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0 Abstract

We present a novel method for modeling the re-
flectance of a convex object under known nat-
ural lighting from a single image. We utilize
the knowledge that similar materials often have
similar reflectance functions. This allows us
to model reflectance functions using Gaussian
mixture models where each Gaussian is a ma-
terial type. The solution is found using max-
imum a-posteriori (MAP) and non-linear opti-
mizations to select the best option from our set
of solutions. We demonstrate the effectiveness
of this approach using a database of measured
reflectance functions and under multiple natu-
ral lighting environments.

1 Introduction

When modeling reflectance, reflectance func-
tions such as Bidirectional Reflectance Distri-
bution Functions (BRDF) are used to express
the reflectance of a material. Data-driven ap-
pearance models>* expresses the (BRDF) of a
homogeneous material as a linear combination
of a large set of measured “basis” BRDFs. The
key assumption is that this large set of basis
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BRDFs covers the full space of BRDFs, and
any BRDF in this space, can be represented
as convex combination of these basis BRDFs,
thereby inheriting all the intricate reflectance
details present in the measured basis BRDFs.
Recent advances have shown great promise in
reconstructing a data-driven BRDF from very
few measurements. >l However, these meth-
ods rely on controlled directional or point light-
ing, and do not generalize to uncontrolled nat-
ural lighting. A key problem in generalizing
prior methods to natural lighting is that these
prior methods rely on a non-linear encoding
(e.g., logarithmic) to compress the dynamic
range of the the basis BRDFs in order to reg-
ularize the estimation of the model parameters.
Such non-linear encoding can only be undone
after parameter estimation if the observations
consist of direct BRDF observations (i.e., a sin-
gle view and a single light direction per obser-
vation). In contrast, observations under natural
lighting are the result of an integration of the
BRDF times lighting over all directions, and
only linear transformations of the BRDF are
transparent to this integration.

In this paper we present a method for recon-
structing the BRDF of a homogeneous mate-
rial from a single photograph of a convex object
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with known shape and observed under a known,
but uncontrolled, natural lighting condition.
Our method does not rely on a non-linear trans-
formation of the basis BRDFs. Instead we di-
rectly operate on the unmodified BRDFs. To
regularize the estimation of the model parame-
ters we leverage the reflectance similarities be-
tween BRDFs in a material class. We approxi-
mate the space of homogeneous BRDFs with a
Gaussian mixture model. Each normal distribu-
tion in the Gaussian mixture model represents
a material class, and we assign each basis ma-
terial to the class with the highest likelihood.
We formulate the estimate of the model param-
eters as a maximum a-posteriori optimization
that maximizes the likelihood that the model
parameters explain the observations, as well as
the likelihood that the model belongs to the ma-
terial class. We exploit the observation that in
high dimensional spaces everything is distant,
and approximate the maximum a-posteriori op-
timization by a efficient linear least squares ap-
proximation per material class. Finally, we se-
lect the most likely provisional least squares so-
lution based on the maximum a-posteriori error.
We demonstrate the efficacy of our solution us-
ing the MERL BRDF database under a variety
of natural lighting conditions.

Recovering realistic reflectance of materials
has several direct applications to NASA. Both
the Human Exploration and Outreach direc-
tive® and the Science mission directorate.’
show NASA’s desire to explore and learn more
about our solar system. This includes coloniz-
ing Mars and exploring the planets in our solar
system. Sending astronauts on missions into
space is dangerous, so to prepare astronauts
need to be well trained for all potential emer-
gencies that may occur on their mission. Vir-
tual reality, VR, is a tool that creates a realistic
and safe environment for the astronauts to train
in. So for this training to be useful, they must
look and feel realistic to the astronauts. A study
performed by Seymour et all¥ found that sur-
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geons trained using VR were more efficient and
accurate than their counterparts. Additionally,
another goal of NASA’s is to educate the public
through outreach programs.> Recovering real-
istic reflectance properties can be used to en-
hance learning experiences through VR simula-
tions. This can be used by researches to digitize
artifacts that can then be studied. Alternatively,
these digital artifacts can be put on display to
educate the public on NASA’s goals and mis-
sions.

2 Overview

2.1 Data-driven BRDF

The reflectance behavior of a homogeneous
material is described by the bidirectional
reflectance distribution function (BRDF)
p(®w;,@,): a 4D function defined as the ratio
of incident irradiance for an incident direction
; over the outgoing radiance for outgoing
directions ®,.

