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Abstract 

Controlling the spread of invasive plant species requires extensive ecosystem monitoring. Drones provide 
data with high spatial resolution and coverage, making them an increasingly popular means to observe 
ecosystems, including invasive plant species monitoring. Spectroscopic images were collected during the 
2020 growing season at Blandy Experimental Farm in northwestern Virginia using a DJI Matrice 600 drone 
equipped with an imaging spectrometer. Spectroscopic data, which indicates plant chemical and structural 
properties, should vary among species, but it is not known whether the very fine spatial resolution of data 
provided by UAV is beneficial or detrimental to the process of differentiation. This project examines 
whether spectral signals from individual pixels can be utilized to detect autumn olive and whether spectral 
variability impedes its detection. Using two different models from spectroscopic data collected in April and 
June, intra-individual and intra-specific variability of autumn olive do not impede the ability to differentiate 
autumn olive, and individuals can be best detected using complex models in either June or April, with the 
most accuracy in June. Using a simpler model for detection in June also yielded accurate results and 
demonstrates potential for broader, open access applications. 
 
 

Introduction 
Globally, invasive plants pose significant 

threats to natural ecosystems (Gurevitch and 
Padilla, 2004) and biodiversity (Gaertner et al., 
2009; Kimothi and Dasari, 2010; Peerbhay et al., 
2016). Across the state of Virginia, invasive, non-
native plants are radically altering natural 
environments by inhibiting the growth of native 
species upon which native wildlife and insects 
depend. These widespread changes in species 
composition also have broader impacts on soil 
chemistry and forest canopies, with feedbacks on 
dynamics of carbon, nutrients, water, and energy.  

Land managers are making concerted 
efforts to control the spread of invasive plant 
species, a task that demands extensive ecosystem 
monitoring. Data that provide information about 
spatial patterns and trends of invasive plants is 
essential to ecosystem monitoring. Traditional 
approaches to ecosystem observation and 
monitoring are satellite-based and ground-based. 
Each approach, however, has caveats: remotely 
sensed satellite imagery covers large areas but 
cannot provide fine-scale details, while ground 
surveying, despite its ability to provide fine-scale 
details, is labor intensive, and only partially surveys 
broad areas. Unmanned aerial vehicles (UAVs, or 
drones) provide data on an intermediate scale, with 

much higher spatial resolution than satellite data 
and with more spatial coverage than ground 
surveys. As UAVs merge the benefits of more 
traditional satellite-based and ground-based 
monitoring, they are becoming an increasingly 
popular means to observe ecosystems, including 
invasive plant species monitoring. 
 In addition to the spatial resolution 
limitations of most traditional satellite-based 
monitoring, there are also spectral limitations. 
Much of the remotely sensed data provided by 
satellite is multispectral, consisting of 4 to 20 
discrete spectral bands. Spectroscopic imaging, 
which includes a large number of narrower, 
contiguous bands, provides much more detailed 
spectral information (Chance et al., 2016; 
Kaufmann et al., 2008). Spectral reflectance 
signatures provided by spectroscopy are impacted 
by differences in biophysical and biochemical 
characteristics of plants (Matongera et al., 2016), 
including: pigments (Mahlein et al., 2010; Xiao et 
al., 2014); plant moisture and vegetation stress 
(Thenkabail et al., 2014); leaf N, P, and/or K (Asner 
and Martin, 2008; Chance et al., 2016; Mutanga et 
al., 2004; Thenkabail et al., 2014); chlorophyll 
(Asner and Martin, 2008; Chance et al., 2016; 
Thenkabail et al., 2014); and anthocyanins and 
carotenoids (Blackburn, 2007). Because UAV 
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flights can take place readily at multiple points in 
the growing season, phenological differences in 
these features among species can aid in 
differentiation (Castro‐Esau et al., 2006). 

