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Abstract 

 

 Automation in robotics needs a large 

amount of data which is gathered by sensors 

and data acquisition. This project intended to 

update the Mobile Assembly Robotic 

Collaborators (MARC) in the FASER lab to 

incorporate more sensors and a robust user 

interface. The use and general design of the 

prototype is described followed by the 

execution and results. The design was 

successful, and most components were tested 

but only a few were fully integrated into the 

MARC. Impact from the global pandemic led 

to slower than expected progress but more 

emphasis was put on the user interface 

instead. This leaves a lot of low-level code to 

be written and tested before there is an 

autonomous ready MARC.  

 

Introduction 

 

Problem Statement 

 This project aimed at creating a 

wheeled robot capable of semi-autonomous 

function and designed for future autonomous 

collaborative assembly research. The FASER 

lab’s pair of custom mobile robot research 

platforms, named MARC, are constantly being 

upgraded to a new prototype version while 

also supporting several research projects. This 

report describes the process of making an 

incremental update to the MARCs that adds 

sensors, actuators, and a new user interface all 

needed for future autonomy research. 

 

Starting Point 

 At the beginning of the project, the 

MARC was a Logitech F710 wireless 

gamepad driven SuperDroid platform with 

mecanum wheels and a six degree of freedom 

(DOF) GearWurx arm with no feedback 

except for battery voltage [1] [2]. Figure 1 

shows the MARCs before the start of this 

project. The intended purpose of the MARC at 

that stage of development was to test the 

payload and reliability of a cheap off the shelf 

robotic arm and a robotic platform kit. The 

MARC was used to research mobile 

collaborative assembly through building office 

furniture and trusses as seen in Figure 2. 

 A chain of command is used to control 

the MARCs and have it achieve a desired 

pose. First the user inputs to a Logitech game 

controller which is picked up by an onboard 

Figure 1: Initial state of both MARCs 



McCulley  2 
 

Raspberry Pi 3b. The Raspberry Pi is running 

python and determines what state information 

to pass along to the subordinate devices based 

on the user’s input mode. The Raspberry Pi 

passes along commands to the arm and 

platform’s Arduino Uno that tells the desired 

state of the component. The initial state of the 

arm and platform control hardware can be 

seen in Figure 3. These commands are sent 

with UART through a USB connection and 

are formatted very simply for a quick response 

time. Components like grippers and wheels 

are controlled by velocity while the arm is 

controlled with joint angles. 

 The MARCs, in this early stage, had 

several limitations preventing progress 

towards autonomy. There was a need for 

feedback from both the arm and platform 

about the angle of joints and wheels as well as 

information about the immediate surroundings 

to avoid a crash. One downside of the 

mecanum wheels addressed in this project was 

the sliding that can happen because of the 

minimal contact with the ground and low 

friction. The robot base must be very stable 

when pushing or lifting a large amount of 

weight. The high-level Python code at the start 

of this project was only capable of driving the 

robot with a game controller. Any change to 

the USB port configuration for control 

hardware would require a minor code change 

and manually starting the python script once 

devices were connected and configured. 

 

Changes to MARC 

 To be more capable of autonomy, this 

project added the following things: Teensy 4.0 

microcontrollers, encoders to the platform 

wheels and the arm joints, six ultrasonic 

distance sensors, and four linear actuators to 

the platform [3]. The encoders provided angle 

measurements of all degrees of freedom. The 

ultrasonic sensors allowed detecting obstacles 

close to the platform and the linear actuators 

lifted the MARC off the ground and served as 

a brake. The positional feedback from the 

platform’s linear actuators was also 

incorporated in this prototype upgrade. 

 The python code that previously 

allowed just controller input was modified to 

be a command line interface that would allow 

input through the controller, command line, or 

over wireless packets from another computer. 

This interface was also designed to show the 

user all relevant feedback information and 

adjust configuration settings without restarting 

the program. This new user interface was 

created to be very intuitive, helpful, and user 

friendly. 