In this paper, we follow the data-driven BRDF
model of Matusik et al.# that characterizes the
BRDF p as a linear combination of a large set
of n measured materials b;,i € [1,n]. The un-
derlying idea is that the set of measured BRDFs
spans the space of BRDFs, and any material’s
BRDF should lie in this space:

p—Bw, (1

where we stack the BRDF p and basis BRDFs
b; in a vector of length p, and form the matrix B
by stacking each basis vector in a column: B =
[b1,...,by]. The model parameters are stacked
in a vector w of n scalar weights. We directly
use the BRDF parameterization of the MERL
BRDF database,” and p = 90 x 90 x 180. Fur-
thermore, similar as in Nielsen et al..® we con-
sider each color channel of the 100 MERL
BRDFs as a basis BRDF, and thus » = 300.

Due to the large dynamic range between spec-
ular peaks versus diffuse reflectance, prior
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work>® has applied a non-linear compres-
sion function { to make the estimation of w less
sensitive to errors on the (large) specular peaks:

p'=B'W, 2)

where B' = [{(b1),...,{(b,)]. An expansion
¢~!is applied to the compressed BRDF p’ after
computation of the weights. A common com-
pression function is the logarithmic function, in
which case becomes a homomor-
phic factorization.

2.2 Natural Lighting

Prior work relied on point sample measure-
ments of p for a set of incoming-outgoing di-
rection pairs to estimate the weights w. In
contrast, in this paper we aim to estimate the
weights w from an observation under natural
lighting. Assuming the lighting L is distant
(i.e., it only depends on the incident direction
w; = (¢;,6;)), and ignoring interreflections, we
can formulate the observed radiance y as:

W(@,) = /Q p(ay, @) cos(8)L(w)dar, (3)

where cos(6;) is the foreshortening, and Q is
the upper hemisphere of incident directions.
Due to linearity of light transport, we can ex-
press [Equation 3|in terms of corresponding ba-
sis observations y:

y=7Yw, “4)

where the weights w are the same as in
and thus can be used to reconstruct p.
The basis images Y = [y, ..., y,] are the obser-
vations of the measured basis BRDFs b; under
the same conditions:

yi:/bi(a)l',O)O)COS(Gi)L(O)i)d(Di. (5)
Q
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3 BRDF Likelihood
Modeling

3.0 Gaussian Mixture Model

We propose to model the likelihood of BRDFs
by a Gaussian mixture model (GMM):

Z N

where 7; are the mixing coefficients of the j-th
normal distribution .4~ with mean u; and co-
variance matrix X;.

(plu;,X;), (6)

3.1 Expectation-Maximization

An effective method for computing the parame-
ters @ = (7, i, L) is the Expectation Maximiza-
tion algorithm using the MERL BRDFs b; as
observations. For this we define a latent vari-
able y;(b;) that indicates the likelihood of the
J-th Gaussian given a MERL BRDF b;:

¥i(bi) = P(j|bi), (7
__ P(j)P(bi|))
= — )
Yo iV (biluj, X))

Expectation minimization iterates between esti-
mating the latent variable y;(b;) (E-step,
tion 9)), and the model parameters (M-step):

1 n
7= 3. v(bi) (10)
i
Y i (bi)bi
W= &7 (11)
nj
? b; — b; —
j
We iterate until the log-likelihood over the
MERL BRDFs converges:
log P(B|®) Zloan] (plu;,2;). (13)



To bootstrap the EM algorithm, we perform a
standard k-mean clustering, and initialize 7; as
the ratio of assigned BRDFs to the j-th cluster
over the total number of MERL BRDFs (i.e.,

n).

3.1 Curse of Dimensionality

A practical problem is that the number of obser-
vations 7 is significantly lower than the dimen-
sionality of the space (i.e., p).We therefore ap-
ply singular value decomposition (SVD) to ex-
press the observations in a n dimensional space
U:

B=USVT. (14)

However, this is still a 300 dimensional space.
A key issue is that even for a moderate number
of dimensions any distance is very large, and
thus the distance to the means p1; are large too.
Consequently, the likelihood of each Gaussian
mixture will always be very low
and it can potentially cause numerical instabili-
ties. To resolve this issue, we perform expecta-
tion maximization in a reduced space, and only
keep the coefficients belonging to the N largest
singular values. In other words, we perform
expectation maximization (i.e., soft clustering)
on a projection to an N dimensional space, and
approximate the likelihood: P(p) ~ P(U”p),
where U is the N dimensional basis (i.e., the
first N vectors in U).

