GOES im-
agery, while utilizing high-resolution VIIRS-I
imagery as ground truth, bringing its effective
spatial resolution down to sub-kilometer pixels.
We attempt this super-resolution using both an
autoencoder-based architecture of our own cre-
ation and the Very Deep Super-Resolution net-
work [6] (VDSR). Both our model and the VDSR
provide an improvement in the peak signal-to-
noise ratio over the original imagery of 1.37 and
1.20 dB, respectively.

1. Introduction

For remote sensing imaging applications, im-
agery with both high temporal-resolution and high
spatial-resolution unlocks many use cases such as
tracking and forecasting natural disasters in real
time, such as wildland fires. Low spatial res-
olution imagery prevents users from accurately
deploying resources and understanding the true
shape or extent of the phenomenon of interest.
Low temporal resolution imagery prevents users
from adapting to fast changing situations. For ex-
ample, in a wildfire response, fires change rapidly
with the weather and the situation from hour to
hour can be completely different. Sending first
responders out into the field with up-to-date, ac-
curate, information would increase firefighting ef-
fectiveness and decrease danger.

With the current array of publicly available re-
mote sensing imagery, users must choose between
data with satisfactory temporal resolution or sat-
isfactory spatial resolution, with no satellite plat-
form having both. The recent launch of NOAA’s
Geostationary Operational Environmental Satel-
lites (GOES) has brought forth a new public plat-
form with a temporal resolution of 15 minutes, un-
matched by competitors. However, the imagery
from GOES has a temporal resolution of only 2
km per pixel, which is overly coarse for many res-
olution sensitive applications. Another publicly
available remote sensing imagery platform is the
Visible Infrared Imaging Radiometer Suite (VI-
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Figure 1: An overview of our system: taking GOES-17 band 7 imagery, training a super-resolution
model with VIIRS-I band 4 ground truth, to produce images more closely matching the VIIRS-I imagery
spatial resolution at the high temporal resolution of GOES.

IRS) on the NOAA-20 and Suomi NPP satellites.
VIIRS has superior spatial resolution at 350 m per
pixel but a temporal resolution of 12 hours makes
it impossible to use for time sensitive applications.
A solution that combines the strengths of these
two platforms is needed is for time sensitive, spa-
tially resolved applications such as wildland fires.

Super-resolution is an image processing tech-
nique that retrieves a high spatial resolution im-
age from a single or series of low spatial resolu-
tion images [23]. There are two approaches typ-
ically utilized to ascertain the high-resolution in-
formation: i) produce new pixel values by esti-
mating them from the local area on the image
or ii) through a learned model such as a neural
network. Convolutional neural networks (CNNs)
have made breakthroughs in many image process-
ing tasks, including super-resolution (SR). This
is an active area of research in the computer vi-
sion community [6, 7, 17, 19, 20]. Some of these
works have proven successful in recovering the
high-resolution information.

While many of these neural networks are
trained on images or videos taken by people, there
is a growing body of research attempting to ap-
ply these state-of-the-art SR techniques to satel-
lite imagery [1, 8, 9, 10]. Research has shown that
performing a super resolution on satellite imagery
can improve its results in an object detection or

segmentation task [16]. Super-resolving an im-
age by a factor of 4 would require 15 new pix-
els be generated per pixel, effectively quartering
the ground sampling distance. For example, if the
original resolution was 100 meters per pixel, the
super-resolved image would have a resolution of
25 meters per pixel. This additional detail could
help analysts or detection algorithms better under-
stand a scene and its semantic makeup [22].

The impacts of effective super-resolution of
overhead imagery would be significant. Numer-
ous remote sensing applications would materi-
ally benefit from this technology including natu-
ral disaster response, automatic target recognition,
crop and deforestation monitoring, and reconnais-
sance. These methods can also be applied to many
imagery modalities including electro-optical, in-
frared, and hyperspectral.

