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Abstract

One main idea in software engineering is to reuse
existing software instead of building due to the
high cost. However, finding existing software that
accomplishes a specific use case can be difficult.
Code search has attempted to help this by allow-
ing keyword searching for code similar to earlier
search engines. Recent work has attempted to
leverage the semantics present in the query and
code.6,10,17,19,20,24,34 However, these approaches
do not consider the context of methods with the
rest of the software. This context can be impor-
tant when performing a search for determining
the relevance of a returned result.20 To address
the current problems in code search we designed
Athena, a semantic code search engine that lever-
ages software’s context through a knowledge graph
and a graph neural network. The current imple-
mentation of Athena is the first step towards this
and it currently supports searching for methods
using a query method rather than natural lan-
guage. For our preliminary evaluation, we have
selected three open-source Java projects and had
three computer science students evaluate the rel-
evancy of 891 retrieve methods that Athena re-
turned from 99 queries. We found that in 70%
of cases the first method Athena retrieved was
relevant to the query method.

Introduction

Software has become pervasive in our society, from
running on our smartphones to controlling propul-
sion and control systems in spacecrafts. Without
software, none of the current scientific revolutions
would be possible. Therefore, it is important to
make sure high quality software is available to ev-
eryone to ensure the progress of innovation.

The sharing of advances in software has been
growing in popularity with big shifts in software

companies becoming more open sourced. This has
allowed for everyone to use their software as well
as helping to contribute their time to improving
the software. However, searching for software to
reuse is still challenging in today’s age.

To tackle this challenge, we introduce the cur-
rent implementation of Athena, a tool for im-
proving the relevancy of retrieved methods from
a given query method using a software knowledge
graph and graph neural network by capturing the
context methods that are being searched. Con-
text is important because similar to natural lan-
guage with J.R. Firth’s famous quote “[y]ou shall
know a word by the company it keeps”,12 looking
at a method’s context, i.e., the file, package, and
project it resides in, can give a deeper insight as
to its intent and functionality.20 Specifically, we
leveraged a software project’s call graph to con-
struct our software knowledge graph and used a
content-aware node2vec23 graph neural network
that uses a pretrained Transformer37 neural net-
work for encoding each method in the knowledge
graph.

Our preliminary evaluation involves evaluating
how well Athena is at finding methods that are
relevant to a given query method inside of a soft-
ware project via a novel coupling metric. This is
the first step towards allowing developers to use a
natural language query to semantic search for code
that accomplishes the goal of the query. We also
discuss future work for incorporating natural lan-
guage queries, instead of solely method queries,
causal reasoning, and additional knowledge into
our existing knowledge graph in Sec. 7.

In summary, this paper discusses the following:

1. An initial implementation of Athena, that
helps developers find relevant methods given
a query method;

2. The results of our preliminary evaluation that
measures Athena’s ability to retrieve rele-
vant methods;
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3. and an analysis of the current limitations of
Athena and how future work will be done to
address Athena’s current limitations.

Implementation

Athena Overview

Athena takes advantage of the rich information
present in the actual code and structural infor-
mation present in software projects’ call graphs
by combining them in a non-linear way using a
Graph Neural Network (GNN) algorithm. This
combined information is then used for calculating
a novel coupling metric, which we named Neural
Coupling.

Athena has three components, namely Neural-
based Representation, Structural Representation,
and Representation Fusing, as shown in Figure 1.
Each component is explained in the following sub-
sections.

