
McCulley 1

SENSING IN COLLABORATIVE ASSEMBLY WITH UNCERTAINTY

Researcher: Devin McCulley

Virginia Tech, Field and Space Experimental Robotics (FASER) Laboratory

dmccu422@vt.edu

Advisor: Dr. Erik Komendera

komendera@vt.edu

Abstract

 Automation in robotics needs a large

amount of data which is gathered by sensors

and data acquisition. This project intended to

update the Mobile Assembly Robotic

Collaborators (MARC) in the FASER lab to

incorporate more sensors and a robust user

interface. The use and general design of the

prototype is described followed by the

execution and results. The design was

successful, and most components were tested

but only a few were fully integrated into the

MARC. Impact from the global pandemic led

to slower than expected progress but more

emphasis was put on the user interface

instead. This leaves a lot of low-level code to

be written and tested before there is an

autonomous ready MARC.

Introduction

Problem Statement

 This project aimed at creating a

wheeled robot capable of semi-autonomous

function and designed for future autonomous

collaborative assembly research. The FASER

lab’s pair of custom mobile robot research

platforms, named MARC, are constantly being

upgraded to a new prototype version while

also supporting several research projects. This

report describes the process of making an

incremental update to the MARCs that adds

sensors, actuators, and a new user interface all

needed for future autonomy research.

Starting Point

 At the beginning of the project, the

MARC was a Logitech F710 wireless

gamepad driven SuperDroid platform with

mecanum wheels and a six degree of freedom

(DOF) GearWurx arm with no feedback

except for battery voltage [1] [2]. Figure 1

shows the MARCs before the start of this

project. The intended purpose of the MARC at

that stage of development was to test the

payload and reliability of a cheap off the shelf

robotic arm and a robotic platform kit. The

MARC was used to research mobile

collaborative assembly through building office

furniture and trusses as seen in Figure 2.

 A chain of command is used to control

the MARCs and have it achieve a desired

pose. First the user inputs to a Logitech game

controller which is picked up by an onboard

Figure 1: Initial state of both MARCs

McCulley 2

Raspberry Pi 3b. The Raspberry Pi is running

python and determines what state information

to pass along to the subordinate devices based

on the user’s input mode. The Raspberry Pi

passes along commands to the arm and

platform’s Arduino Uno that tells the desired

state of the component. The initial state of the

arm and platform control hardware can be

seen in Figure 3. These commands are sent

with UART through a USB connection and

are formatted very simply for a quick response

time. Components like grippers and wheels

are controlled by velocity while the arm is

controlled with joint angles.

 The MARCs, in this early stage, had

several limitations preventing progress

towards autonomy. There was a need for

feedback from both the arm and platform

about the angle of joints and wheels as well as

information about the immediate surroundings

to avoid a crash. One downside of the

mecanum wheels addressed in this project was

the sliding that can happen because of the

minimal contact with the ground and low

friction. The robot base must be very stable

when pushing or lifting a large amount of

weight. The high-level Python code at the start

of this project was only capable of driving the

robot with a game controller. Any change to

the USB port configuration for control

hardware would require a minor code change

and manually starting the python script once

devices were connected and configured.

Changes to MARC

 To be more capable of autonomy, this

project added the following things: Teensy 4.0

microcontrollers, encoders to the platform

wheels and the arm joints, six ultrasonic

distance sensors, and four linear actuators to

the platform [3]. The encoders provided angle

measurements of all degrees of freedom. The

ultrasonic sensors allowed detecting obstacles

close to the platform and the linear actuators

lifted the MARC off the ground and served as

a brake. The positional feedback from the

platform’s linear actuators was also

incorporated in this prototype upgrade.

 The python code that previously

allowed just controller input was modified to

be a command line interface that would allow

input through the controller, command line, or

over wireless packets from another computer.

This interface was also designed to show the

user all relevant feedback information and

adjust configuration settings without restarting

the program. This new user interface was

created to be very intuitive, helpful, and user

friendly.

