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ABSTRACT 

 
 Understanding and attributing changes to 
water quality is essential to the study and 
management of coastal ecosystems and functions 
they sustain. However, measuring water clarity—a 
key aspect of water quality—is challenging 
because it varies greatly over space and time due 
to natural and anthropogenic processes. Coupling 
long-term in situ observations with estimates from 
satellite algorithms could provide a more complete 
understanding of coastal water clarity changes and 
its drivers. Here, we created a remote sensing 
product by coupling Landsat-8 and Sentinel-2 
reflectance data with water clarity measurements 
at 7 sites over 8 years in a shallow turbid coastal 
lagoon system in Virginia, USA. Our satellite-
based model explained 29% of the variation in in 
situ water clarity, and an out-of-sample validation 
showed that the model accurately represented 
interannual variability. Our product increases the 
spatiotemporal scope of in situ water clarity data 
and improves estimates from bio-optical 
algorithms that overpredicted water clarity. Our 
results demonstrate the ability of high-resolution 
satellite imagery to improve estimates of coastal 
water clarity and highlight the need to further 
improve and calibrate ocean color algorithms for 
complex water bodies.  
 

1. INTRODUCTION 
 

 Measuring and predicting coastal water 
quality variability is valuable for the 
understanding and management of marine and 
estuarine ecosystems (Álvarez-Romero et al., 
2014). For example, understanding changes in 
water clarity can aid the restoration and 
preservation of benthic habitats and submerged 
aquatic vegetation, which are often limited by light 
(Carr et al., 2010).  However, studying coastal 
water quality is challenging because it is highly 
variable across a range of scale in space and time 
due to natural and anthropogenic processes 
(Bierman et al., 2009). Long-term measurements 
offer one important tool in describing and 
forecasting water quality, but for logistical reasons 
are limited in spatiotemporal dimensions 
 Water clarity—a key component of water 
quality—has historically been measured by Secchi 
disks, black and white painted disks that are 

lowered into the water until they are no longer 
visible from the surface (Preisendorfer, 1986). 
Secchi disks serve as a reliable and low-cost way 
to determining the amount of optically active 
constituents in the water column (ie. 
phytoplankton, detritus, color dissolved organic 
matter, inorganic particles). These measurements 
have helped document historical water clarity 
changes, like in the coastal seaside lagoons of 
Virginia’s Eastern Shore (McGlathery and 
Christian, 2020). However, in situ water clarity 
measurements cannot fully capture variability 
alone. Much time and effort are needed to collect 
the data and there are large spatiotemporal gaps 
due to sampling limitations. Coupling remotely-
sensed satellite measurements with in situ 
measurements could provide a more complete 
understanding of water quality changes and drivers 
in coastal ecosystems, as well as a way to separate 
directional changes from natural variability.  

Biogeochemical parameters like Secchi 
depths (Lee et al., 2016) can be estimated by 
satellites measuring visible light emitted by the 
water, or ocean color (Werdell and McClain, 
2019). Ocean color data can be extremely helpful 
in studying coastal waters on a synoptic scale; 
however, these environments pose unique 
challenges to ocean color remote sensing. High 
concentrations of particulate organic matter, 
proximity to land, backscattering from shallow 
waters, bubbles from breaking waves, etc. affect 
bio-optical measurements (Loisel et al., 2013). 
Validation with in situ measurements is crucial 
before implementing ocean color algorithms in 
any water body, but these challenges make it 
especially important to test algorithms in a wide 
range of coastal oceans.  