Most super-resolution research focuses on first
down sampling an image to be used as a model
input and using the original image as truth. In
this work, we have instead investigated the possi-
bility of utilizing a low-resolution satellite image
as an input and a high-resolution satellite image
of the same area at the same time as the ground
truth. Specifically, we utilized the 7th band of the
GOES-17 satellite as an input and the 4th band of
the VIIRS-I imaging platform as ground truth in
our supervised training regime. In theory, this will
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allow us to get super-resolved, high spatial resolu-
tion GOES images at high temporal frequency for
use in time sensitive applications. Figure 1 shows
an example of the flow of our system.

1.1. Contributions

In this paper, we describe the integration of super-
resolution models with overhead imagery from
two different satellite imagery platforms. Our
main contributions can be summarized as follows:

• Investigated the application of existing state-
of-the-art super-resolution models to over-
head imagery of two publicly available plat-
forms, one with a high temporal resolution
and low spatial resolution, and one with a low
temporal resolution and high spatial resolu-
tion, using one as an input and one as training
truth.

• Proposed a network architecture based upon
the autoencoder or fully convolutional net-
work for this task.

• Evaluated several factors in the super-
resolution process to understand the limits of
the applications of these techniques on satel-
lite imagery from two disparate imagery plat-
forms.

2. Methods

The methods utilized for data collection and pro-
cessing and setting up our neural network archi-
tectures are outlined below.

2.1. Data Collection and Processing

There are several public overhead imagery
datasets including SpaceNet Challenge [15], the
IARPA Multi-View Stereo Satellite Challenge [2],
the Vehicle Detection in Aerial Imagery dataset
(VEDAI) [14], and the Overhead Imagery Re-
search Dataset (OIRDS) [18]. None of these in-
cluded the data required for our investigation,

namely images of the same place and time from
two imagery platforms of differing spatial resolu-
tion, requiring us to create our own dataset. Our
dataset consists of VIIRS-I imagery and GOES-17
imagery. Specifically, we focused on the 4th VI-
IRS imagery band which operates at a wavelength
from 3.550 - 3.930 µm and the 7th GOES-17 band
which operates at a wavelength from 3.80 - 3.99
µm. In theory, this should make the images similar
and increases the likelihood of success in training
our model.

As the GOES 17 data covers the western por-
tion of the United States, we started by retrieving
VIIRS-I granules that intersect the western conti-
nental United States using the NASA VIIRS At-
mosphere SIPS API [12] . These files were then
downloaded before using the timestamp associ-
ated with each file to find the most closely con-
nected GOES-17 imagery. As GOES-17 imagery
is produced every 15 minutes, as opposed to ev-
ery 12 hours for VIIRS, the maximum differential
in time for each image pair is 7.5 minutes. The
corresponding GOES 17 images were then down-
loaded from the AWS S3 server using the rclone
program [3]. After collecting the raw data files
for each satellite, we preprocessed them to be in
the same orientation and orthorectified. We uti-
lized the SatPy python package to complete this;
opening each file as a “Scene” and resampling
the GOES image onto the location of the VIIRS
image. This injected some amount of noise into
our dataset as the SatPy resample process is not
flawless. With our data preprocessed, we had to
break each paired image into reasonably sized im-
age chips for our model. Using a sliding win-
dow technique, we produced 128, 128-pixel im-
age chips (using a step size of 128). This left us
with 2,118,371 total image pairs for training our
model. We split these images into a training set of
80% of the images and a testing set of 20% of the
images.

Figure 2 shows a sampling of our created
dataset with some failure modes. The leftmost im-
age pair is a good example of most of the images
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in our dataset. As can be seen, the GOES-17 im-
age is much lower resolution than the VIIRS-I im-
age. In the middle of the GOES-17 image, you
can see the artifacts that SatPy leaves on some
images when resampling through the horizontal
lines in the middle of the image and duplicated,
not smooth graphics. This could have a negative
effect on the training and results of our model.
The third image pair shows a significant failure in
our dataset where some image chips seem to have
wildly different information encoded in them. We
believe this is likely caused by subtle differences
in the imagery platforms and the band operating
wavelengths. This is not very common in the
dataset but could be injected enough to confuse
our models during training or lower our evaluation
metrics.