Uses for Updated MARC

 The new MARC hardware and

software changes are capable of operating

with more input modes and provides more

feedback. The intention of this prototype

update was to allow autonomy when the

feedback is provided to an external server that

can command the robot. The FASER lab has

an OptiTrack motion capture system that can

be implemented for additional input to the

autonomy server. [4]

Figure 2: MARC deflecting a wood truss

Figure 3: Arm control hardware (left) and platform control
hardware (right)

McCulley 3

 Autonomy is needed to carry out more

robotics research areas that align with

NASA’s mission directorates [5]. Completing

mobile robot assembly without human input

would be useful for building structures on

other planets or in uncertain environments.

The ability to have two MARCs opens

collaborative autonomy research areas useful

when objects are heavy or when a job requires

two robots. The FASER lab intends to study

task assignment with reinforcement learning

so jobs and

Methods

 The first main component of the

project was upgrading the MARC with more

sensors and a way to stop which is handled by

either the embedded system on the arm or

platform. The second addition with this

project was the high-level change to the user

interface code handled by the onboard

computer.

Low-Level Changes

The hardware upgrade of more sensors

and actuators required a redone circuit and

modified embedded C++ code for both the

arm and the platform. These changes also

required the higher level python code to be

modified to work with the new subordinate

devices. To support more I/O, the embedded

controller on the arm and platform was

upgraded from an Arduino Uno to a PJRC

Teensy 4.0.

The sensor chosen for the arm was an

AS5600 position sensor encoder for the

custom wrist because it provided a single

analog signal to reduce the number of lines

running along the length of the arm. The

existing encoders on the arm joints were also

utilized since the GearWurx arm has built in

position control through standard servo input.

The GearWurx Arm 3.0 has a DB-9 connector

where the encoder pulse output could be

accessed and provided to the microcontroller.

The sensors chosen for the platform

were the HC-SR04 ultrasonic sensor and

AS5048A high-resolution position sensor

encoder. The ultrasonic sensors were mounted

along the base with three on the front and

three on the back. These provided a good

general field of view for about one foot

surrounding the platform and they are simple

and cheap compared to LiDAR. The platform

encoders were mounted next to each wheel

axis to give position feedback after the DC

motor turns a chain to drive each mecanum

wheel.

The linear actuator for the platform

was an Actuonix P16-P with feedback and an

actuator stroke of 100mm. The feedback was

needed so additional sensors wouldn’t have to

be incorporated in order to know the state of

the actuator. A high gear ratio was selected

because the four actuators must support the

weight of the MARC and its payload. One

necessary feature of these linear actuators is

they keep their position when power is

removed. This is required because if the

MARC loses power, it will remain stable and

not damage the actuators or MARC.

The Teensy 4.0 is a much more

capable microcontroller than the Arduino Uno

with 40 I/O pins including many PWM output,

analog input, and communication ports. The

processor is an ARM Cortex-M7 at 600 MHz

which is fast enough to allow for a future

MARC upgrade. The electronics were first

tested on breadboards to get the code and

connections working. Then a protoboard is

used to mount all electronics and create wire

connection points for each of the sensors or

motors. The protoboard typically has to hold

very simple components like a resistor or

capacitor used in wiring the sensors but the

linear actuators required a separate H-bridge

chip. A dual H-bridge chip was used on each

side of the platform to each control a pair of

linear actuators.

For the arm, components are either

located at the base or at the end of the arm.

McCulley 4

The Teensy 4.0, motor controllers, battery,

and connection to the arm’s control port are

all wrapped around the base of the arm. The

custom gripper containing two stepper motors

and a limit switch, encoders, and EPM are

located about 3 feet from the base at the end

of the arm. To centralize wires, a 25-

conductor serial cable was run from the base

to the end of the arm with DB-25 connectors

used to keep all connections available in a

standard format.