Another unique challenge associated with 
coastal ocean remote sensing is the need for high 
resolution satellite data that traditional ocean color 
sensors have too coarse spatial resolutions (~1 km 
or more) to capture. The Landsat-8’s Operational 
Land Imager (OLI) and the Sentinel-2’s 
MultiSpectral Instrument (MSI) have moderate-to-
high spatial resolutions (Landsat-8: Coastal 
aerosol (~443 nm), Blue (~482 nm), Green (~561 
nm), and Red (~655 nm): 30 m; Sentinel-2: 
Coastal aerosol (~443 nm): 60 m; Blue (~492 nm), 
Green (~560 nm), and Red (~665 nm): 10 m) that 
allow for observations in coastal environments. 
Cross-calibration of the two sensors during the 
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development of the satellites led to compatible 
data products (ESA, 2013). The benefit of 
combining these observations has been 
demonstrated in recent literature; for example, 
NASA’s Harmonized Landsat Sentinel-2 project 
shows that using the two satellites in unison 
increases the temporal resolution and accuracy of 
the data (https://hls.gsfc.nasa.gov/).  

The Lee et al. Landsat-8 semi-analytical 
Secchi depth (ZSD) model has been applied to 
various water bodies globally and recalibrated to 
improve its accuracy in various water types (Lee et 
al., 2016; Chen et al., 2019; Liu et al., 2019; Luis 
et al., 2019). Luis et al. demonstrated that the 
model can be applied to a range of coastal water 
bodies; however, algorithm evaluation using in 
situ data is still needed to improve the algorithm 
(Luis et al., 2019). This algorithm has yet to be 
applied to Virginia’s Eastern Shore, where 
extensive in situ water quality measurements by 
the Virginia Coast Reserve Long Term Ecological 
Research project (VCR LTER) provide a unique 
opportunity for algorithm evaluation, as well as an 
opportunity to extend the spatiotemporal scope of 
this data (McGlathery and Christian, 2020). 
Additionally, we seek to determine if the 
algorithm is compatible with the Sentinel-2, which 
would greatly increase the temporal resolution of 
satellite data.  
 

2. METHODS 
 

2.1 Overview 
 

We compared satellite-derived Secchi 
depths from the Lee et al. 2016 ZSD algorithm with 
in situ measurements, using a time window of  
± 0-8 days between satellite overpass and in situ 
sampling to yield a sufficient number of in situ-
satellite matchups. There was no evidence that the 
size of the window affected the results in a 
statistically significant way. The satellite 
algorithm overestimated Secchi depths (ZSD,sat) 
relative to their corresponding in situ values 
(ZSD,insitu), so we created a new model with 
multiple regression to predict more accurate 
Secchi depths (ZSD,model). Our model was evaluated 
using root mean square error (RMSE), mean 
absolute percent difference (MAPD), and time 
series modeling as an out of sample validation. We 
used general additive models to model time series 
in order to determine if ZSD,model could capture the 
interannual variability and seasonal trends as 
shown by ZSD,insitu. Furthermore, we investigated 

differences in Landsat-8/Sentinel-2 retrievals, as 
well as differences between NASA SeaDAS 
(https://seadas.gsfc.nasa.gov/) and an alternative 
atmospheric correction method for coastal waters, 
ACOLITE,(https://odnature.naturalsciences.be/re
msem/software-and-data/acolite).  
 
2.2 Study System and In Situ Data Collection 
 

We focused our investigation on a coastal 
lagoon system studied by the Virginia Coast 
Reserve Long Term Ecological Research Project 
(VCR LTER) located in Virginia, USA, near the 
southern tip of the Delmarva Peninsula (Fig. 1). 
Due to low nitrogen inputs and frequent exchange 
with the Atlantic Ocean via inlets between barrier 
islands (Fig. 1), water quality is high relative to 
coastal bays in the United States and worldwide 
(McGlathery et al., 2007). Since 1992, VCR 
LTER researchers have collected Secchi depths 
and other water-quality parameters at 17 sites that 
include tidal flats (0-2 m depth), deep flats (2-4 m 
depth), and deeper oceanic inlets and channels (>4 
m depth) (Safak et al., 2015). Sampling was 
carried out monthly from 1998 to 2008 and 
quarterly from 2008 to 2020 (McGlathery and 
Christian, 2020). 