3.2 Discussion

We found that N = 4 offers a good balance be-
tween accuracy and numerical stability. A sec-
ond parameter that needs to be set is the num-
ber of Gaussian mixtures K. If the number of
Gaussians is too low, then P(U”p) only of-
fers a coarse approximation. In practice we
found that K = 4 offers a good approxima-
tion that nicely categorizes the materials in four
recognizable distinct material classes: “diffuse
and glossy” materials (137 materials), “plas-
tics/phenolics” (99 materials), “metals” (24),
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and “specular plastics/paints” (40 materials);
we determine membership to a material class
by assigning the material to the material class
with the maximum 7;(b;) likelihood.
shows a plot of a 2D multi-dimensional scaling
of the 4D projected coordinates of the MERL
BRDFs, as well as a color-coding to indicate for
which material class the material has the high-
est affinity. Note that even though the diffuse-
like material class contains 137 materials, the
multi-dimensional scaling places them all close
together.

4 Data-driven Model
Estimation

4.1 MAP Estimation

We express the likelihood of the observation
given a BRDF as:
P(y|p):’/V(YW_y’.u76)7 (15)
where u and X is the expected mean error and
standard deviation on the reconstructions. We
assume that the mean error is close to zero
(u = 0), and o is proportional to the expected
measurement error (€.g., camera noise).

Diffuse/Glossy ~ #
Plastics/Phenolics

Metals &
o® Specular Plastics/Paints 4
* L)
. 3 x“‘ N AL
. . . *e X -
. * f" ¢
et V3
* L R 24
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Figure 1: 2D multi-dimensional scaling of
the projected MERL BRDFs U’B and a color-
coding of the respective material classes de-
rived from the 4D approximation of the BRDF
likelihood modeled by a Gaussian mixture
model.



Given the likelihood P(U” p) expressed by the
Gaussian mixture model (Equation 6, we can
then formulate the MAP estimation (??) as:

w
(16)
The first term is the data term that indicates
how well the BRDF p = Bw can explain the ob-
servation y, and the second term indicates how
plausible the reconstructed BRDF p (projected
in the 4 dimensional space U) is.

However, directly solving for the BRDF
weights w using[Equation 16]is not practical be-
cause of two key practical issues:

1. Non-linear: |[Equation 16| is highly non-
linear due to the sum of the log-likelihoods
in the second term, and which is difficult
to optimize.

2. Gaussian Mixture Model Accuracy for
P(p) =~ P(UTp): We approximated the
likelihood of the BRDF by a four dimen-
sional Gaussian mixture model. This re-
duction in dimensionality was necessary
due to the curse of dimensions. How-
ever, it also makes an implicit assump-
tion, namely that the BRDF lies not too far
from the space of plausible BRDFs. Since
the likelihood is only determined based on
4 dimensions (and thus only regularizes
these four), the other 296 dimensions can
be set to any value (including unreason-
able values that result in an implausible
BRDF).

4.2 Linear MAP Approximation

To alleviate the above two practical issues, we
exploit the observation that the likelihood of a
basis BRDF b; belonging to a material class m
is for most basis BRDFs equivalent to an indi-

cator function:
'}/j(bi) =~ 5i,m- (17)
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_vl12
argmin(H il —i—loan] (O Bw|u;, X))

This implies that the overlap between the Gaus-

sians in the Gaussian mixture model is limited.

Armed with this observation, we therefore pro-
ose to compute a candidate BRDF for each
aterial class j € [1,k]:

argmin (log PO1p, j) +logP(plj)).  (18)

wl)

Given the set of candidate solutions w' =
{fw), . wk} we then pick the best candidate
that best reconstructs the BRDF.

By a-priori assuming that a BRDF belongs to a
material class j, it is possible that there is a sig-
nificant mismatch between the target material
and the material class. For example, attempting
to model a mirror-like specular material using
the diffuse material class is unlikely to produce
a satisfactory result. Consequently, we cannot
simply rely on the likelihood P(U”p) based
on the 4 dimensional Gaussian mixture model.
We will therefore further exploit the observa-
tion of the limited overlap of the Gaussians in
the mixture model, and approximate the solu-
tion per material class by enforcing that it lies
in the convex hull of the subspace spanned by
the BRDFs assigned to the material class, and

only rely on to pick the best candi-
date from w'. We ignore the standard deviation

(ie., o =1)in as it only acts as
a scale (in the log-likelihood) that does not af-
fect the selection of the best reconstruction (i.e.,
minimum log-likelihood).