Neural-based Representation

In Athena’s Neural-based Representation com-
ponent, each method, M , in a target software
project, P , is transformed into a distributed vec-
tor representation using some function fneural.
For this Neural-based Representation function,
fneural(M) = VM ,M ∈ P , we use CodeBERT,10

which is an approach to convert code into a series
of tokens, e.g., words, that each have a continuous
distributed vector by being trained on two differ-
ent pretraining objectives. CodeBERT is based on
the Transformer37 architecture, which uses multi-
head attention to allow successive layers in the
neural network to pay attention to parts of the
input, in our case a method, that might be im-
portant to the overall meaning. To teach Code-
BERT to understand the meaning of a method,
the Feng et al. trained CodeBERT using two
objectives: RoBERTa and ELECTRA.8,26 The
RoBERTa pretraining objective involves masking
random tokens of the input, which is a pair of a
method and its docstring, and the model is tasked
with filling in these missing parts. The ELEC-
TRA pretraining objective is similar to RoBERTa.
However, instead of masking tokens of the input,
some tokens are replaced with similar ones, in
CodeBERT these are determined by an n-gram
model.21 The model is then tasked with deter-
mining which of the tokens have been replaced.

After each token in the method is vectorized, we
combine them into a single vector in order to eas-
ily perform similarity between methods since some
methods may be longer than others. To combine
the tokens into a method level vector, we used the

approach by33 and their corresponding sentence-
transformers5 library, which allows us to pool the
token level vectors with different techniques and
add an additional fully connected layer that gen-
erated the final method level vector. We discuss
all implementation details in Sec. 2.5.

Structural Representation

In order to capture the structural aspect of a
software system, we construct a knowledge graph
by using the project’s method-level call graph to
serve as our structural representation. More for-
mally, let G = (N,E) be a target software project
graph, where N represents the list of methods in
the project as nodes and E represents the list of
method calls between the methods in the project.

To construct this method-level call graph, we
use java-callgraph,1 which is a tool that allows for
generating a call graph between different source
code entities.

Representation Fusing

Previous work suggest fusing semantic and struc-
tural information by taking a linear combination
of the two coupling metrics.15 However, this has
its drawbacks as discussed previously.22 For ex-
ample, if one of the metrics performs poorly for a
certain type of coupling, i.e., structural coupling
when evaluating methods that only have a hid-
den dependency, then it will drag down the over-
all performance of the fused metric. To overcome
this drawback, we apply a content-aware GNN
to combine the two sources of information in a
non-linear manner. Specifically, we use a modi-
fied node2vec16 GNN that considered the content
inside of the nodes of the graph for non-linearly
combining both Neural-based and Structural rep-
resentations to generate node vectors. This usage
of content-aware node2vec has shown promise in
the Biomedical domain for embedding Biomedical
ontologies.23 Our novel contribution is through
the use of a pretrained Transformer model for gen-
erating the semantic embedding of the nodes and
application of this approach to the software en-
gineering domain. We hypothesize that having
this non-linear interaction, from two different in-
formation sources, allows node2vec to learn hidden
semantic and structural patterns at method-level
granularity. Our preliminary evaluation and its re-
sults, which we discuss in Sec. 3 and 4, is the first
attempt in empirically refuting or confirming this
hypothesis.

In node2vec, each node is given an initial ran-
dom vector representation called an embedding.
These embeddings are iteratively updated simi-
larly to the original word2vec30 model using a skip-
gram objective. However, since graph structures
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Figure 1: The Athena approach.

have no natural order, the node2vec algorithm ran-
domly selects nodes and performs walks to gener-
ate a sequence of nodes that can then have the
original word2vec skip-gram algorithm applied for
updating the embeddings:

max
∑
u∈N
−logZu+

∑
ni∈Walkk(u)

fstruct(ni)·fstruct(u).

(1)

Where Zu =
∑

v∈N exp(fstruct(u) · fstruct(v)
and is approximated via negative sampling30 due
to the high computational cost. Additionally,
where Walkk(u) are k nodes along a random walk
starting on the focus node u. We model our edges
as unweighted. Therefore, each node’s neighbor
has an equal probability of being selected along
the walk.

This modified skip-gram tries to maximize the
log probability of reconstructing a node’s neigh-
bors given the embedding representation of the fo-
cus node u, where neighbors are approximated by
this random walk and do not necessarily need to
be close to the starting node. To learn this func-
tion, an embedding layer that serves as a node em-
bedding lookup table is used and optimized using
stochastic gradient decent.

