
Autonomous Task Sequencing and Assignment for
In-Space Multi-Robot Assembly

Joshua Moser
Advisor: Erik Komendera

Virginia Polytechnic Institute and State University

Abstract

As endeavors into space exploration and re-
lated scientific experimentation expand, the
use of autonomous robotic systems to con-
struct and maintain infrastructure will be nec-
essary. To accomplish autonomous assem-
bly in a realistic, stochastic environment, it
is necessary to have the ability to reschedule
robots and tasks to deal with a changing envi-
ronment. To this end, the work presented here
developed a novel stochastic problem defini-
tion that is capable of articulating the differ-
ent elements present in the autonomous as-
sembly problems through the use of differ-
ent graph structures and a Markov decision
process formulation. While this formulation
can be utilized by many different schedule
generation methods, a reinforcement learn-
ing schedule generation method is explored
in this work. It was found that the complex-
ities present in a realistic assembly problem
prove to be a challenge for a single policy re-
inforcement learning formulation which leads
to a future work recommendation of pursu-
ing a multi-policy reinforcement learning ap-
proach to handle the complexities present in a
realistic assembly problem.

Introduction

As the frontier of in-space exploration and re-
search is pushed forward, technological ad-
vances will be required to facilitate this ef-
fort. One such advancement that shows great
potential is the use of autonomous systems
for the construction and maintaining of the
necessary infrastructures in the in-space con-
text. Such systems, can be deployed to pre-

pare a habitation structure for astronauts or
construct and maintain an unmanned research
site. Autonomous systems seen in industry
currently implement robots to handle repeti-
tive tasks such and pick and place or repeti-
tive welding jobs. While these are elements
that can be present in an assembly process,
an autonomous assembly project in an in-
space environment will often be required to
operate for timespans without human input.
This will require the autonomy to be capa-
ble of making changes in the task assign-
ment in response to changes that cause devi-
ation from the original schedule, many intro-
duced as a result of working in a a real world,
stochastic environment. This level of auton-
omy will require a framework to articulate the
the assembly problem, breaking it down into
base components that can be modified to re-
spond as required. This articulation must also
have the ability to describe the stochastic el-
ements present, providing a way for the deci-
sion making policy to account for risk associ-
ated with different assignment configurations.
Using this formulation, an assembly task as-
signment map (assembly schedule) can then
be developed to build or repair the structures
the system is assigned to maintain.

Problem Formulation

To this end, a framework, noted as the
stochastic problem formulation (SPD), was
developed to articulate the elements present
in an autonomous assembly problem, the con-
straints that are required to ensure an assem-
bly is viable, and a mathematical model to
represent the assembly state and the stochas-
tic elements present. This formulation can be

Moser 1

broken down three main sections: Elements,
Constraints, and State Representation. To fa-
cilitate the explanation of this problem for-
mulation, a two piece, two robot, assembly
problem, shown in Figure 1, will be used. The
goal of this assembly will be to move both the
block and post pieces into position where they
will be welding together.

Figure 1: Two robot and two piece assembly
project

Elements

The Elements portion of the problem formu-
lation describes the "physical" portion of the
assembly problem, namely: the important lo-
cations in the assembly (Points), the structural
elements (Components) in the assembly, the
connection type information (Joints), and the
autonomous operators (Robots). These four
categories are divided into two different sets:
Components, Joints, and Robots all affect the
state of the assembly and are considered state-
ful elements while Points falls into the cate-
gory of stateless element. For each element,
the characteristics are broken up into the two
categories: states and properties. As indi-
cated in the name, the states are those that fac-
tor into the overall state of the assembly and
the properties remain constant throughout the
assembly. This distinction will be important
when it comes modeling the state of assem-
bly, described in a few sections.

Points: As stated above, it is the
only stateless element in the prob-
lem formulating. Denoted by the set

W = {W1, . . . , Wi, . . . W|W |}, each point
can be thought of as a description of a
location in the assembly environment. Since
these location designations do not change as
the assembly progresses, the Point type is
stateless. Each Point usually contains two
property features: type and location. Figure
2 contains the Point formulation for this
assembly example.