 

Uses for Updated MARC 

 The new MARC hardware and 

software changes are capable of operating 

with more input modes and provides more 

feedback. The intention of this prototype 

update was to allow autonomy when the 

feedback is provided to an external server that 

can command the robot. The FASER lab has 

an OptiTrack motion capture system that can 

be implemented for additional input to the 

autonomy server. [4] 

Figure 2: MARC deflecting a wood truss 

Figure 3: Arm control hardware (left) and platform control 
hardware (right) 
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 Autonomy is needed to carry out more 

robotics research areas that align with 

NASA’s mission directorates [5]. Completing 

mobile robot assembly without human input 

would be useful for building structures on 

other planets or in uncertain environments. 

The ability to have two MARCs opens 

collaborative autonomy research areas useful 

when objects are heavy or when a job requires 

two robots. The FASER lab intends to study 

task assignment with reinforcement learning 

so jobs and  

 

Methods 

 

 The first main component of the 

project was upgrading the MARC with more 

sensors and a way to stop which is handled by 

either the embedded system on the arm or 

platform. The second addition with this 

project was the high-level change to the user 

interface code handled by the onboard 

computer. 

 

Low-Level Changes 

The hardware upgrade of more sensors 

and actuators required a redone circuit and 

modified embedded C++ code for both the 

arm and the platform. These changes also 

required the higher level python code to be 

modified to work with the new subordinate 

devices. To support more I/O, the embedded 

controller on the arm and platform was 

upgraded from an Arduino Uno to a PJRC 

Teensy 4.0. 

The sensor chosen for the arm was an 

AS5600 position sensor encoder for the 

custom wrist because it provided a single 

analog signal to reduce the number of lines 

running along the length of the arm. The 

existing encoders on the arm joints were also 

utilized since the GearWurx arm has built in 

position control through standard servo input. 

The GearWurx Arm 3.0 has a DB-9 connector 

where the encoder pulse output could be 

accessed and provided to the microcontroller. 

The sensors chosen for the platform 

were the HC-SR04 ultrasonic sensor and 

AS5048A high-resolution position sensor 

encoder. The ultrasonic sensors were mounted 

along the base with three on the front and 

three on the back. These provided a good 

general field of view for about one foot 

surrounding the platform and they are simple 

and cheap compared to LiDAR. The platform 

encoders were mounted next to each wheel 

axis to give position feedback after the DC 

motor turns a chain to drive each mecanum 

wheel.  

The linear actuator for the platform 

was an Actuonix P16-P with feedback and an 

actuator stroke of 100mm. The feedback was 

needed so additional sensors wouldn’t have to 

be incorporated in order to know the state of 

the actuator. A high gear ratio was selected 

because the four actuators must support the 

weight of the MARC and its payload. One 

necessary feature of these linear actuators is 

they keep their position when power is 

removed. This is required because if the 

MARC loses power, it will remain stable and 

not damage the actuators or MARC. 

The Teensy 4.0 is a much more 

capable microcontroller than the Arduino Uno 

with 40 I/O pins including many PWM output, 

analog input, and communication ports. The 

processor is an ARM Cortex-M7 at 600 MHz 

which is fast enough to allow for a future 

MARC upgrade. The electronics were first 

tested on breadboards to get the code and 

connections working. Then a protoboard is 

used to mount all electronics and create wire 

connection points for each of the sensors or 

motors. The protoboard typically has to hold 

very simple components like a resistor or 

capacitor used in wiring the sensors but the 

linear actuators required a separate H-bridge 

chip. A dual H-bridge chip was used on each 

side of the platform to each control a pair of 

linear actuators. 

For the arm, components are either 

located at the base or at the end of the arm. 
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The Teensy 4.0, motor controllers, battery, 

and connection to the arm’s control port are 

all wrapped around the base of the arm. The 

custom gripper containing two stepper motors 

and a limit switch, encoders, and EPM are 

located about 3 feet from the base at the end 

of the arm. To centralize wires, a 25-

conductor serial cable was run from the base 

to the end of the arm with DB-25 connectors 

used to keep all connections available in a 

standard format.  