 

 
Figure 1: Map of the 17 tested sites with in situ Secchi 

depth data. Green markers indicate that remote sensing 
reflectances could be captured at the site. 

2.3 Satellite Data 
 

To retrieve remote sensing reflectances 
(Rrs, sr-1) to calculate satellite-derived Secchi 
depths, we collected images from Landsat-8 and 
Sentinel-2 satellites. We used USGS Earth 
Explorer (https://earthexplorer.usgs.gov/, 
Accessed June 2019-November 2020) to collect 
Level-1 Landsat-8 images 
(https://doi.org/10.5066/F71835S6) and The 
Copernicus Open Access Hub (ESA, 
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https://scihub.copernicus.eu/, Accessed June 2020-
November 2020) to collect Level-1 Sentinel-2 
images. The Sentinel-2A and 2B are identical 
polar orbiting satellites phased at 180˚ to each 
other, resulting in a high revisit time of 2-3 days at 
mid-latitudes. Landsat-8 has a 16-day revisit time. 
We generated remote sensing reflectances by 
processing Level-1 images and implementing 
atmospheric corrections and ocean color 
algorithms with the l2gen program in NASA 
SeaDAS. The NASA standard NIR-band 
algorithm was used for atmospheric correction for 
bands 5 and 7 (865 nm and 2201 nm) applicable 
for coastal waters (Wei et al., 2018). The standard 
Level-2 quality flags were masked, including 
ATM (atmospheric correction failure), LAND 
(land pixel), CLDICE (probable cloud or ice 
contamination), and HILT (very high or saturated 
radiance). The bidirectional reflectance 
distribution function (BRDF) of Morel et al. was 
implemented (2002).  

We used the Quasi-Analytical Algorithm 
(v6) to derive inherent optical properties (IOPs), 
total absorption (a) and backscattering (bb) 
coefficients from the multi-spectral Rrs spectrum 
(Lee et al. 2002). The Landsat-8’s spectrum 
includes center wavelengths at ~443, 482, 561, 
and 655 nm, and the Sentinel-2’s spectrum 
includes center wavelengths at ~443, 492, 560, 
and 665 nm. We then derived diffuse attenuation 
coefficients (Kd, m-1) from the IOPs. Kd(530) was 
determined empirically by the methods of Lee et 
al. in order to fill the large spectral gap between 
482 and 561 nm (Lee et al. 2015). Kd at the 
transparent window, the minimum Kd value, and 
the Rrs value at the corresponding wavelength 
were used to find the satellite Secchi depth  
(ZSD,sat, m) (Lee et al. 2005, 2015, 2016). 
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Valid (not masked by flags) remote 
sensing reflectances (Rrs) from SeaDAS were 
recovered at 7 of 17 in situ sampling sites: 4 ocean 
inlet sites, 1 lagoon site, and 2 mainland tidal 
creek sites (Fig. 1). Reflectances were masked out 
by our choice of flags at other sites, possibly due 
to atmospheric correction failure, proximity to 
land, clouds, etc.. At suitable sites, a total of 12 
Landsat-8 and 8 Sentinel-2 images were captured 
within ± 0-8 days of in situ sampling, resulting in 
97 matchups between satellite observations and in 

situ measurements: 61 observations derived from 
Landsat and 36 observations derived from 
Sentinel. The number of observations vary by site 
and date due to varying cloud cover. If Landsat-8 
and Sentinel-2 both captured an image in the ± 0-8 
day temporal window centered on in situ 
sampling, the satellite with the overpass closest in 
time to in situ sampling was chosen. 
 
2.4 Satellite Reference Processing and Algorithm 
Evaluation 

 
Satellite observations were compared to 

their corresponding in situ estimates. The Lee et 
al. 2016 "#$ algorithm overpredicted Secchi depth 
values relative to their corresponding in situ values 
by an average factor of ~2. We tested the 
correlation between ZSD,insitu and ZSD,sat using the 
“stats“ package in R Studio 1.2335 and found a 
significant correlation (r = 0.52, p < 0.001) (R 
Core Team, 2019). Therefore, a statistical model 
could be useful in reducing systematic biases 
produced by the Lee et al. ZSD algorithm. 