Figure 2: A: Point formulation for the storage
location, B: Point formulation for the build
location

Components: A component, represented
in the set C = {C1, . . . , Ci, . . . C|C|}, is
any physical part that is included in the au-
tonomous assembly problem and is not an au-
tonomous operator. It contains all of the ele-
ments that will need to be manipulated for the
assembly. Each Ci has a set of possible states
and properties. For the component type, there
are generally three different state features: in
position / not in position, broken / not broken,
and current location. The in position / not in
position state reflects if the component is cor-
rectly installed. The broken / not broken state
reflects if that component is going to need to
be replaced or if it can remain. Finally, the
current location state provides state informa-
tion as the component transitions around the
environment. The property features for each
component will contain information such as
component type, locations, and weight (if ap-
plicable). The location property feature can
contain points that are important to the com-
ponent. Two primary examples are start loca-
tion and goal location. Figure 3 contains the
component formulations at the start of this ex-
ample assembly project.

Moser 2

Figure 3: A: Block component formulation,
B: Post component formulation

Joints: A Joint, represented in the set K =
{K1, . . . , Ki, . . . K|K|}, can be thought of as
an element of the assembly problem that is
not in the form of a physical part or a loca-
tion. This will take the form of welds, bolt
joints, etc. Similar to the component type,
this element contains states and properties in
its definition. For a joint, joined / not joined
and completion percent make up the two most
common state features. Joint type, locations,
and component list are examples of property
features. Figure 4 contains the formulation of
the weld present in this assembly.

Figure 4: Joint formulation for the weld

Robots: The Robot element type rep-
resents the autonomous operators that will
be used to complete the assembly project.
A given robot, represented in the set R =
{R1, . . . , Ri, . . . R|R|}, can have the follow-
ing state features: idle / busy, current loca-
tion, current task, and energy level. Addition-
ally, each robot often has four property fea-
tures: robot type, locations, workspace, and
abilities. The workspace can be thought of as
a robot’s reach, that is, the area a robot has
access to without moving its base. To define
the abilities feature, a set of operation types
in the project needs to be defined. Based on
the types of components and joints in the as-
sembly project and the types of robots in the
project, a set of operations will be defined as
O = {O1, . . . , Oi, . . . O|O|}. These opera-
tions will be discussed in more depth in a fol-
lowing section. For now, each operation type
can be thought of as an action a robot has to
preform (ex: {hold, weld, locomote}). The
abilities property for each robot will have a
set of entries for each type of operation rep-
resenting how long it takes a robot to com-
plete that operation (the processing time). If
the problem is stochastic, this will take the
form of a distribution. This distribution can
be accompanied by distributions representing
the time cost of a minor failure (one that de-
lays the completion of the operation) and a
chance of major failure (requiring the oper-
ation to be restarted). For this example, a
normal distribution is used. If the schedule
generation method being used requires a sin-
gle value input for processing time, this can
also be modeled as the expected value of the
processing time distribution. Figure 5 shows
the two robots, using an expected value rep-
resentation for the processing times for each
operation.

Constraints

The constraints portion of the formation con-
tains the requirements that describe what a
valid assembly sequence must look like. This
will include a job shop type formulation to

Moser 3

Figure 5: A: Robot formulation for the grip-
per robot, B: Robot formulation for the weld-
ing robot

discretize the steps into different action that
must be taken, precedence constraints to en-
sure tasks are completed in the required or-
der, continuity constraints and machine valid-
ity constraints to ensure that the correct ma-
chines are used on tasks, and finally, distance
constraints to encapsulate the distance robots
will have to travel between tasks.1

Job Shop Scheduling Problem Formulation:
As mentioned above, a job shop scheduling
problem formulation (JSSP) is used to de-
scribe the discretized tasks required to com-
plete an assembly project. The jobs are repre-
sented by the set J = {J1, . . . , Ji, . . . J|J|}. For
this project there are two kinds of jobs: Move
(M) and Affix (A) where M represents the task
type of moving a component from one point
to anther in the environment and A represents
the task type of connect the block and post
together. The complete set of jobs for this as-
sembly project is: J = {MBlock, MPost , APost}.
Each job will have a set of operations (O j),
which represent the individual robot con-
tributions for a given job (i.e. if there are
two operations in a job, two different robots
have to work together to complete it). It is
possible for there to be more than one way

to complete a job, leading to multiple sets
of operations per job. These different sets
are referred to as process plans (Pj). For
this project there is one way to complete the
move job and one way to complete the affix
job. These are given by the process plans:
PM = {[Grasp]} & PA = {[Grasp,Weld]}
respectively.