Thus, spectroscopic data, which serve as an 
indication of plant chemical and structural 
properties, vary within and across ecosystems 
(Martin and Aber, 1997; Ustin et al., 2004). With 
current understanding of plant chemical and 
structural properties, spectroscopy can be used not 
only to detect general assemblages of plants 
(Hochberg et al., 2015; Sanchez-Azofeifa et al., 
2013; Schmidt and Skidmore, 2003) but also to 
differentiate species (Clark et al., 2005; Cochrane, 
2000). Imaging spectroscopy has been used to 
identify invasive plant species (Aneece and 
Epstein, 2017; Asner and Vitousek, 2005; Asner 
and Martin, 2008; Castro et al., 2004; Chance et al., 
2016; Kganyago et al., 2017; Skowronek et al., 
2017), using both airborne and handheld 
spectrometers. Using spectroscopic sensors in 
concert with UAVs is a relatively new application 
for these technologies. Whereas a few drone-based 
studies have been successful in identifying 
individual plant species, this has been often been 
accomplished with traditional photography or in 
large monocultures where the target plant is easily 
distinguished from the surrounding vegetation.  
This is the first effort to identify and map invasive 
plant species using this approach within 
heterogeneous vegetation communities of the 
northern Blue Ridge region in Virginia. 

Though the benefits of field spectroscopy 
in classification of plant communities are clear, it is 
not known whether the very fine spatial resolution 
of data provided by UAV is beneficial or 
detrimental to the process of differentiation. 
Smaller pixel size overcomes the challenge of 
averaged spectral properties of large pixel sizes 
over heterogeneous landscapes (Cardina et al., 
1997; Carson et al., 1995; Hamilton et al., 2006). 
Detection of invasive plant species is likely 
improved by the fine spatial resolution a UAV can 
achieve, as it does not require large and 
homogeneous infestation stands. Because UAVs 
provide spectroscopic imagery with much higher 
spatial resolution than fixed-wing aircrafts and 
satellites, it is essential to understand the 
mechanisms that allow for detection of target 
invasive plant species within these fine resolution 
images. 

According to the spectral variation 
hypothesis, spectral variations in remotely sensed 
images indicate species richness and habitat 
heterogeneity, which represents the capacity for 
more species to coexist. Rocchini et al. (2004) and 
Palmer et al. (2002) used multispectral images to 
estimate species richness and both found a 
significant relationship between spectral 
heterogeneity and species richness. Although 
spectral signatures vary among plant species and 
spectral variation is associated with higher 
diversity, spectral signatures can also vary within 
individual plant species. For example, Aneece & 
Epstein (2017) found that of all 50 nm sections of 
the visible-to-near-infrared spectral profile, 550-
599 nm and 650-699 nm sections were detrimental 
to species  identification using field spectroscopy. 
This is likely due to a higher intra-specific 
variability than inter-specific variability in those 
portions of spectra. 

Although others have successfully 
differentiated these invasive plant species using 
spectroscopy, all were done either in the lab or via 
in situ measurements near the ground; none utilized 
imagery collected via UAV. Because this is a novel 
approach to the differentiation plant species in a 
heterogeneous vegetation community, several 
questions must be answered to determine how to 
best accurately detect invasive plant species. 
Because the fine spatial resolution of data collected 
by UAV may potentially be detrimental to the 
process of differentiation, it is essential to examine 
variability within and among individuals in 
collected images. Inspired by these gaps in 
understanding, this project answers the following 
research questions: 
 

(1) Do intra-individual and intraspecific 
variability of target invasive plant species 
impede the ability to differentiate species? 

(2) Can the spectral signal from individual 
pixels be used to effectively detect target 
invasive plant species in an image? 

 
Methods 

Study Site & Data Collection 
Spectroscopic images were collected 

during the 2020 growing season at Blandy 
Experimental Farm (BEF), a biological field station 
owned by the University of Virginia. It is located in 
the Shenandoah Valley in northwestern Virginia 
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(39.06oN, 79.07oW). At 190 m elevation, BEF has 
a mean annual precipitation of 975 mm, a mean 
annual temperature of 12oC and a mean July high 
temperature of 31.5oC. It contains 80 ha of old 
fields in various stages of succession (Bowers, 
1997).  

Aerial spectroscopic images were collected 
using a DJI Matrice 600 drone equipped with a 
high-precision GPS system and an imaging 
spectrometer (Nano-Hyperspec, Headwall 
Photonics, Bolton, MA). Data collection took place 
over two 1-ha fields, which were chosen based on 
their abundance of invasive plants. The fields are 
approximately 20-25 years in age and are on low-
relief topography.  