 In order to build the predictive model, 
fixed effects models were explored with the 
duration between satellite observations and in situ 
sampling, satellite type (Landsat-8 or Sentinel-2), 
and ZSD,sat (from the Lee et al. algorithm) to predict 
ZSD,insitu. We used the “car” package in R 4.0.3 (R 
Code Team 2020) to identify the most 
parsimonious model via backwards model 
selection based on Type III Sum of Squares (Fox 
and Weisberg, 2019).  

We analyzed models using the “stats” 
package (R Code Team 2020). We assessed the 
significance of model terms using F tests. We 
checked for homogeneity of variance by plotting 
normalized model residuals against model 
predictions and individual predictors. We ensured 
normality of residuals using histograms and 
quantile-quantile plots. We removed one satellite 
measurement outlier, however model selection and 
parameters were robust to this decision. We tested 
for temporal autocorrelation using autocorrelation 
function analysis; no significant autocorrelation 
was detected.  
 
2.5 Model Evaluation and Validation 

 
We evaluated how well the remote sensing 

model could predict Secchi depths by comparing 
ZSD,model to ZSD,insitu using the root mean square error 
(RMSE) and the mean absolute percent difference 
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(MAPD) in the “Metrics” package (Hamner and 
Frasco, 2018). 
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 We also investigated how well the model-
derived observations captured the interannual 
variability and the seasonal trends in water clarity 
shown by in situ observations. To estimate these 
trends, we fit generalized additive models (GAMs) 
with the “mgcv” package in R to two time series: 
one of modeled Secchi depths (ZSD,model) and one of 
in situ Secchi depths (ZSD,insitu) (Wood 2017). Both 
the satellite-model and in situ time series were 
irregularly spaced and had different distributions 
across time, but GAMs can handle irregularly 
spaced time series (Simpson 2018).  

We used a low-rank thin plate regression 
spline to model the interannual variation as a 
function of date (ƒ1), a cyclic cubic regression 
spline to model the seasonal Secchi depth as a 
function of year day (ƒ2), and a tensor product 
smooth to account for their interaction (ƒ3) (Eq. 4). 
We selected the appropriate number of basis 
functions by checking the k-indices and p-values 
with the gam_check() command. Only in situ data 
from 2013-2020 was used to compare trends from 
the same time period as the satellite data. 
Additionally, only Landsat-8 measurements were 
used in this analysis due to the availability of 
processed Level-2 data.  

	
ZSD	=	β0	+	ƒ1(date)	+	ƒ2(year	day)							(4)	

	 +	ƒ3(date,	year	day)		 	
 
2.6 Satellite Data Assessment 
 

We compared uncorrected Landsat-8 and 
Sentinel-2 Secchi depths from the Lee et al. 2016 
algorithm (ZSD,sat) (Eq. 1) and remote sensing 
reflectances (Rrs) from the same day at the same 
location. We used 6 dates between 2019-2020 and 
157 random coordinates sampled using QGIS. 

We plotted Landsat-8 ZSD,sat against 
Sentinel-2 ZSD,sat and compared them with a 
second order polynomial fit, the most 
parsimonious model determined by a forward 
model selection procedure. We also plotted 
Landsat-8 and Sentinel-2 Rrs  for bands 1 (443 

nm), 2 (Landsat-8: 482 nm, Sentinel-2: 492 nm), 3 
(Landsat-8: 561 nm, Sentinel-2: 560 nm), and 4 
(665 nm). 
 REMSEM (Royal Belgian Institute of 
Natural Sciences) ACOLITE is an alternative to 
NASA SeaDAS for processing Landsat and 
Sentinel coastal water imagery. The two 
processors differ in their atmospheric correction 
methods, so we sought to determine if using 
ACOLITE for atmospheric correction would 
improve the Lee et al. ZSD,sat estimates. 
Calculations of Rrs and ZSD,sat were attempted for 
all 17 in situ sites across 4 Landsat-8 images 
(9/3/2018, 5/1/2019, 7/20/2019, 07/22/2020). All 
17 sites were used to determine if ACOLITE could 
extract data from sites that SeaDAS consistently 
masked. Additionally, the anomalously high ZSD,sat 
that we removed from our model came from the 
7/20/2019 image, and we sought to determine if 
ACOLITE yielded an anomalously high ZSD,sat as 
well.  