We modified this node2vec algorithm by replac-
ing the node embedding lookup table with a Trans-
former model that generates neural vectors cap-
tured in the Neural-based Representation compo-
nent instead of with vectors. This allows for the
node2vec algorithm to have the information from
the source code of each node when incorporating
the structural information contained in the call
graph of the software project that was extracted
in the Structural Representation component. Ad-
ditionally, during our testing we found the usage of
neural vectors from the pretrained Transformer ar-
chitecture to cause issues with training due to the
regular dot product performed used in node2vec

Table 1: Hyperparameters used for training differ-
ent Athena models.

Hyperparameter Value

Walk Length 10

Context Size 10

# of Walks per Node 1

# of Negative Samples 1

Optimizer SGD + ADAM

Learning Rate 1E − 2

Batch Size 8

Epochs 20

having the loss gradients explode leading to the
model not learning. To fix this issue, we com-
pute the sum of the cosine similarities of the focus
node to its neighbors. This prevented the explod-
ing gradients issue. However, more experiments
will need to performed to understand the impact
of this change.

To generate the coupling metric from this fused
representation, we compute the cosine distance
metric, cosdist(mmm1,mmm2) = 1 − mmm1·mmm2

||mmm1||·||mmm2|| for ev-

ery method’s vector in a project’s knowledge graph
and the given query method’s vector and use
this to represent how coupled two methods are.
The coupling metric value for each pair of meth-
ods is then returned to the developer in ranked
order, higher coupling equates to higher likely
the method belongs to the same software compo-
nent, to help in determining which methods in the
project’s knowledge graph are part of the same
software component as the given query method.

Implementation Details

You can find our selected hyperparameters in
Tab. 1. To implement our Neural Representation
CodeBERT encoder model we used the pretrained
model available from Huggingface’s transformers
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library.38 Additionally, to combine the individ-
ual token vectors produced by CodeBERT into a
singular vector representing an entire method, we
used sentence-transformers library with max pool-
ing and a fully connected layer with 256 units. For
implementing the Representation Fusing node2vec
model we used Pytorch Geometric11 and modified
their example node2vec implementation 1. For
managing data and training our model used Py-
torch Lightning.9

All training was done on an Ubuntu 20.04 server
with a single A100 NVIDIA GPU with 40GBs of
VRAM, 128 CPU cores, and 1TB of RAM.

Evaluation

The end goal of our evaluation is to assess how
effective Athena is at finding relevant software
components to user queries to promote code reuse
and reduce code duplication. The first step to-
wards this goal is to find relevant methods since
any user query results should all have methods
that are relevant to each other. Therefore, our
initial evaluation assesses how effective Athena
is at returning relevant methods given a method
query. To help us determine this goal, we formu-
lated the following research question to guide our
evaluation:

RQ1: How well is Athena able to find relevant
methods to a given query method?

Data Collection

3.1.1 Project Selection

In this study we exploited 313 open-source Java
projects from GitHub. To avoid low-quality
projects, we only selected projects that meet the
following criteria: (1) recently active (has at least
one commit within the last 6 months) (2) not a
toy project (at least 100 commits and at least 10
contributors), (3) semi-popular (at least 10 stars),
(4) used only Java 10 or lower, (5) used Maven2

for building the project, and finally (6) not a fork
and only the default branch.

Relevant Method Recovery

For RQ1, we selected a total of 99 query meth-
ods from three java projects, namely commons-
beanutils from apache, secor from pinterest, and
pdb from feedzai. Table 2 has the projects’ statis-
tics and description. These query methods came
from various commits of the repositories to obtain
a diverse set. Once selected, they were given to