Precedence: As stated earlier, the prece-
dence constraints ensure that jobs are only
completed in viable temporal sequences. To
model the precedence constraints, a Directed
Acyclic Graph (DAG), Gp(Vp,αp), is used
where each vertex, Vp, represents a job and
each arc, αp, represents a precedence con-
straint, thereby encoding the project prece-
dence constraints in the structure of the graph.
Figure 6 contains the precedence DAG to get
from the starting configuration (S) of this
project to the finished configuration (F).

Figure 6: A: Start and finished compo-
nent configurations, B: Precedence Directed
Acyclic Graph

Continuity: In an assembly project, there
may be times when a robot needs to continue
in the same operation that it had in a previous
job. This constraint is represented by the set
H, which contains arc and operation type par-
ings. The arcs, from the DAG mentioned pre-
viously, describe which jobs these constraints

Moser 4

apply to. The operation type represents which
operations need to have the same robot across
the arcs. For this project, a continuity con-
straint will be defined to require the robot that
moves the post into position is also the robot
holding the post during the welding (prevent-
ing the need for the part to be set down). This
is formulated as: H = {(α3,Grasp)}.

Valid Robot Selection: In an assembly
problem, there are also instances in which a
specific robot must be used for a job even if
other robots are technically capable of com-
pleting it. To formulate this, a set of pairs
(V) is defined that represents what robots can
complete what jobs. For this assembly there
is no restriction, making all the robots valid
choices for all of the jobs: V = {(J,R)}.

Distance: Finally, as mentioned above,
the distance between jobs must also be mod-
eled to allow a scheduler to include the cost
of moving between jobs as it selects robots
and job sequences. To model this, a fully con-
nected graph is used, Gd(Vd,Ed), where each
vertex, Vd , represents each job. In this graph,
each edge (Ed) contains the values of the dis-
tance, in a project’s required units, between
the jobs it connects. Figure 7 contains the
fully connect graph for this assembly project
where the distances are either d or 0 depend-
ing on if they are at the same located or across
the environment space.

Figure 7: Fully connected distance graph

States

The definitions above provide a way to de-
scribe the current state of each element in the
assembly project and all the constraints re-
quired to complete the assembly. The aggre-
gated states of all the stateful elements form
the basis for a description of the overall state
of the assembly. For the purpose of task as-
signment, it is necessary to model how the
state of an assembly will change for a par-
ticular robot to task assignment. In a re-
alistic autonomous assembly problem, there
will often be stochastic elements that fac-
tor into the state transition of the assem-
bly. To accommodate this, the SPD models
the autonomous assembly as a Markov Deci-
sion Process (MDP), represented as the tuple
(S,A,P(s′|s,a),R), containing the state set,
action set, transition probability, and transi-
tion reward respectively. Each of these will
be unpacked below.

State Space: The SPD state space, S, is
the state set representing all of the possible
states a given assembly project can take. Each
unique state, s ∈ S, is a different state varia-
tion of the stateful elements defined earlier.
Some of these are easily thought of as dis-
cretized instances, such as what job a robot
is currently assigned to. Alternatively, some
of the elements fall into a continuous domain
and will be discritized as an approximation
based on the capability of a given scheduler
generator utilizing this formulation.

Action Space: The SPD action space, A,
is the action space representing all of the pos-
sible actions in the assembly problem. These
actions take the form of assigning different
robots to different tasks where the set is an
accumulation of the different unique assign-
ment possibilities (a ∈ A).

Transition Probability: The transition
probabilities, P(s′|s,a), can be thought of
as a measurement of how likely a certain
state transition is given an action assignment.

Moser 5

Figure 8: Transition probability example

These transition probabilities are a key
feature of this problem formulation as they
encapsulate much of the stochastic nature
present in the assembly problems. The prob-
ability of transition from the current state,
s, to the new state, s′, is dependent on the
probability of success from a chosen action,
a. These probabilities can come from the pro-
cesses times and chances of failure defined
in the robot abilities as well as stochastic
elements present in the environment.