 A 25-conductor serial cable was also

used on the platform to connect the front and

back electronics circuit. With the H-bridge

and the large number of sensors being placed

on the platform requiring a lot of connectors,

it was decided to use two protoboards to

distribute the electronics. A DB-25 connector

attaches each end of the serial cable to the two

protoboards. The protoboard towards the back

of the MARC platform holds the Teensy 4.0

which is closer to the Raspberry Pi, making it

easier to connect the two. The protoboards are

suspended on acrylic laser cut sheets along

with the motor controllers that fit into the

bottom of the platform hollow sections.

 The Arduino IDE is used to program

the Teensy 4.0 microcontroller and object-

oriented programming is used to structure the

code. The flow chart in Figure 4 shows the

initialization and then functions called during

the main control loop for each device. The

Teensy has a standard message format for

input and output over UART that uses

commas to separate values and a new line

character to separate messages. The order of

values is predefined for both the arm and

platform and shown in Figure 5.

Additional low-level code changes

were done to make the platform and arm more

configurable without having to reprogram

them. On each device, there is a defined set of

input types used to change the value of some

variables. On the MARC arm, the encoder

feedback can either return the raw values or

the calculated angle at that joint. The angle

offset used in that calculation can also be

changed. The format for changing these

variables is to send a command with a

different prefix instead of “run.” The

additional available commands are,

 Input Output

Arm

Example

run,angle 1,angle 2,angle

3,angle 4,angle 5,angle 6\n

run,150,90,90,0,0,0\n

a,angle 1,angle 2,angle 3,angle 4,angle 5,battery

voltage\n

a,90,90,20,0,0,12\n

Platform

Example

run,x velocity, y velocity,

rotation angle\n

run,120,0,0\n

p,angle 1,angle 2,angle 3,angle 4,battery voltage,

actuator 1,actuator 2,actuator 3,actuator 4,ultrasonic

1,ultrasonic 2,ultrasonic 3,ultrasonic 4\n

p,10,30,10,30,24,200,200,200,200,4,4,5,10,3,5\n

Figure 5: Arm and platform command format for state input and output with an example

Figure 4: Broad view of embedded code structure for the
arm(left) and platform(right)

McCulley 5

“rawEncoder”, “angleEncoder”, and

“encoderOffset.” For changing the encoder

offset, comma separated values of the new

offset are required. Changing this value is

intended for easy debugging purposes and

could be used to easily apply device specific

parameters stored on the controlling computer.

The platform has several new

commands relating to the motors and linear

actuators. The command “stop” will raise the

platform and sending a usual “run” command

will lower the platform. The command

“newHold” can be used to set the motionless

voltage input to the motor controller for each

wheel. This voltage level can be different for

each wheel and vary by device or current

battery voltage, so it was useful to have a

quick way to change the value. Each new

command for both the arm and the platform

must end in “\n” and provide any additional

values with proper comma separating format.

High-Level Changes

 The user interface was primarily

designed to interactively handle multiple input

sources to the MARC and display output

information. The USB polling, command

logging, and help feature were added to make

the interface more useful and user friendly.

The total list of available commands can be

seen in Figure 6. The cmd library on python

was imported and used as a template for

building the user interface. [6] A thread is

started in the code to read input from the

command line and if the input matches with a

defined function then that function is

executed. A help function can also be defined

using the same name as the input command.

This new interface supports modularity

better by monitoring the USB ports to allow

connecting and disconnecting devices without

restarting the program. It keeps a running list

of active devices and frequently checks if that

device is still valid and looks for new devices.

Devices are identified by either sending the

letter ‘a’ or ‘p’ at the front of any output. The

code uses this to assign a serial object

associated with either the arm or the platform.

The mode of operation allowed is dependent

on what devices are connected. For example,

if only the arm is connected then command

line interface with the arm is allowable. If a

gamepad and both devices are connected then

the user will be given full control of the robot

through that controller.