 A 25-conductor serial cable was also 

used on the platform to connect the front and 

back electronics circuit. With the H-bridge 

and the large number of sensors being placed 

on the platform requiring a lot of connectors, 

it was decided to use two protoboards to 

distribute the electronics. A DB-25 connector 

attaches each end of the serial cable to the two 

protoboards. The protoboard towards the back 

of the MARC platform holds the Teensy 4.0 

which is closer to the Raspberry Pi, making it 

easier to connect the two. The protoboards are 

suspended on acrylic laser cut sheets along 

with the motor controllers that fit into the 

bottom of the platform hollow sections. 

 The Arduino IDE is used to program 

the Teensy 4.0 microcontroller and object-

oriented programming is used to structure the 

code. The flow chart in Figure 4 shows the 

initialization and then functions called during 

the main control loop for each device. The 

Teensy has a standard message format for 

input and output over UART that uses 

commas to separate values and a new line 

character to separate messages. The order of 

values is predefined for both the arm and 

platform and shown in Figure 5. 

Additional low-level code changes 

were done to make the platform and arm more 

configurable without having to reprogram 

them. On each device, there is a defined set of 

input types used to change the value of some 

variables. On the MARC arm, the encoder 

feedback can either return the raw values or 

the calculated angle at that joint. The angle 

offset used in that calculation can also be 

changed. The format for changing these 

variables is to send a command with a 

different prefix instead of “run.” The 

additional available commands are, 

 Input Output 

Arm 

 

Example 

run,angle 1,angle 2,angle 

3,angle 4,angle 5,angle 6\n 

run,150,90,90,0,0,0\n 

a,angle 1,angle 2,angle 3,angle 4,angle 5,battery 

voltage\n 

a,90,90,20,0,0,12\n 

Platform 

 

 

Example 

run,x velocity, y velocity, 

rotation angle\n 

 

run,120,0,0\n 

p,angle 1,angle 2,angle 3,angle 4,battery voltage, 

actuator 1,actuator 2,actuator 3,actuator 4,ultrasonic 

1,ultrasonic 2,ultrasonic 3,ultrasonic 4\n 

p,10,30,10,30,24,200,200,200,200,4,4,5,10,3,5\n 

Figure 5: Arm and platform command format for state input and output with an example 

Figure 4: Broad view of embedded code structure for the 
arm(left) and platform(right) 
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“rawEncoder”, “angleEncoder”, and 

“encoderOffset.” For changing the encoder 

offset, comma separated values of the new 

offset are required. Changing this value is 

intended for easy debugging purposes and 

could be used to easily apply device specific 

parameters stored on the controlling computer. 

The platform has several new 

commands relating to the motors and linear 

actuators. The command “stop” will raise the 

platform and sending a usual “run” command 

will lower the platform. The command 

“newHold” can be used to set the motionless 

voltage input to the motor controller for each 

wheel. This voltage level can be different for 

each wheel and vary by device or current 

battery voltage, so it was useful to have a 

quick way to change the value. Each new 

command for both the arm and the platform 

must end in “\n” and provide any additional 

values with proper comma separating format. 

 

High-Level Changes 

 The user interface was primarily 

designed to interactively handle multiple input 

sources to the MARC and display output 

information. The USB polling, command 

logging, and help feature were added to make 

the interface more useful and user friendly. 

The total list of available commands can be 

seen in Figure 6. The cmd library on python 

was imported and used as a template for 

building the user interface. [6] A thread is 

started in the code to read input from the 

command line and if the input matches with a 

defined function then that function is 

executed. A help function can also be defined 

using the same name as the input command. 