  The field used to produce a model for 
invasive plant detection (green polygon in Figure 1; 
Figure 2A) contains abundant invasive shrubs, 
including Elaeagnus umbellata (autumn olive) and 
Rhamnus davurica (buckthorn) within a 
heterogeneous matrix of forbs, graminoids, shrubs, 
and trees (including the invasive tree of heaven, 
Ailanthus altissima). Celastrus orbiculatus 
(Oriental bittersweet) is also present in the tree and 
shrub canopies of a few individuals. The field used  
to test the accuracy of the model (blue polygon in 
Figure 1;  Figure 2B) contains abundant invasive 
shrubs, including Elaeagnus umbellata (autumn 
olive), Rhamnus davurica (buckthorn), Lonicera 
mackii (bush honeysuckle) within a heterogeneous 
matrix of forbs, graminoids, shrubs, and trees, but 
with more prevalent trees and shrubs than the other 

field. Celastrus orbiculatus (Oriental bittersweet) 
and Lonicera japonica (Japanese honeysuckle) are 
present in the tree and shrub canopies of a few 
individuals.  

Flight plans over each field were created 
using Universal Ground Control Software (UgCS), 
in which the UAV would fly in straight lines at a 
consistent height of 48 m above the ground in order 
to obtain images with 3 cm pixels that could later 
be pieced together to form a larger image. The 
imaging spectrometer was programmed to capture 
images along the flight plan using HyperSpec III 
software (Headwall Photonics, Bolton, MA). 
Images were collected midday between 10h and 
15h under consistent sky conditions at multiple 
points during the growing season, with higher 

Figure 2. A. The field utilized to train the detection algorithm 
is about 20 years in age and contains abundant invasive 
shrubs, including E. umbellata (pictured on the left) and R. 
davurica. B. The field utilized to test the detection algorithm 
is about 25 years in age and contains abundant invasive 
shrubs, including E. umbellata, R. davurica (pictured in the 
foreground), and Lonicera mackii. 
 

A 

B 

Figure 1. Locations of fields in which spectroscopic data 
were collected during the 2020 growing season. The 
training field and testing field are shown in green and blue, 
respectively. 
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frequency during transitional periods of early 
season leaf-out and fall senescence (approximately 
every two weeks from early April through mid-June 
and from early October to mid-November; 
approximately every four weeks from mid-June to 
mid-September).  

Collected spectroscopic images were 
adjusted for incoming and scattered solar radiation 
using a sampled dark reference at the time of flight 
and a reference tarp located in the flight scene, 
respectively. Using HyperSpec III software, terrain 
and perspective effects were removed using a 
digital elevation model provided by the US 
Geological Survey, and a mosaic of multiple 
images was created. 
 
Data Analysis 

Though spectroscopic data were collected 
at multiple points in the growing season, this 
preliminary analysis focuses on only two dates: 
April 15 and June 8 and the detection of one 
species: E. umbellata (autumn olive). 15 well-lit 
and representative pixels were selected for spectral 
sampling from individuals of known identities that 
were present and with foliage in images of each 
field on each date. A variety of tree and shrub 
species are present in the field used to develop a 
detection algorithm, including Ailanthus altissima 
(tree of heaven), Rhamnus davurica (Dahurian 
buckthorn), Elaeagnus orbiculate (autumn olive), 
Gleditsia triacanthos (honey locust), Maclura 
pomifera (osage orange), Juniperus virginiana 
(eastern red cedar), Pinus virginiana (Virginia 
pine), Symphoricarpos orbiculatus (coralberry), 
Galium verum (yellow bedstraw), and Rubus spp. 
(raspberry species), Catalpa bignonioides (catalpa), 
and Phytolacca americana (pokeweed). 

As a preliminary approach to assessing 
whether variability within species impedes 
differentiation and detection, mean spectra were 
calculated for each species, along with a 95% 
confidence interval for the mean.  

Spectral signatures collected from the 
training field images were then recoded as the 
species of interest (“olive”) and all other species 
(recoded as “not olive”) and were analyzed using a 
partial least squares discriminatory analysis (PLS-
DA), which classifies individuals into differing 
groups using reflectance at various wavelengths. 
The use of a PLS-DA, which classifies individuals 
into different groups using their reflectances at 

various wavelengths, can not only be used to 
develop a trained classification system but also can 
elucidate patterns of inter- and intra-specific 
variability. 