The controller mode of operation

remained mostly the same as before this

project began. A server mode of operation

allows UDP packets containing commands for

the arm and platform to be passed along to

those devices. Interfacing the MARC through

the command line is an option useful for

debugging. In this mode, the user can specify

a command to be sent to either device or

choose from the list of configuration setting

commands. The “arm” and “plat” command

sends the provided line of text directly along

to the appropriate device. The command

“stop”, for example, sends halt commands to

both devices and prevents additional

commands until “play” is entered.

The “devices” command lists if the

arm, platform, controller, or server are

connected. “Mode” will list the current

operating mode and “master” will give

operating preference to either the server or

controller when both are available. The log

related commands allow the user to save the

device commands sent in a log file and re-

send those exact commands keeping all

timings the same. This is useful for testing the

repeatability of certain sequences of moves

that may be performed autonomously.

 Figure 6: Python command line interface available commands

McCulley 6

The feedback from devices is read by a

thread and stored in arrays for when the user

wants that information. Commands like

“platPing”, “platBrakes”, “battery”, and

“angles” will display the most recent feedback

related to that command.

Testing

 A standard process of incremental

testing was used in developing the hardware

and software changes. The new feature is

always implemented and tested in an isolated

environment such as a breadboard or separate

code file. Once the feature is completed, each

possible use case is tested. When the hardware

or software passes all tests and withstands

most possible external errors, then it is

integrated into the entire system. After

integration, the entire MARC is tested

ensuring the new and existing features work as

intended. This process helps reduce bugs or

flaws that can accumulate when new changes

are put directly into implementation.

Results

Low-Level Changes

The circuit hardware was mostly

completed for both the arm and the platform

for a single MARC. Some additional changes

to the MARC midway through the project was

imposed by new FASER lab needs. This

caused development time to be shifted from

the original plan to implementing new

features. These two new features located at the

wrist of the MARC were a new degree of

freedom and a new magnetic gripper. The

additional DOF was added after the last joint

on the GearWurx arm to allow for the rest of

the gripper to rotate left and right. The second

change was an alternative end effector that

replaced the finger gripper with an EPM

device that can create an electromagnet for

attaching to a custom gripper on the device

being picked up. The original gripper was kept

as the main feature but the EPM also had all

wiring required so the two could be

interchanged.

Platform

 The distribution of electronics between

the front and back of the platform worked well

with the 25-connector ribbon cable sitting

flush along the bottom of the platform and

secured to the metal supports. It is convenient

to have two centralized points of connection

for plugging in the actuators and ultrasonic

sensors. The wiring would be messy if all

components were connected to a single

protoboard. The actuator H-bridge was a tight

fit and the protoboard had to have some traces

cut to make the connection point share rows

with the H-bridge. There was a problem with a

particular brand of wires used at first that kept

breaking from the protoboard.

 The encoders on the wheels were not

fully integrated. Only two wheels had the

encoders mounted and the hardware did not

include the intended I2C multiplexer or the

ability to connect that to the Teensy 4.0. The

accompanying low-level code to read from the

encoders and relay that as feedback was not

written. The ultrasonic sensors and actuators

were tested but not fully integrated. These

features were not able to be fully integrated

into the entire system because they caused

delays that were unfavorable to necessary

functions of the code. The physical mount for

these features was designed but never

completed so the actuators and ultrasonic

sensors could not be mounted on the platform.

The current state of the platform can be seen

in Figure7.

 The distributed H-bridges are

convenient because where the actuators sit is

close to the control hardware where they

connect so the included wiring is long enough.

For the ultrasonic sensors, the connections

made near the protoboard are less than an inch

long so cable extensions will have to be routed

from the sensor to the appropriate protoboard.

The DB-25 connectors on the platform were

McCulley 7

bulky and could have been designed better to

either be mounted on the protoboard or

mounted somewhere more permanent. A

better battery connection point was also an

unplanned addition that can be seen in Figure

8.