1https://github.com/rusty1s/pytorch geometric/blob
/master/examples/node2vec.py

Athena to generate their cosine distance metric to
the rest of their corresponding projects using the
approximate k-nearest neighbors algorithm from
sklearn.32 Going with too large of a k value will
not show the usefulness of Athena since most de-
velopers will not review large amounts of retrieved
methods. Therefore, we used a k value of 9 for our
evaluation, which we think borders right on the
edge of what most developers will look through.
To measure Athena’s performance, we calculated
the mean average precision (mAP) and mean re-
ciprocal rank (mRR) of Athena’s ability to re-
turn relevant methods, where relevance is deter-
mined by three computer science students, includ-
ing myself, and is discussed in more detail below.
mAP measures how well an approach is perform-
ing by calculating the number of true positives,
i.e., methods that are part of the same software
component, averaged across multiple windows of
the top returned results for all method queries.
Specifically:

mAP =
1

|M |

M∑
m

(
1

|R|

|R|∑
k

(Rk)) (2)

Where Rk is the relevancy list of 0s and 1s, 0 be-
ing irrelevant and 1 being relevant, up to k results
for some method query m.

mRR is used to measure how consistent an ap-
proach is at finding at least one relevant method
high in the list of results it returns and is defined
as:

mRR(M) =
1

|M |

M∑
m

(
1

rank(m)
) (3)

Where rank(m) is the index of the first relevant
method returned from the given method query m.

We used the following guidelines for determining
if a retrieved method from Athena is relevant to
a given query:

1. The retrieved method is a type of clone of the
query method. Specifically, a method can be a
clone if it meets one of the following clone type
criteria from Svajlenko and Roy:36 (i) type
1 are syntactically identical, except for mi-
nor changes in white space, layout, and com-
ments, (ii) type 2 are syntactically identical,
except for variable names and literal values,
(iii) type 3 are syntactically similar, but con-
tain differences at the statement level such as
the addition, modification, or removal of cer-
tain parts, and (iv) type 4 are syntactically
dissimilar and are only semantically similar,
i.e., they perform the same functionality.

2. The retrieved method performs similar or
complementary functionality compared to the
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Table 2: Statistics of the different libraries used in our evaluation.
Library # Stars # Contributors

apache/commons-beanutils 194 29

pinterest/secor 1.7k 108

feedzai/pdb 40 30

query. For example, if the query method deals
with getting a user’s phone number and the
retrieved method deals with getting a user’s
name, then we would consider this retrieved
method as relevant since it performs similar
functionality of getting user information.

3. The query or retrieved method call each other
since this implies that the retrieved method is
part of the same software component as the
query method.

4. Only the query and retrieved methods are
considered, not the file the method resides in
or any other context, when making the rele-
vancy determination.

Results

In this section we discuss the results from our
preliminary evaluation and the limitations of
Athena.

Relevancy Results Discussion

Tab. 3 show the results of Athena for the three
different libraries we included in our preliminary
evaluation along with the overall performance. As
show, Athena performs best on the library pin-
terest/secor, with an mRR, mAP, mean Rank, and
HIT@1 score of 81.3%, 77.6%, 1.16, and 75.8%,
respectively. The large difference in performance
with respect to the other libraries, 7−8% in terms
of HIT@1, may be due to the quality difference
in the library since pinterest/secor also had the
largest amount of GitHub stars and contributors.
However, more analysis will be needed to fully un-
derstand this difference. For all libraries, Athena
performs well with an average HIT@1 score of
70.7%, meaning that a majority of Athena’s first
retrieved methods are relevant to the given query
method. In the next section we discuss some of
Athena’s limitations and potential remedies.

Results for RQ1: From our prelimi-
nary evaluation, Athena is able to achieve
an overall mRR, mAP, mean Rank, and
HIT@1 score of 76.9%, 73.0%, 1.45, and
70.7%, respectively. This shows that the
methods Athena retrieved from our given
set of queries are relevant based on our cri-
teria in Sec. 3.2.

Limitations Discussion

In this subsection we will discuss some of the lim-
itations we uncovered during our evaluation of
Athena.

From our exploration of the successes and fail-
ures of Athena, we found three broad cases for
both successes and failures. For successes these
cases are:

S1: Query and retrieved methods are type 1 or 2
clones

S2: Retrieved methods are overloaded versions of
the query

S3: Query and retrieved methods have very sim-
ilar names

Fig. 2 show an example of case S2 by Athena.
From this case, you can see Athena identifies a
relevant method to the query method since they
are performing very similar functions, i.e., extract-
ing an event type. The only difference being the
type of object being extracted from.