 
3. RESULTS 

 
3.1 Algorithm Evaluation and Model Statistics 
 

The Sentinel-2 and Landsat-8 both 
predicted in situ Secchi depths (p < 0.001), 
although Sentinel-2 predicted in situ Secchi depths 
more accurately than Landsat-8 (R2 = 45% vs. R2 = 
10%). The best model included ZSD,sat (m-1), 
satellite type, and their interaction:  
 
				ZSD,model	=	0.15489	ZSD,sat	+	0.47876	+	∆	

	 											∆Landsat	=	0	 	 (5)	
				∆Sentinel	=	0.18640	ZSD,sat	–	0.26679	
 
where Zsd,model (m-1) is the model-modified Secchi  
depth and ∆Sentinel denotes the correction for the 
Sentinel-2 satellite.  

The satellites differed in their slopes, with 
Sentinel-2 having a higher slope than Landsat-8 (b 
= 0.34 vs. b = 0.15) and yielding predictions closer 
to the 1:1. In both cases, the slopes were less than 
1 because estimated Secchi depth was higher than 
observed Secchi depth. The multiple regression 
model could explain 29% of the variance in 
ZSD,insitu (Table 1) and could predict ZSD,insitu with a 
root mean square error of 0.20 m and a mean 
absolute percent difference of 25% (Figure 2). 
This is an improvement over the unadjusted Lee et 
al. model (RMSE = 0.92 m, MAPD = 125%).  
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Deviation from the fit line was similar 
among sites, with the exception of one relatively 
shallow site (average depth ~ 5.6 m) located near a 
mainland creek (“Site 2” in Fig. 4). This explains 
the large error observed at mainland creek sites 
(Figure 3B). The model had comparable 
performances across the rest of the sites, which 
varied in average depth. For example, a site with a 
comparable average depth (“Site 5” in Fig. 4, ~ 
8.8 m) to the shallow mainland creek site had a 
similar model performance to the deepest sites 
(“Site 6,” “Site 12”, and “Site 17” in Fig. 4, ~ 40-
50 m). Sites with intermediate average depths 
(“Site 13” and “Site 16” in Fig. 4, ~ 20-25 m) had 
similar performances as well, although within-site 
replication is low for one of these sites (“Site 13” 
in Fig. 4).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Predictor b 

b 
95%  
CI 

[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

Intercept 0.48** [0.30, 0.66]   
sat 0.15* [0.03, 0.27] .05 [-.02, .12] 

typeS2 -0.27 [-0.56, 0.03] .02 [-.03, .08] 
sat:typeS2 0.19* [0.01, 0.36] .03 [-.03, .09] 

 
Fit: R2  = 308**, : Radj2  = 0.285**, 95% CI[.14,.42] 

Predictor 
Sum 
of 

Squares 
df Mean 

Square F p 

 
(Intercept) 1.19 1 1.19 27.59 .000 

sat 0.28 1 0.28 6.57 .012 
type 0.14 1 0.14 3.27 .074 

sat x type 0.19 1 0.19 4.51 .036 
Error 3.97 92 0.04   

Table 2: Fixed-Effects ANOVA results using ZSD,insitu as 
the criterion  
 

Table 1: Regression results using ZSD,insitu as the criterion 

Note. A significant b-weight indicates the semi-partial 
correlation is also significant. b represents 
unstandardized regression weights. sr2 represents the 
semi-partial correlation squared. LL and UL indicate 
the lower and upper limits of a confidence interval, 
respectively. 
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Figure 2: ZSD,sat  from Landsat-8 (green) and Sentinel-2 
(orange) plotted against ZSD,insitu. 95% confidence 
intervals are plotted in gray. Green asterisk denotes the 
removed outlier from the Landsat-8. 