This new interface supports modularity 

better by monitoring the USB ports to allow 

connecting and disconnecting devices without 

restarting the program. It keeps a running list 

of active devices and frequently checks if that 

device is still valid and looks for new devices. 

Devices are identified by either sending the 

letter ‘a’ or ‘p’ at the front of any output. The 

code uses this to assign a serial object 

associated with either the arm or the platform. 

The mode of operation allowed is dependent 

on what devices are connected. For example, 

if only the arm is connected then command 

line interface with the arm is allowable. If a 

gamepad and both devices are connected then 

the user will be given full control of the robot 

through that controller. 

The controller mode of operation 

remained mostly the same as before this 

project began. A server mode of operation 

allows UDP packets containing commands for 

the arm and platform to be passed along to 

those devices. Interfacing the MARC through 

the command line is an option useful for 

debugging. In this mode, the user can specify 

a command to be sent to either device or 

choose from the list of configuration setting 

commands. The “arm” and “plat” command 

sends the provided line of text directly along 

to the appropriate device. The command 

“stop”, for example, sends halt commands to 

both devices and prevents additional 

commands until “play” is entered. 

The “devices” command lists if the 

arm, platform, controller, or server are 

connected. “Mode” will list the current 

operating mode and “master” will give 

operating preference to either the server or 

controller when both are available. The log 

related commands allow the user to save the 

device commands sent in a log file and re-

send those exact commands keeping all 

timings the same. This is useful for testing the 

repeatability of certain sequences of moves 

that may be performed autonomously.  

  Figure 6: Python command line interface available commands 
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The feedback from devices is read by a 

thread and stored in arrays for when the user 

wants that information. Commands like 

“platPing”, “platBrakes”, “battery”, and 

“angles” will display the most recent feedback 

related to that command. 

 

Testing 

 A standard process of incremental 

testing was used in developing the hardware 

and software changes. The new feature is 

always implemented and tested in an isolated 

environment such as a breadboard or separate 

code file. Once the feature is completed, each 

possible use case is tested. When the hardware 

or software passes all tests and withstands 

most possible external errors, then it is 

integrated into the entire system. After 

integration, the entire MARC is tested 

ensuring the new and existing features work as 

intended. This process helps reduce bugs or 

flaws that can accumulate when new changes 

are put directly into implementation. 

 

Results 

 

Low-Level Changes 

The circuit hardware was mostly 

completed for both the arm and the platform 

for a single MARC. Some additional changes 

to the MARC midway through the project was 

imposed by new FASER lab needs. This 

caused development time to be shifted from 

the original plan to implementing new 

features. These two new features located at the 

wrist of the MARC were a new degree of 

freedom and a new magnetic gripper. The 

additional DOF was added after the last joint 

on the GearWurx arm to allow for the rest of 

the gripper to rotate left and right. The second 

change was an alternative end effector that 

replaced the finger gripper with an EPM 

device that can create an electromagnet for 

attaching to a custom gripper on the device 

being picked up. The original gripper was kept 

as the main feature but the EPM also had all 

wiring required so the two could be 

interchanged. 

 

Platform 

 The distribution of electronics between 

the front and back of the platform worked well 

with the 25-connector ribbon cable sitting 

flush along the bottom of the platform and 

secured to the metal supports. It is convenient 

to have two centralized points of connection 

for plugging in the actuators and ultrasonic 

sensors. The wiring would be messy if all 

components were connected to a single 

protoboard. The actuator H-bridge was a tight 

fit and the protoboard had to have some traces 

cut to make the connection point share rows 

with the H-bridge. There was a problem with a 

particular brand of wires used at first that kept 

breaking from the protoboard. 

 The encoders on the wheels were not 

fully integrated. Only two wheels had the 

encoders mounted and the hardware did not 

include the intended I2C multiplexer or the 

ability to connect that to the Teensy 4.0. The 

accompanying low-level code to read from the 

encoders and relay that as feedback was not 

written. The ultrasonic sensors and actuators 

were tested but not fully integrated. These 

features were not able to be fully integrated 

into the entire system because they caused 

delays that were unfavorable to necessary 

functions of the code. The physical mount for 

these features was designed but never 

completed so the actuators and ultrasonic 

sensors could not be mounted on the platform. 