 Arm

 A Teensy 4.0 update on the arm was

successful and resulted in a clean protoboard

full of connectors that either go to devices on

the arm’s base or head to the DB-25 connector

to be routed up to the end of the arm. The

current state of the arm control hardware can

be seen in Figure 9. The DB-25 Connector is

also used to send the output from the stepper

motor controllers to the wrist and can be seen

in figure 10. This design required some

consideration about the current going through

the long length of thin 28 AWG. To prevent

too much voltage drop over the almost 3 feet

length of wire, multiple conductors were used

for some higher voltage lines. The 5V line

used 2 and the 12V used 3. This use of

additional wires to allow higher current and

the large amount of existing control signals

use all 25 conductors in the wire. To make

connectors at the end of the wrist given that

some voltage levels are carried in multiple

wires, a small piece of a protoboard was used

to solder common voltages together and create

wires that go to connectors. The small board

can be seen in Figure 11. Wires longer than a

few inches going to or from the encoders and

stepper motor drivers are put in cable

shielding.

 The encoders on the arm are available

to the Teensy 4.0 through using a monitor

splitter that uses the same DB-9 connector.

This allows the encoders to be used by the arm

itself and gives an easy access point without

requiring splicing into wires. Code to read the

encoders was tested in isolation but it was

found too slow for use in the whole system. It

is slowed by the pulseIn command in the

Arduino library that waits for a signal to have

a falling edge and then counts the time until

the falling edge. This function can have the

timeout value changed as a parameter but

blocking the code to wait for encoder signals

is too slow considering the rest of the program

running. A thread running the pulseIn function

or a custom non-blocking version of the

function would be required to solve the

problem. The encoder on the custom wrist

joint was installed but later removed with the

addition of the new DOF that can be seen in

Figure 11. There was wiring and code changes

made to support that encoder, but it was not

tested or implemented.

 An addition to the control hardware

needed for the new joint was an H-bridge on

the arm’s protoboard in order to control the

DC motor. The new DC motor has a hall

effect sensor to provide position feedback.

Some wires in the 25-conductor cable were

Figure 7: Platform with new Teensy 4.0 prototype circuit

Figure 8: Surface mount battery connectors

McCulley 8

dedicated to that DC motor control and

feedback. This way of getting information to

and from the wrist of the arm was successful

and the new joint was fully integrated into this

prototype upgrade of the MARC. The new

degree of freedom required code change to the

python so there is now a variable for the

number of joints and the controller will

behave according to what version of the

MARC is being used. An additional feature

was also added to easily switch between the

old and new control scheme. This was done

with a toggle of the Y button on the controller

and was intended to help operators who are

used to the original control schemes. The new

joint was implemented fully and there is easy

control of the gripper’s rotation to the left and

right.

 An unplanned part of the switch from

an Arduino Uno to Teensy 4.0 was that the

stepper motor controller was not responsive

because the Teensy 4.0 operates on a lower

voltage of 3.3V. The stepper motor controller

defines low voltage as anything below 4V

which was not known originally so a logic

level shifter had to be added in order for the

two devices to successfully communicate.

Since it was an unplanned addition, the logic

shifter board is suspended above the H-bridge

as seen in Figure 9.

 Figure 12 shows the EPM gripper that

required a UART and PWM connection ran up

to the end of the arm. These were again done

through the 25-conductor cable. The wiring

and code were created and the device was

tested but it was not fully integrated into the

MARC. The connector on the MARC limit

switch for the rail holding the gripper fingers

was changed to a breadboard wire male and

female connection instead of the previous

connector that clipped in and was difficult to

disconnect. The previous connector would

have wires become disconnected often

because of the force needed to separate the

two.