Species recoded as “olive” and “not olive” 
were recoded as 1s and 0s, in order to utilize a 
probability approach in the model (1s represent 
100% probability that a pixel is olive, while 0s 
represent a 0% probability that a pixel is olive). The 
training dataset was split into 70% to develop a 
model and 30% to validate it.  

Two approaches to classification were 
used. The first, a simple linear model, used 
individual bands that loaded heavily in the PLS-
DA. The initial model included bands from all 
regions that loaded heavily, then variables were 
removed individually based on collinearity and 
parsimony (Variance Inflation Factors and Akaike 
Information Criterion of each variable). Once a 
model was chosen, it was validated on the 
remaining training data, and a threshold for 
probability was chosen as 80%, above which a pixel 
would be classified as olive and below which it 
would be classified as not olive. This threshold was 
chosen as an adequate confidence level as well as 
one that accurately categorized pixels. 

Once a detection model and probability 
threshold were finalized, the algorithm was tested 
for accuracy on the second field in which data were 
collected. Pixels that obtained a probability of 80% 
or higher were classified as autumn olive, and 
pixels with a probability below 80% were classified 
as not autumn olive. If at least half of pixels within 
an individual tree or shrub were classified as 
autumn olive, that individual was classified as 
autumn olive. 

The second approache to classification 
used PLS-R to create a more complex model, which 
used all wavelengths rather than a select few to 
determine the probability that a pixel was autumn 
olive. The accuracy of the PLS-R model was 
compared to the simple linear model in order to 
evaluate the efficacy of less computationally 
demanding models or the need for complex models 
for detection. 
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Results 
 In April, autumn olive (light green curve, 
Figure 3A) differs from other plant species in the 
blue region of its spectrum. The mean reflectance 
as well as its 95% confidence interval is greater 
than other plants in blue bands with no overlap with 
other plants. Spectra extracted from pixels of 
autumn olive individuals in April also have high 
reflectance in red bands, in the red edge, and in NIR 
bands, though the 95% confidence intervals overlap 
with some species (buckthorn, coralberry, pine, and 
blackberry; Figure 3A). 
  In June, the spectral signal of autumn olive 
(light green curve, Figure 3B) is not as noticeably 
different in the same regions. Reflectance in blue 
bands remains high, but the 95% confidence 
interval of the mean overlaps with other species 
(cedar, tree of heaven, and others). Its reflectance in 
the red edge region, though not among the highest 
or lowest of all species, is still relatively 
differentiable; the 95% confidence interval of the 
mean in the red edge overlaps with only pokeweed, 
coralberry, and osage orange. 

 
 The partial least squares discriminatory 
analysis (PLS-DA) of spectroscopic data collected 
in April shows promise for discrimination among 
autumn olive and other plants. Autumn olive pixels 

tend to cluster in the component space negatively 
for component 1 and positively for component 2 
(Figure 4A). Loading values of component 1 are 
highly negative in the blue region (around 470 to 
500 nm) and less so in the red region (around 690 
nm; Figure 4B). Loading values of component 2 are 
somewhat positive in the blue region and red 
region, but loading values at the red edge (710 nm) 
load heavily in the negative direction (Figure 4C). 
 

The PLS-DA for spectroscopic data collected in 
June also shows promise for discrimination among 
autumn olive and other plants. Autumn olive pixels 
tend to cluster in the component space positively for 
component 1 and positively for component 2 
(Figure 5A). Like loading values in the April PLS-
DA, loading values of component 1 are highly 
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Figure 4. PLS-DA for autumn olive pixels compared to 
pixels of all other species in April. Panel A shows where 
autumn olive pixels tend to cluster in the component space, 
and Panels B and C show the loading values (importance) of 
each wavelength in each component. Values farther from 
zero are more important. 
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Figure 3. Average reflectance (bold line) for each species 
over all wavelengths in April (A) and June (B), with 95% 
confidence interval of the mean (thinner lines above and 
below) for each species. The visible portion of the spectrum 
is shown enlarged below each full signature for more detail. 
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positive in the blue region (around 470 to 500 nm) 
and in the red region (around 690 nm; Figure 5B). 
Loading values of component 2 are highly negative 
at the red edge (around 710 nm) as well as in the 
green region (around 550 nm) (Figure 5C). 