Figure 8 and Table 1 provide an example
of how this probability function is generated
through the use of a two job example. The
jobs are J = {J1,J2} where J1 = MBlock and
J2 = MPost . Each job has the two possible
states, completed, 3, and not completed, 7.
This leads to four possible assembly states,
shown in Table 1. In this example, s1 repre-
sents a state where J1 is complete and J2 is
not complete (J3

1 ,J7
2) i.e. the block is in po-

sition but the post is not. By the same logic,
the other three states represent the other three
possible combinations. The equations in 1
show the probability formulations for each of
the possible transition probabilities. Through
probability laws these probabilities are equiv-
alent to those shown by the equations in 2.

Table 1: Example MPD with State Transi-
tions

State Job instances
s1 J3

1 J7
2

s2 J3
1 J3

2
s3 J7

1 J3
2

s4 J7
1 J7

2

Pα(·) = P(s′ = s1|s = s1,a = a) = P(J3
1 ,J7

2 |a)
Pβ (·) = P(s′ = s2|s = s1,a = a) = P(J3

1 ,J3
2 |a)

Pγ(·) = P(s′ = s3|s = s1,a = a) = P(J7
1 ,J

3
2 |a)

Pδ (·) = P(s′ = s4|s = s1,a = a) = P(J7
1 ,J

7
2 |a)

(1)

Pα(·) = P(J3
1 ,J7

2 |a) = P(J3
1 |J7

2 ,a)P(J
7
2 |a)

Pβ (·) = P(J3
1 ,J7

2 |a) = P(J3
1 |J3

2 ,a)P(J3
2 |a)

Pγ(·) = P(J3
1 ,J3

2 |a) = P(J7
1 |J

3
2 ,a)P(J3

2 |a)
Pδ (·) = P(J3

1 ,J7
2 |a) = P(J3

1 |J7
2 ,a)P(J

7
2 |a)

(2)

This formulation allows for scenarios such
as failures, restarts, and backtracking. It also
allows for impossible paths to be blocked
by asserting zero probability for these tran-
sitions. For this example, the assertion can
be made that there is no real state where J2 is
successful when J1 is not (the post can not be
in the correct position if the block is not al-
ready there if the correct position of the post
includes a reference from the block). Mod-
eling this would require that P(J7

1 |J3
2 ,a) = 0.

Using this method of modeling, more compli-
cated interactions from uncertainties can be
accounted for. In this general form, job inser-
tions are not an issue since they would simply
add a set of nodes into the MDP. Unknown
states would also not be a concern since this
type of formulation describes every possible
state. This is an important element when it
comes to replanning because it means that
the required transitions for replanning are al-
ready embedded in this MDP description. It
should be acknowledged here that while this
is possible in the theoretical case, in practice,
extremely large state spaces are not practical
for many schedule generator methods to han-
dle. Therefore, some schedule generation for-
mulations will use a reduced set of states in

Moser 6

the MDP model to approximate the entire as-
sembly.

Transition Reward: The final element of
the MDP formulation is the state transition re-
ward, Ra(s′,s). This represents how good it is
for the state transition (s′,s) to occur with re-
spect to completing the assembly. This might
include rewarding specific job completions,
the completion of the overall assembly, or fo-
cusing on elements like penalizing the enter-
ing of broken states (states where something
in the assembly is broken). The general for-
mulation does not constrain how this reward
is generated, leaving a framework in place to
be utilized by the different schedule genera-
tion methods. Some examples of the reward
might be a time cost, or some penalty value
utilized in a schedule generator’s solver.