The current state of the platform can be seen 

in Figure7. 

 The distributed H-bridges are 

convenient because where the actuators sit is 

close to the control hardware where they 

connect so the included wiring is long enough. 

For the ultrasonic sensors, the connections 

made near the protoboard are less than an inch 

long so cable extensions will have to be routed 

from the sensor to the appropriate protoboard. 

The DB-25 connectors on the platform were 
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bulky and could have been designed better to 

either be mounted on the protoboard or 

mounted somewhere more permanent. A 

better battery connection point was also an 

unplanned addition that can be seen in Figure 

8. 

 Arm 

 A Teensy 4.0 update on the arm was 

successful and resulted in a clean protoboard 

full of connectors that either go to devices on 

the arm’s base or head to the DB-25 connector 

to be routed up to the end of the arm. The 

current state of the arm control hardware can 

be seen in Figure 9. The DB-25 Connector is 

also used to send the output from the stepper 

motor controllers to the wrist and can be seen 

in figure 10. This design required some 

consideration about the current going through 

the long length of thin 28 AWG. To prevent 

too much voltage drop over the almost 3 feet 

length of wire, multiple conductors were used 

for some higher voltage lines. The 5V line 

used 2 and the 12V used 3. This use of 

additional wires to allow higher current and 

the large amount of existing control signals 

use all 25 conductors in the wire. To make 

connectors at the end of the wrist given that 

some voltage levels are carried in multiple 

wires, a small piece of a protoboard was used 

to solder common voltages together and create 

wires that go to connectors. The small board 

can be seen in Figure 11. Wires longer than a 

few inches going to or from the encoders and 

stepper motor drivers are put in cable 

shielding. 

 The encoders on the arm are available 

to the Teensy 4.0 through using a monitor 

splitter that uses the same DB-9 connector. 

This allows the encoders to be used by the arm 

itself and gives an easy access point without 

requiring splicing into wires. Code to read the 

encoders was tested in isolation but it was 

found too slow for use in the whole system. It 

is slowed by the pulseIn command in the 

Arduino library that waits for a signal to have 

a falling edge and then counts the time until 

the falling edge. This function can have the 

timeout value changed as a parameter but 

blocking the code to wait for encoder signals 

is too slow considering the rest of the program 

running. A thread running the pulseIn function 

or a custom non-blocking version of the 

function would be required to solve the 

problem. The encoder on the custom wrist 

joint was installed but later removed with the 

addition of the new DOF that can be seen in 

Figure 11. There was wiring and code changes 

made to support that encoder, but it was not 

tested or implemented. 

 An addition to the control hardware 

needed for the new joint was an H-bridge on 

the arm’s protoboard in order to control the 

DC motor. The new DC motor has a hall 

effect sensor to provide position feedback. 

Some wires in the 25-conductor cable were 

Figure 7: Platform with new Teensy 4.0 prototype circuit 

Figure 8: Surface mount battery connectors 
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dedicated to that DC motor control and 

feedback. This way of getting information to 

and from the wrist of the arm was successful 

and the new joint was fully integrated into this 

prototype upgrade of the MARC. The new 

degree of freedom required code change to the 

python so there is now a variable for the 

number of joints and the controller will 

behave according to what version of the 

MARC is being used. An additional feature 

was also added to easily switch between the 

old and new control scheme. This was done 

with a toggle of the Y button on the controller 

and was intended to help operators who are 

used to the original control schemes. The new 

joint was implemented fully and there is easy 

control of the gripper’s rotation to the left and 

right. 