For failures, these categories are:

F1: Query method contains very generic infor-
mation

F2: Query and retrieved methods contain similar
structure

F3: Query and retrieved methods contain many
of the same variable names

Fig. 3 shows the failure case F1. As shown
from the failure case, Athena can retrieve a com-
pletely irrelevant method since capitalizing a prop-
erty name has nothing to do with generating a
hash code for an object. The function hashCode
is a common utility function in the Java program-
ming language and generally does not contain a
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Table 3: Results of the best performing Athena models for each library and overall.

Library mRR mAP µRk HIT@1

apache/commons-beanutils 73.8% 66.9% 1.19 68.8%

pinterest/secor 81.3% 77.6% 1.61 75.8%

feedzai/pdb 75.7% 74.1% 1.56 67.6%

Overall 76.9% 73.0% 1.45 70.7%

Figure 2: Success case of Athena retrieving a relevant method.

Table 4: Statistics of top 10 successes and failures
of Athena across all libraries based on average
precision.

Case µ Dist σ Dist Median Dist

Successes 3.08E-3 1.85E-3 3.34E-3

Failures 7.29E-3 3.15E-3 6.00E-3

lot of project specific logic, i.e., they contain very
generic information. This makes it extremely dif-
ficult for Athena to extract useful information
from both the semantic and structural represen-
tations of this method. We found this to be com-
mon case, mostly due to getter functions. How-
ever, there were other examples that did not fit
into one of our broad set of failure cases. One rea-
son for this could be due to our criteria for clas-
sifying a method as relevant. Since the partici-
pants did not look into the context surrounding
the retrieved method and query, some structural
information could be missing that made the re-
trieved methods actually relevant such as if the
query and the retrieved methods were called in an
intermediating series of methods. Another reason
for these failure cases could be these queries do
not contain meaningful relevant methods in the
software project and regardless of how accurate
Athena was it would be unable to retrieve rele-
vant methods. Lastly, the current implementation
of Athena may lack the ability to effectively use
the information stored in these query methods to
find relevant methods in the rest of the library.
Our future evaluation will explore these possibili-
ties to better understand Athena and its limita-

tions as well as potential ways to overcome them.

One interesting finding we discovered, which can
be seen in Tab. 4, while exploring these success
and failure cases is that successes in terms of high
average precision, i.e., multiple relevant methods
are higher in the list, also correlates well with
the cosine distance between the query method and
each retrieved method being low, which meaning
more similar to each other based on their fused
vector representation. The reverse is true for fail-
ure cases, i.e., low average precision correlates well
with the cosine distance being high. We calculated
the Pearson correlation coefficient13 and associ-
ated p-value and found the average precision and
cosine distance to be negatively correlated with an
r value of−4.98E−1 and p-value of 1.55E−7 show-
ing this correlation is statistically significant. This
means that Athena’s cosine distance metrics can
be used as additional information for determining
if retrieved methods are relevant to the given query
since there is a correlation between how large this
distance is and how relevant the returned list of
methods are. Therefore, to prevent showing po-
tentially irrelevant methods to a developer, which
could cause the developer to stop trusting the tool,
a threshold could be used to filter retrieved meth-
ods.
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Figure 3: Failure case of Athena retrieving an irrelevant method.

Finding: When the query method tends
to be generic, Athena has a difficult time
retrieving relevant methods. More evalua-
tions need to be performed to explore the
true cause of some irrelevant methods be-
ing returned even with query methods that
are not generic. Athena’s cosine distance
metric correlates relatively well, Pearson
correlation coefficient of −4.98E − 1, with
its performance in retrieving relevant meth-
ods, in terms of average precision. This
correlation may be able to be leveraged
to filter out irrelevant methods through
a threshold cosine distance value for re-
trieved methods.