Reinforcement Learning

The SPD formulation is independent of any
one scheduling method. It provides the foun-
dation for articulating the elements present in
an assembly problem. As such, a wide range
of schedule generation approaches can utilize
it, pulling as much or as little of the infor-
mation as they are capable of modeling (for
example, a deterministic schedule generation
method may not be capable of utilizing all
of the stochastic information but it will still
pull from the constraint and job shop formu-
lation portions). In this work, a reinforcement
learning (RL) formulation which is inherently
seeking to find an optimal control policy for
an MDP formulation, will be explored as a
schedule generation method. In reinforce-
ment learning, the goal is to learn a policy,
π(s), that will predict the optimal action to
take for a given state by evaluating how good
the next state is as a result of the action. This
"goodness" is measured by predicting the fu-
ture reward to give a state value when a cer-
tain policy is followed. This value function
for a given policy can be thought of as:

vπ(s) = Eπ [Gt |St = s] (3)

Figure 9: Reinforcement learning project
anatomy

where s is the state and the future reward, Gt ,
is given by:

Gt =
∞

∑
k=0

γ
kRt+k+1 (4)

where a discount factor, γ ∈ [0,1] is used to
prioritize rewards, Rt , closer to time t.2

Formulations

The specific RL methods utilized in the
experiments performed for this work were
A2C,3 DDPG,4 SAC,5 TD3,6 and PPO.7

These are all policy gradient methods, that
is, they seek to directly optimize the policy.
Using these methods, the experiments below
sought to expand the very preliminary work
done in this author’s previous work8 by ex-
panding the state space from only evaluating
processing times to including additional com-
plicating elements from the SPD such as dis-
tance.

The environment consisted of three types
of robots: Manipulator, Jigging Robot, and
Walker, along with three different types of
tasks: Manipulation, Alignment, and Loco-
motion. The assembly space to be navigated

Moser 7

Table 2: The processing times for each robot
type and task type pair given in environment
time step units.

Robot Description Manipulation Alignment Locomotion
Manipulator 2 10 5

Jigging Robot 5 2 10
Walker 5 10 2

was thought of as a 20×20 grid. For training,
a 50 job queue was populated with a random
number of the three types of jobs at random
locations in the space. The scheduler (policy)
was only able to see 3 jobs at a time in a visi-
ble queue and was tasked with assigning each
job to one of the three types of robots. It was
also allowed to wait on assigning a job to a
robot, giving it the ability to wait for a better
robot if needed. Figure 9 gives a visual repre-
sentation of this setup. The processing times
for each of the robot and operation type pairs
is shown in Table 2. Multiple state space con-
figurations and reward functions were tested
to provide the RL with the correct informa-
tion to learn how to optimally assign in this
expanded state space. These variations in-
cluded:

• When the scheduler queried the policy
(at every time step or only when a robot
was free)

• If the state space included direct in-
formation about how long robots were
working

• If the reward function credited an assign-
ment when it took place or after the jobs
were completed

The great majority of these formulations
did not successfully converge to a learned
policy which will be discussed in the next sec-
tion. This work will discuss the results from a
base configuration8 and an expanded config-
uration that performed the best. Both of these
configurations had a state space vector con-
sisting of what jobs the robots were working
on, what jobs were in the queue, how long
those jobs had been in the queue, and, when
applicable, the distance between those jobs.

For both of the configurations, the policy was
queried every time step. The base formula-
tion reward function for each time step t was:

Rt =−∑
it

(t− t0i) (5)

where i was a given job that completed at t
and t0i was the time that job i entered the
visible queue. This reward function sought
to teach the policy to move jobs through the
queue as quickly as possible. The shorter
amount of time the job was in the queue and
the faster it was completed the better (less
negative) the reward would be. The best per-
forming reward function, the expanded for-
mulation, was:

Rt = ∑
jt

(t jw− t jp)−∑
it

(t− t0i) (6)

where j was a job being assigned at time t and
i was a job in the visible queue at time t. For
this formulation, the job was taken out of the
queue as soon as it was assigned to a robot.
The idea of this reward function was to give
an immediate positive reward when an as-
signment was made by subtracting the longest
(worst case) a robot could take to complete
the job t jw by the actual projected completion
for the job t jp based on the robot assigned.
This immediate feedback was balanced by if
the job it chose had been in the queue long
by taking the difference of the current time
and how long each job in the queue had been
there t0i. After training, the policies were test-
ing on 100 different 50 job projects. Their
performance on these test projects were com-
pared against a random assignment policy and
a greedy assignment policy. The greedy pol-
icy would assign the best robot to the job at a
given time step without any consideration of
future jobs. The training and testing results
will be discussed in the next sections.