Figure 3: ZSD,sat from Landsat-8 (green) and 
Sentinel-2 (orange) plotted against ZSD,insitu for 
each site type. Site 6 is a lagoon, sites 2 and 13 
are mainland creeks, and sites 5,6,12, and 17 are 
ocean inlets. Prediction lines are plotted. MAPD 
and RMSE are reported for each region.  
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3.2 Out of Sample Validation  
 

The model captures the interannual 
variability as shown by in situ values. Both dip 
around 2015 and peak around 2018 (Figure 5 A- 
B). However, the in situ data change more year to 

year (F = 2.736, p = 0.024) than the modeled data 
(F = 2.044, p = 0.071). In situ and model-derived 
 Secchi depths varied throughout the year  
(p < 0.001), but the correspondence between the 
two were less clear (Figure 5 C-D). It appears that 
both dip in June, peak in August, and dip in 
October, but that their patterns diverge in the 
winter months.  
 
 
 

 
3.3 Satellite Data Assessment 

The Sentinel-2 yielded higher Secchi 
depth values than Landsat-8 (Figure 6A), but they 
had a strong relationship with one another (R2

adj  = 
0.90, F(2, 238)=1091, p<0.001). Higher Sentinel-2 
Secchi depths correspond to lower Rrs values for 
all four visible bands: band 1 (Coastal Aerosol, 
~443 nm), band 2 (Blue, ~482 nm), band 3 (Green, 
~561 nm), and band 4 (Red, ~665 nm) (Figures 
6B-6D).  
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Figure 5: Thin plate regression splines model the relative 
variation in Secchi depths from year to year (A,B). Cyclic 
cubic splines model the seasonal variation in Secchi depth 
(C,D). ZSD,model values (A,C) are shown in red and ZSD,insitu 
values (B,D) are shown in blue. The splines are shown in 
black and plotted with their 95% confidence intervals in 
gray. Note that the ZSD,model time series have different axes 
than the  ZSD,insitu time series because ZSD,insitu have a larger 
spread than ZSD,model. 

Figure 4: ZSD,sat from Landsat-8 (green) and 
Sentinel-2 (orange) plotted against ZSD,insitu for each 
site. Landsat-8 (green) and Sentinel-2 (orange) 
prediction lines are plotted. MAPD and RMSE are 
reported for each site. 
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Like NASA SeaDAS, REMSEM 

ACOLITE can predict in situ Secchi depths (p = 
0.021). NASA SeaDAS yields higher Secchi depth 
values (x̄ = 1.64 m, s = 0.43 m) than REMSEM 
ACOLITE (x̄ = 0.990 m, s = 0.16 m), but SeaDAS 
ZSD,sat explain more variation in in situ Secchi 

depths than ACOLITE ZSD,sat (R2 = 24% vs. R2 = 
15%).  Lower ZSD,sat values from ACOLITE 
correspond to higher Rrs values (Figures 7 and 8). 

ACOLITE also yielded an anomalously 
high ZSD,sat (ZSD,sat=1.77 m) where NASA SeaDAS 
yielded an outlier (ZSD,sat=3.74 m, ZSD,insitu=0.36 m) 
(Figure 7). The anomalously high ZSD,sat  
corresponds to an anomalously low Rrs(665) 
(Figure 8). 
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Figure 6: Panel A shows Sentinel-2 ZSD,sat (y-axis) 
plotted against Landsat-8 ZSD,sat (x-axis). Landsat-8 
ZSD,sat explains 90% of the variation in Sentinel-2 

ZSD,sat. Sentinel-2 yields higher ZSD,sat than Landsat-8 
(A). Sentinel-2 yields lower Rrs values for all four 

bands (Band 1: Coastal Aerosol, Band 2: Blue, Band 
3: Green, Band 4: Red). Pearson product moment 

correlation coefficients are denoted by r (B-E). 