Figure 2: Three sample sets of GOES-17 to
VIIRS-I image training pairs after preprocessing.

2.2. Network Architectures

As we are primarily evaluating the efficacy of
super-resolving remote sensing imagery from one
platform onto another platform, the models uti-
lized were strongly influenced by the literature.
The first model utilized borrowed heavily from au-
toencoder techniques. Autoencoders are known to
learn a representation of a set of data very effec-
tively, mainly by training a network to ignore sig-
nal noise [4, 5, 11, 13]. Autoencoders consist of
a reduction side, or encoder, and a reconstruction
side, or decoder. In theory these two portions of
the network will work together to effectively dis-

till the relevant information from an input and re-
produce it as an output. In our implementation, the
autoencoder was tasked with distilling the relevant
portions of the input GOES-17 imagery, and re-
producing a clearer, higher resolution output, sim-
ilar to the VIIRS-I imagery.

The encoder portion of our model consisted of
five two-dimensional convolution layers with ker-
nel size of three and a padding of one. Follow-
ing each convolutional layer was a ReLu activa-
tion and after the second and fourth convolutions,
a max pool. For the decoder, the network architec-
ture had two blocks of one transpose convolution,
and two normal convolutions, all with a kernel size
of 3. After each of these blocks was a final convo-
lutional layer. Again, ReLu activation was utilized
after each convolutional layer. A graphic of this
architecture and its implementation data flow can
be seen in Figure 3. This model was trained with
a mean squared error loss comparing the decoder
output to the high-resolution VIIRS-I imagery. A
learning rate of 1.0x10-4 and a batch size of 32 im-
ages was utilized over five epochs with the Adam
optimizer.

In addition to the custom autoencoder imple-
mentation utilized, we also trained and tested a
commonly used method in super-resolution litera-
ture, the Very Deep Super Resolution network, or
VDSR. VDSR is a single image super-resolution
(SISR) network originally proposed by Kim et al.
in 2016 [6]. Its main contribution was increasing
the depth of a network and finding a significant
improvement in accuracy. VDSR is a commonly
used baseline in the literature due to its ubiquity
and large jump in performance versus earlier mod-
els [17].

Our VDSR model was trained using MSE loss
and a learning rate of 0.1 with a standard gradient
descent optimizer. The details of the implementa-
tion were taken from the original paper and a Py-
torch implementation found at [21]. Small mod-
ifications to the model needed to be added as the
resolution change was not a clean 4x increase be-
tween 2 km pixels and 350 m pixels. The same
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Figure 3: Overview of autoencoder architecture and the data flow through the model. The output is
trained against the VIIRS-I ground truth while utilizing the GOES-17 input. In theory, the encoder
should distill information important to the reconstruction of high resolution VIIRS imagery from the
GOES input.

Figure 4: The VDSR network architecture from [1]. We utilized the VDSR due to its standing in the
literature as a standard state-of-the-art model in super-resolution.
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testing and validation sets were utilized for both
networks.

3. Results

After conducting our experiments as described in
the previous sections, results are reported using
PSNR on the validation set of image chips. Table
1 summarizes a comparison of our two approaches
on the data with the PSNR of the original low res-
olution GOES images, utilizing the VIIRS-I im-
ages as the target. The comparison between the
GOES input image and the VIIRS-I reference im-
age is referred to as Unresolved while our autoen-
coder based method is referred to as RS-AE, re-
mote sensing autoencoder, and the Very Deep Su-
per Resolution Network [6] is referred to as VDSR.

Algorithm Quality (dBs vs. VIIRS-I Imagery)
Unresolved 70.73
VDSR 72.04
RS-AE 72.11

Table 1: Comparison between no super-
resolution, the state-of-the-art VDSR network,
and our autoencoder network for our task of
super-resolving low-resolution GOES-17 Imagery
to high-resolution VIIRS-I Imagery.