Results & Discussion

To evaluate training, there are two graphs that
are important. The reward value vs time,
which shows the return of the reward value

Moser 8

Figure 10: A: Training reward and makespan graphs for base formulation, B: Training reward
and makespan graphs for the expanded formulation, C: Training reward and makespan graphs
for the expanded formulation with distances

at each time step, and the makespan (how
long it takes to complete the training project)
vs time. If a model successfully converged
to a learned state, the reward values should
trend at a slope before leveling out. If the
training successfully learned to minimize the
makespan and thereby learn to assign the
robots in a way that improved the project
completion time, the makespan should have
a downward trend before converging. Shown
in Figure 10, the base formulation was not
able to learn even the simple environment
containing only processing times considera-
tions. The expanded reward formulation was
able to learn for the simple environment but
only with the PPO formulation. However,
once the distances were added to increase the
complexity, even the PPO formulation was
no longer able to converge to a useful pol-
icy. This is illustrated in Figure 11 where each
of the expanded formulation models is com-
pared against a greedy and random assign-
ment policy. As shown, most of the other RL
policies performed worse then guessing ran-
domly. For some of these models, it appears
from the makespan graphs that they start to

learn the correct way to assign but then they to
diverge. This points to a need for more work
to be done in developing a better reward func-
tion. In the expanded form, the two parts in
equation 6 balancing local impact vs future
impact can become unbalanced depending on
the size of the time differences. In the next
section, options for mitigating this and ways
for handling the increasing complexity of the
state information will be discussed.

Figure 11: Average makespan from 100 test
projects using the expanded formulation

Moser 9

Future Work

Future work with the SPD will include testing
its use with other schedule generation meth-
ods. One such method of interest is a mixed
integer programming formulation which is
often used for job shop type problems. In
the context of a reinforcement learning based
solution generation methods. Future work
will continue to develop the reward function.
A possible addition to preserve the balance
of current and future affects would include
the introduction of weighting factors on the
two parts of the reward. Another alternative
is splitting decision making across multiple
policies. It is possible to have the different
policies "focus" on different factors contribut-
ing to the reward. This, combined with ad-
ditional models to embed the different com-
plexities in the state space may provide a bet-
ter feedback loop on how the actions affect
the current and future state of the assembly.

Acknowledgements

Special thanks to Paolo Fermin for his assis-
tance with the reinforcement learning experi-
ments.

References

1 Joshua Moser, Anderson Matthew, Holly
Everson, Amy Quartaro, William D.
Chapin, Benjamin Beach, Julia Hoffman,
Robert Hildebrand, and Erik E. Komendera.
Recent Developments in Robust, Accurate
Autonomous Assembly Methods for Sur-
face and Orbital Structures. In ASCEND
2020, Virtual Event, November 2020.
American Institute of Aeronautics and
Astronautics.

2 Richard S. Sutton and Andrew G. Barto.
Reinforcement learning: an introduction.
Adaptive computation and machine learn-
ing series. The MIT Press, Cambridge, Mas-
sachusetts, second edition edition, 2018.

3 Volodymyr Mnih, Adrià Puigdomènech Ba-
dia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver,
and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning.
arXiv:1602.01783 [cs], June 2016. arXiv:
1602.01783.

4 Timothy P. Lillicrap, Jonathan J. Hunt,
Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan
Wierstra. Continuous control with deep
reinforcement learning. arXiv:1509.02971
[cs, stat], July 2019. arXiv: 1509.02971.

5 Tuomas Haarnoja, Aurick Zhou, Pieter
Abbeel, and Sergey Levine. Soft Actor-
Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic
Actor. arXiv:1801.01290 [cs, stat], August
2018. arXiv: 1801.01290.

6 Scott Fujimoto, Herke van Hoof, and
David Meger. Addressing Function Ap-
proximation Error in Actor-Critic Methods.
arXiv:1802.09477 [cs, stat], October 2018.
arXiv: 1802.09477.

7 John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Klimov.
Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs], August 2017.
arXiv: 1707.06347.

8 Joshua Moser, John Cooper, James Neilan,
Liam Chapin, Samantha Glassner, and Erik
Komendera. A Reinforcement Learning Ap-
proach for the Autonomous Assembly of In-
Space Habitats and Infrastructures in Uncer-
tain Environments. In 70th International
Astronautical Congress, page 11, October
2019.

Moser 10