 An unplanned part of the switch from 

an Arduino Uno to Teensy 4.0 was that the 

stepper motor controller was not responsive 

because the Teensy 4.0 operates on a lower 

voltage of 3.3V. The stepper motor controller 

defines low voltage as anything below 4V 

which was not known originally so a logic 

level shifter had to be added in order for the 

two devices to successfully communicate. 

Since it was an unplanned addition, the logic 

shifter board is suspended above the H-bridge  

as seen in Figure 9. 

 Figure 12 shows the EPM gripper that 

required a UART and PWM connection ran up 

to the end of the arm. These were again done 

through the 25-conductor cable. The wiring 

and code were created and the device was 

tested but it was not fully integrated into the 

MARC. The connector on the MARC limit 

switch for the rail holding the gripper fingers 

was changed to a breadboard wire male and 

female connection instead of the previous 

connector that clipped in and was difficult to 

disconnect. The previous connector would 

have wires become disconnected often 

because of the force needed to separate the 

two. 

Figure 9: Arm's Teensy 4.0 control board with connections for 
all external devices 

Figure 10: Side picture of the MARC with DB-25 at the base of 
the arm 

Figure 11: New DC motor joint and small board to handle 
wires 
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High-Level Changes 

 The python user interface was a 

success and it allowed easy debugging and 

advanced use of the MARC but it was found 

less useful for regular use. The python script 

would startup automatically when the 

Raspberry Pi was powered on and the user 

would pick up the controller and start 

operating. Very rarely in our research did we 

need to connect to the computer wirelessly to 

open the command line interface. One new 

part of the upgrade used every time on startup 

is the USB polling. It is very convenient to 

have the Raspberry Pi recognize both devices 

and the controller and then automatically 

switch to controller mode. The feedback 

feature worked as planned but because the arm 

and platform weren’t providing meaningful 

feedback, it was not useful. One down side of 

automatically starting the python script was 

that it would run in the background and the 

user interface could not be accessed unless it 

was terminated and started manually. 

 The logging feature was used 

minimally and the repeatability of most 

actions was low enough that it could not be 

trusted. The platform when given a simple 

trajectory to drive some small distance would 

end up in a different place after replaying the 

logged moves. The arm had similar troubles 

and because of the position control feature, the 

user would have to be careful to start and end 

the robot in the same pose when recording 

moves. This is because otherwise, the robot 

will snap from the end of the playback to 

where it started otherwise. While the server 

interaction with the MARC was not 

implemented, the updated prototype of python 

code was a successful step towards autonomy. 

 

Discussion 

 

Lessons Learned 

 There were several missteps in the 

design process and overlooked design details 

that prevented something from working. 

These delays include the need for a logic level 

shifter and the linear actuator mount in the 

back being blocked by the Raspberry Pi and 

emergency stop switch. Hardware limitations 

became a setback when the Coronavirus 

pandemic limited in person lab access. The 

user interface became a priority throughout 

the first semester of this project where there 

was no lab access. During the second 

semester, a lot of progress was made on one of 

the MARCs but that was slowed by other 

projects needing to use the MARC. There 

were many weeks where the MARC had to be 

fully operational so changes had to be very 

limited. Given the challenges and setbacks 

faced, the MARC still became more 

developed and moved away from the limited 

output on Arduino Unos. This project has 

overall improved the FASER lab’s path to the 

goal of autonomous space assembly.  

 

Future Work 

 The project has many components still 

needing to be integrated and tested. Once the 

MARC has finished getting all updates for this 

prototype, the autonomy server can be created 

and robots will be controlled from the server. 

The user interface will be more useful when 

the gamepad controller is used less and the 

server becomes the main form of controlling 

the MARC. At the same time as developing 

autonomy, the second MARC that is still on 

the first prototype can be reconstructed and 

upgraded to the second prototype as well. 

Figure 12: EPM gripper 
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With two MARCs the FASER lab can 

research autonomous collaborative assembly. 

The autonomous task assigning project can 

then be implemented on the MARCs to 

determine the best way about solving a given 

problem. 
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