In addition to PSNR as a quantitative metric, we
also collected a set of qualitative images for refer-
ence. In Figure 5, we show the results of both of
our models against the input GOES imagery and
the goal VIIRS imagery.

4. Discussion

With many remote sensing applications for high
resolution, high frequency imagery, our goal is
to explore the possibility of creating this imagery
through super-resolving imagery from the high
frequency but low-resolution GOES-17 platform.
We have designed a system to leverage existing

super-resolution approaches and high-resolution
but low frequency VIIRS-I imagery to produce the
desired high frequency, high-resolution imagery.

With our results, we have shown that this type
of super-resolution has its own unique challenges
with the methods used to pre-process the imagery,
differences in the imaging platforms themselves,
and misaligned spectral ranges of the imagery.
This can be seen clearly in Figure 5, where the
color of the GOES-17 imagery is different than
that in the VIIRS-I despite showing the same over-
arching features. Specifically, in the second im-
age from the left, you can see the dark blues and
bright yellows are more pronounced in the GOES
imagery than for the same features in the VIIRS-I
imagery. It is difficult to filter many of these is-
sues out of the training set as there is no known
tools to convert the imagery of each platform to
be closer to the other and prevent the creation of
added noise in the image preprocessing stage.

Comparing the results shown in Table 1 of the
two super-resolution architectures explored with
the unresolved imagery, we can see that out meth-
ods represent a significant improvement of over
1.3 dBs in the PNSR metric. Additionally, our
custom AutoEncoder based architecture produced
marginally improved results, 0.07 dBs, relative
to the VDSR network. This is likely due to
the autoencoder structure being better suited to
the unique nature of our super-resolution task.
For the autoencoder architecture, no improvement
was observed by altering the activation functions,
adding or removing convolutions, or adding more
dense blocks.

Our qualitative results in Figure 5 show that
both of our models seemed to approach the prob-
lem in a similar way, softening the edges of the
coarse GOES-17 image input and trying to convert
the imagery to be more like the VIIRS-I imagery
in terms of the measured intensity represented by
color. This can especially be seen in the right-most
image in Figure 5 where the VDSR and AutoEn-
coder both decrease the intensity of the bright yel-
low part of the GOES-17 image signifying that it
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Figure 5: Qualitative results on our unique GOES-17 to VIIRS-I Dataset with our AutoEncoder network
and the state-of-the-art VDSR network.

has learned that the VIIRS-I images typically have
a lower intensity.

While our results are an improvement on the
original GOES-17 imagery, the models were un-
able to recover detail that would be important in
object recognition tasks. This likely decreases our
methods efficacy for real-world use cases that re-
quire such data. Despite this, we feel that these re-
sults reveal the potential of these methods and we
are encouraged that the network can recover some
details and improve upon the input images pro-
vided. As we enter a period where remote sensing
is increasing in prevalence alongside the matura-
tion of super-resolution computer vision methods,
we believe that there is clear challenge in optimiz-
ing both super-resolution and image preprocessing
methods to produce higher quality data for users.

5. Conclusion

Remote sensing is one of many fields that can
leverage recent advances in super-resolution pow-

ered by deep learning. In this exploratory work,
we developed a unique dataset to approach the
super-resolution problem utilizing multiple satel-
lite imagery platforms, trained multiple super-
resolution models on this unique training scenario,
and evaluated their successes on this problem.

Our results have shown that current methods
can produce an improvement on original GOES-
17 input images, when trained using VIIRS-I im-
agery as the ground truth image, of over 1.3 dBs in
the PSNR metric. However, these improvements
might not be significant enough to power many of
the intended use cases that require high-resolution,
high frequency remote sensing imagery.

We have also shown that current methods for
preprocessing remote sensing imagery do not
meet the needs of current state-of-the-art super-
resolution models when using different imagery
platforms as the input and expected truth. New
methods need to be created that inject less noise
or artifacts and compensate between differences
in the original sensors the images were taken on.
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