Threats to Validity

Internal Validity. The biggest threat to internal
validity comes from our guidelines for deeming
if a retrieved method is relevant or not. To re-
duce this threat we used three students who all
have computer science backgrounds, two of which
have worked previously in industry. Addition-
ally, for one of our criteria, we relied on previ-
ously established definitions for similar methods,
i.e.,, code clones. However, even with these guide-
lines, many examples could be misclassified due to
not having the full context of the method within
the project making it difficult to determine if the
methods were a part of the same software com-
ponent. While this additional context was not
possible during this initial evaluation due to time
constraints, we will be adding this to our guide-
lines in our future evaluation. Lastly, our metrics
for evaluating Athena’s performance do not cap-
ture any methods Athena did not retrieve that
may have been relevant, i.e., Athena’s recall rate.
This is because it would be extremely difficult to
go through all pairs of methods to determine which

methods Athena missed, which is why it was dis-
regarded.

External Validity. Due to our small sample size
of libraries, only three, it is unclear if these results
will generalize to other libraries. This applies sim-
ilarly to other programming languages since we
only chose projects that use Java. However, the
CodeBERT10 model we are using was shown to
work across multiple programming languages. Ad-
ditionally, our future evaluation will involve hun-
dreds of projects to help evaluate Athena’s gen-
eralizability.

Related Work

Existing approaches have attempted to solve code
search using classical keyword matching for com-
puting syntactical similarity,3,4, 7, 25,27–29,39e.g.,
Term-Frequency Inverse Document-Frequency
(TFIDF).35 However, natural language and soft-
ware have little overlap in their vocabulary and
their structure. Therefore, previous techniques
such as keyword matching and TFIDF that
rely on finding commonalities in the vocabu-
lary of queries and methods resulted in poor
performance.14,18,40,41

To overcome this limitation a lot of recent tech-
niques compute semantic similarity such as using
WordNet for finding synonyms of words as in Li et
al.24 Sachdev et al.34 used word2vec,31 a neural
network that uses machine learning to represent
words as continuous vectors, to generate word em-
beddings for natural language and software. Addi-
tionally, many recent approaches have used deep
learning for code search6,10,17,19,20 using a vari-
ety of different types of architectures and learning
methods. The closest to ours is work by Feng et
al.10 since we are using their CodeBERT model
as the foundation for Athena’s Neural Represen-
tation component. However, similar to the other
deep learning approaches for code search, Code-
BERT does not consider the context methods re-
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side in. We extend their work by including this
additional context since software developers con-
sider this important information when considering
whether a method is relevant to a search query.20

Conclusion and Future Work

In this paper we presented Athena, a Graph Neu-
ral Network that using a software project knowl-
edge graph to learn the semantic and syntactic in-
formation present in the software project’s meth-
ods. This learned information is then leveraged to
retrieve methods relevant to a given query method.
We evaluated Athena in a preliminary study in-
volving three Java libraries using standard infor-
mation retrieval metrics and found Athena shows
potential by achieving an overall mRR, mAP,
mean Rank, and HIT@1 score of 76.9%, 73.0%,
1.45, and 70.7, respectively. Additionally we dis-
cussed Athena’s current limitations such as per-
forming poorly on generic methods.
Future work. With the limitations outlined

in 4.2, we intend the explore ways of eliminating
these limitations through different architectures,
training, and thresholding techniques. Addition-
ally for future work, we will implement the features
as discussed in the original proposal, namely: (i)
natural language queries by adding method doc-
strings into the knowledge graph so relevancy be-
tween natural language and methods can be per-
formed, (ii) causal reasoning to overcome the di-
rectionality issue where the model may have a hard
time separating converting an int to a string from
converting a string to an int by leveraging causal
graphs and related techniques, (iii) evaluating our
Athena on a larger set of libraries for better ex-
ploring Athena’s generalizability, and (iv) con-
structing a benchmark for evaluating the perfor-
mance and interpreting different models for code
search to help future researchers in this field.
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