Figure 9: Arm's Teensy 4.0 control board with connections for
all external devices

Figure 10: Side picture of the MARC with DB-25 at the base of
the arm

Figure 11: New DC motor joint and small board to handle
wires

McCulley 9

High-Level Changes

 The python user interface was a

success and it allowed easy debugging and

advanced use of the MARC but it was found

less useful for regular use. The python script

would startup automatically when the

Raspberry Pi was powered on and the user

would pick up the controller and start

operating. Very rarely in our research did we

need to connect to the computer wirelessly to

open the command line interface. One new

part of the upgrade used every time on startup

is the USB polling. It is very convenient to

have the Raspberry Pi recognize both devices

and the controller and then automatically

switch to controller mode. The feedback

feature worked as planned but because the arm

and platform weren’t providing meaningful

feedback, it was not useful. One down side of

automatically starting the python script was

that it would run in the background and the

user interface could not be accessed unless it

was terminated and started manually.

 The logging feature was used

minimally and the repeatability of most

actions was low enough that it could not be

trusted. The platform when given a simple

trajectory to drive some small distance would

end up in a different place after replaying the

logged moves. The arm had similar troubles

and because of the position control feature, the

user would have to be careful to start and end

the robot in the same pose when recording

moves. This is because otherwise, the robot

will snap from the end of the playback to

where it started otherwise. While the server

interaction with the MARC was not

implemented, the updated prototype of python

code was a successful step towards autonomy.

Discussion

Lessons Learned

 There were several missteps in the

design process and overlooked design details

that prevented something from working.

These delays include the need for a logic level

shifter and the linear actuator mount in the

back being blocked by the Raspberry Pi and

emergency stop switch. Hardware limitations

became a setback when the Coronavirus

pandemic limited in person lab access. The

user interface became a priority throughout

the first semester of this project where there

was no lab access. During the second

semester, a lot of progress was made on one of

the MARCs but that was slowed by other

projects needing to use the MARC. There

were many weeks where the MARC had to be

fully operational so changes had to be very

limited. Given the challenges and setbacks

faced, the MARC still became more

developed and moved away from the limited

output on Arduino Unos. This project has

overall improved the FASER lab’s path to the

goal of autonomous space assembly.

Future Work

 The project has many components still

needing to be integrated and tested. Once the

MARC has finished getting all updates for this

prototype, the autonomy server can be created

and robots will be controlled from the server.

The user interface will be more useful when

the gamepad controller is used less and the

server becomes the main form of controlling

the MARC. At the same time as developing

autonomy, the second MARC that is still on

the first prototype can be reconstructed and

upgraded to the second prototype as well.

Figure 12: EPM gripper

McCulley 10

With two MARCs the FASER lab can

research autonomous collaborative assembly.

The autonomous task assigning project can

then be implemented on the MARCs to

determine the best way about solving a given

problem.

References

[1] SuperDroid Robots, "Mecanum Wheel

Vectoring Robot - IG52 DB - DISCONTINUED,"

[Online]. Available:

https://www.superdroidrobots.com/shop/ite

m.aspx/mecanum-wheel-vectoring-robot-

ig52-db/2063/. [Accessed 30 3 2021].

[2] GearWurx, "ARM 3.0 Long Reach Heavy Lift,"

[Online]. Available:

https://gearwurx.com/product/robotic-arm-

3-0-long-reach-heavy-lift/. [Accessed 30 3

2021].

[3] PJRC, "Teensy® 4.0 Development Board,"

[Online]. Available:

https://www.pjrc.com/store/teensy40.html.

[Accessed 30 3 2021].

[4] OptiTrack, "PrimeX 13," [Online]. Available:

https://optitrack.com/cameras/primex-13/.

[Accessed 30 3 2021].

[5] NASA, "NASA STEM Engagement: Overview,"

[Online]. Available:

https://www.nasa.gov/stem/about.html.

[Accessed 30 3 2021].

[6] Python, "cmd — Support for line-oriented

command interpreters," [Online]. Available:

https://docs.python.org/3/library/cmd.html.

[Accessed 31 3 2021].