Bands that loaded heavily in the PLS-DA 
components were used to produce the algorithms to 

predict the probability a pixel would be classified 
as autumn olive. In both April and in June each 
model that detects and differentiates autumn olive 
from surrounding vegetation uses only a few 
features of the spectra: blue and red (480 and 710 
nm in April, and 470 and 710 nm in June) 
reflectance. These regions demonstrate 
differentiability in not only the PLS-DA (Figures 4 
and 5) but also in the spectral signatures (Figure 3). 

 In addition to developing an algorithm 
using the PLS-DA to differentiate autumn olive 
pixels from pixels of other plant species, a partial 
least squares regression (PLS-R) was also used. 
Wavelengths in the 450-550 nm, 650-700 nm, and 
700-NIR regions are important for discrimination in 
both months (Figure 6A and B), which aligns with 
the mean spectral signal of autumn olive pixels 
(Figure 3). 
 

 
 
 
 

 
 
 

Model Results 
 Using the simple linear model produced 
from the PLS-DA of April data, the likelihood of 
false positives (falsely classifying individuals that 
are not autumn olive as autumn olive) is 0, but the 
likelihood of false negatives (falsely classifying 
individuals that are autumn olive as not autumn 
olive) is 64% (Figure 7A). Using the PLS-R to 
classify individuals in April produced better results: 
the likelihood of false positives remained 0, and the 
likelihood of false negatives was reduced to 18% 
(Figure 7B).  

Using the simple linear model produced 
from the PLS-DA of June data, the likelihood of 
false positives is 0, but the likelihood of false 
negatives is 31% (Figure 7C). Using the PLS-R to 
classify individuals in June produced better results: 
the likelihood of false positives increased to 3%, 
but the likelihood of false negatives was reduced to 
0% (Figure 7D).  
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Figure 5. PLS-DA for autumn olive pixels compared to 
pixels of all other species in June. Panel A shows where 
autumn olive pixels tend to cluster in the component space, 
and Panels B and C show the loading values (importance) of 
each wavelength in each component. Values farther from 
zero are more important. 
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Discussion 
Ability to detect autumn olive 

The use of a PLS-DA, which classifies 
individuals into different groups using their 
reflectances at various wavelengths can elucidate 
patterns of inter- and intra-specific variability. The 
PLS-DA results, along with the mean spectral 
signatures by species demonstrate that intra-
individual and intra-specific variability of autumn 
olive do not impede the ability to differentiate it. 

The results of the linear models and PLS-R 
models both demonstrate the ability to detect 
autumn olive individuals within an image, 
particularly in June. While the PLS-R model is 
more accurate, the simple linear model, which 
significantly reduces computational demands and 
time, is also quite accurate and demonstrates 
potential for broader, open access applications.  
 
Future Work 
 While the results thus far show a great deal 
of promise, we plan to continue comparing different 
classification approaches at different points in the 
growing season. Combining the results of 
classification over multiple dates also has the 
potential to maximize the effectiveness of 
detection. We also hope to extend our field-based 
leaf-scale algorithms for detection to datasets from 
the National Ecological Observatory Network to 

determine whether fine-scale resolution data are 
applicable to coarser resolution data and therefore 
application at the landscape scale. 

The success of this project has widespread 
implications for the management of invasive 
species. There are potentially broad-reaching 
benefits, including expanding the techniques to 
larger spatial extents, which would enhance 
regional strategies for invasive plant management 
far beyond what can be done with ground surveys 
alone. Insights from this project have important 
implications for scientists in ecology and 
environmental sciences, forest and park services, 
and land owners managing invasive species on their 
property. 
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Figure 7. Results of classification accuracy using: PLS-DA 
and PLS-R models in April (A and B, respectively) and PLS-
DA and PLS-R models in June (C and D, respectively). Dark 
blue represents true positives, light blue represents true 
negatives. Dark red represents false negatives, and pink 
represents false positives. 
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