Figure 7: ZSD,sat calculated with NASA SeaDAS Rrs (green) 
plotted against ZSD,sat from REMSEM ACOLITE  Rrs 

(purple). ACOLITE yields lower ZSD,sat. Anomalously high 
ZSD,sat from ACOLITE and SeaDAS denoted by the symbol 

×. 1:1 line is plotted with a dotted line.  
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4. DISCUSSION 
 
We created a remote sensing product that 

increases the spatiotemporal scope of the in situ 
water clarity data and improves estimates from 
bio-optical algorithms that overestimated water 
clarity. Our modeling methods can be used to 
yield more accurate Secchi depth values in other 
coastal oceans where inaccurate ZSD,sat  is 
observed. Furthermore, identifying and correcting 
the ocean color algorithm causing inaccuracies in 
Secchi depth estimates could lead to the better 
understanding of the optical properties of coastal 
waters, and therefore the improvement of coastal 
ocean satellite remote sensing. This investigation 
could include the use of alternative Rrs to IOP 
algorithms or alternative atmospheric correction 
methods. Another useful future direction for this 
research would be to use our model to study 
spatial variation in water clarity, as well as 
temporal variation over seasonal to interannual 
time scales.   
 
4.1 Model Assessment 
 
 The model improved Secchi depth 
estimates relative to the unadjusted Lee et al. ZSD 
model for both the Landsat-8 and Sentinel-2 
satellites. The similar model performance among 
sites indicates that the model can be generalized to 
any location within the VCR. As for the data used 
to build the model, SeaDAS was the better 
atmospheric correction method to obtain 
measurements for modeling because it could 
explain more variation in in situ Secchi depths 
than ACOLITE. Additionally, the strong 
relationship between Landsat-8 and Sentinel-2 
measurements demonstrates the compatibility of 
their data products. 
 
4.2 Using Sentinel-2 Data in Conjunction with 
Landsat-8 Data  
  
 We found that the Sentinel-2 yields larger 
Secchi depth values and lower Rrs values than the 
Landsat-8 consistently, suggesting that differences 
in values are most likely due to inherent satellite 
product differences rather than environmental 
factors (eg. tidal differences occurring in the 
temporal window between overpasses). Sentinel-2 
has been found to yield lower reflectance values 
than Landsat-8 because Sentinel-2 products are not 
vicariously calibrated with in situ optical 
measurements like the Landsat-8’s products 

(Pahlevan et al. 2017). However, environmental 
factors cannot be ruled out until they are further 
investigated. Additionally, Sentinel-2 ZSD,sat had a 
higher correlation with ZSD,insitu, than Landsat-8 
ZSD,sat, despite the formula being optimized for 
Landsat-8. 
 Another consideration regarding the 
merger of Landsat/Sentinel data is the 
parametrization of the algorithm for M30 products 
from NASA’s Harmonized Landsat Sentinel 
project (Masek, 2018). M30 products are seamless 
surface reflectances with 30 m spatial resolutions 
and 5 day temporal resolutions. Using these 
products may decrease the error associated with 
satellite differences.   
 
4.3 Interannual and Seasonal Water Quality 
Trends 
 
 Interannual variability in the in situ data 
was well represented in the out of sample model 
predictions. The correspondence between the 
seasonal trends in in situ data and modeled values 
were less clear, with patterns diverging in the 
winter. In the winter, in situ Secchi depths were 
high, whereas model Secchi depths ranged from 
low to high. The distribution of data over the 
course of the year differed between the two 
datasets, making trends difficult to compare. 
However, the divergence in trends may also 
indicate a weakness of in situ sampling that can be 
partially relieved by satellites. 

In the field, measurements are not taken 
on stormy days because researchers cannot easily 
access field sites. Although satellites experience a 
similar sampling bias and are unable to capture 
useable data over water obscured by clouds, they 
can capture data if there are clear patches over 
sites of interest. It is possible that the satellites 
captured more turbid observations (from increased 
mixing in stormy weather) that in situ sampling 
missed. 
 
4.4 Data Considerations 
 

Observed in situ Secchi depths can be 
affected by reduced visibility from waves, cloud 
cover, poor eyesight by the observer, and sun 
position. Satellite measurements are also 
imperfect, being affected by adjacency effects 
from nearby land or back-scattering from the 
seafloor. Our model was also based off of 
observations that fell in an up to an 8 day temporal 
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window, limiting the ability to make strong 
inferences about a particular day. 

Investigating why satellite data could not 
be retrieved from certain coastal sites would 
contribute to the understanding of spatial 
limitations in satellite data retrievals, allowing 
researchers to randomly sample sites for in situ 
validation without wasting time at sites without 
corresponding satellite data. A similarity between 
sites could have caused them to be masked during 
SeaDAS’s l2gen processing. Cloud coverage is 
unlikely because data could not be extracted from 
these sites on clear sky days, and “depth” is 
unlikely because sites where radiances could/could 
not be captured varied in depth. When turbidity is 
high, pixels may erroneously be masked as clouds 
(Loisel et al., 2013), but masked sites were no 
more turbid than sites with satellite retrievals. All 
standard Level-2 quality flags should be 
investigated, including ATM (atmospheric 
correction failure), LAND (land masking), and 
HILT (very high or saturated radiance). 
Additionally, it would be useful to investigate the 
differences in ACOLITE’s atmospheric correction 
method that allowed for the extraction of data 
from sites SeaDAS consistently masked.  
 
4.5 Satellite Overestimation 
  
 Ideally, vicarious calibration of remote 
sensing products with in situ radiometric 
observations could help determine what step(s) of 
the algorithm was responsible for the 
overestimation. However, this work is often time 
consuming and costly, so it could be useful to 
consider other ways to investigate this question. 
 Luis et al. shows that the Lee et al. ZSD 
algorithm worked well for three coastal bodies in 
Boston but poorly in Boston Harbor. Perhaps 
shared characteristics affected the accuracy of 
satellite retrievals in the VCR and Boston Harbor. 
In their study, the effect of daily tides and 
proximity of stations to land was considered as a 
possible cause for satellite overestimation; 
however, neither limiting the temporal window to 
three hours or removing near shore stations 
significantly improved the satellite’s estimates 
(Luis et al. 2019). 
 One possible solution is using an 
alternative algorithm for the calculation of 
inherent optical properties (IOPs) instead of the 
Quasi-Analytical Algorithm v6. Any errors in 
IOPs would propagate in the calculation of 
satellite Secchi depths. For example, Yang et al. 

created an alternative QAA (QAA turbid) because 
it has been found that the QAA can fail in some 
turbid waters (Lee et al., 2009; Yang et al., 2013).  
 Rrs(665) is the reference wavelength used 
in the QAA. It is interesting that the anomalously 
high Secchi depth (site 6, 7/20/2019) yielded using 
SeaDAS and ACOLITE was associated with an 
anomalously low Rrs(665). It would be interesting 
to compare Rrs retrievals from the VCR with Rrs 
retrievals from other turbid waters where the 
algorithm performed more accurately.  

5. CONCLUSION 
 

Our results demonstrate the ability of 
high-resolution satellite imagery to improve 
coastal water quality studies, as well as the need to 
further improve and calibrate ocean color 
algorithms for complex waters. Our model can be 
used to study spatiotemporal variability in water 
clarity in the Virginia Coast Reserve. Our 
modeling methods can be implemented in other 
water bodies to yield more accurate Secchi depths 
in the case of ZSD,sat overestimation. 
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