Data

4.3 Per-Material Class Linear

Term

We define the data-term similarly as in the gen-
eral non-linear case, except that we only use the
basis BRDFs that belong to the same material
class:

logP(ylp, /) = [[YVwl) —y|,  (19)
where Y ) is the set of observations that corre-
spond to the basis BRDFs assigned to the j-th
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material class (i.e., the materials b; for which
Y;(b;) is maximal).
Linear

4.4 Per-Material Class

Likelihood Term

We express the per-material class likelihood by
a single Gaussian model. We directly compute
this probability on the BRDF weights wl):

= J/(W(J)au;7zl)7

where: ,u} c,’ and c; is the number of ba-
sis BRDFs in the j-th material class. Note that
y () u} is equivalent to the mean of the BRDFs
in the material class.

P(plj) (20)

4.5 Linear Least Squares Estimation

Both and (the log likelihood of)
Equation 20| are quadratic terms that define a

linear system in terms of w that can be solved
using a regular linear least squares. However,
both terms can have a vastly different magni-
tude. The magnitude of the data-term depends
on the error on the rendered image of the esti-
mated BRDEF. This image error depends on the
resolution, the overall intensity of the lighting,
and the reflectivity of the material. Similarly,
the magnitude of the likelihood term depends
on the number of basis BRDFs per material
class. We therefore add a balancing term:

Al

¢j

Aj= (21)
where ||y||? is the total squared pixel intensi-
ties in the observation. We expect that the over-
all intensity of the observation is directly pro-
portional to the lighting intensity and reflectiv-
ity of the BRDF, and hence the overall scale
of the image error. A is a user set constant
that depends on the qualities of the lighting.
An ill-conditioned lighting condition requires
a larger A value (e.g., a low frequency light-
ing environment is ill-conditioned for estimat-
ing specular properties®). In practice we found
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that A = 0.5 works well for many lighting en-
vironments, and forms a good starting point for
fine-tuning A.

The final linear least squares is:

2
argmin (HY(J')W(J') — |2+, u@>)

wl)

4.6 Color

Our discussion until now only considered
monochrome BRDFs; we used all color chan-
nels from the MERL BRDFs as separate ba-
sis BRDFs. A straightforward strategy for es-
timating a non-monochrome BRDF with three
color channels, would be to execute the esti-
mation separately for each color channel, and
combine the three reconstructed monochrome
BRDF into a single RGB BRDF. However, it
is possible that a solution from a different ma-
terial classes j is selected for each of the three
color channels. Because the set of basis BRDFs
for each material class are disjunct, there can
be slight differences in the constructed BRDF
shape for each color channel, which in turn can
result in color artifacts in the combined BRDF.
We circumvent this potential problem by com-
bining the three color channels after obtaining
the candidate BRDFs, and performing the se-
lection on the RGB BRDF instead of each color
channel separately. Hence, each color channel
will be reconstructed with the same set of basis
BRDFs.

4 Results

4.6 Experiment Setup

We demonstrate our method on simulated cap-
tures in order to fully control all parameters.
We generate “observations” under natural light-
ing, by rendering a sphere lit by a light probe’
using Mitsuba? All generated images are ra-
diometrically linear, and we only tone map
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them for display. All results shown in this paper
were tone mapped by a simple gamma 2.2 cor-
rection and a virtual exposure (i.e., scale fac-
tor) of 1.0; all pixel values above 1.0 and below
0.0 are clipped to the respective clipping val-
ues. We use the BRDFs in the MERL database”
for generating observations. For each MERL
BRDF, we compute a novel Gaussian mixture
model on the 297 remaining MERL BRDFs,
and only use these 297 MERL BRDFs for re-
construction. As noted in the prior sections,
we compute the Gaussian mixture model on
a N = 4 dimensional reduced space, and use
K = 4 Gaussians in the mixture model. All re-
constructions are generated with a fixed balanc-
ing factor A = 0.5.

4.6 Reconstruction Results

shows reconstructions of 7 se-
lected materials under two different light
probes (i.e., Eucalyptus Grove and Galileo’s
Tomb). For each reconstruction (and the ref-
erence), we show a visualization of the refer-
ence/reconstructed BRDF under a natural light-
ing condition (i.e., Uffizi Gallery; different than
the lighting condition under which the BRDF
was reconstructed) and a directional light (i.e.,
a slice of the BRDF for a single incident di-
rection for all outgoing directions). These re-
sults show that our method is able to recon-
struct plausible BRDFs for a wide range of ma-
terials from a single photograph of a spherical
object under natural lighting.

4.6 Per-Material Class Reconstruction

Figure 3| illustrates, for a selection of 4 ma-
terials, reconstructed under the Uffizi Gallery
light probe, that the reconstructions per mate-
rial class are different, and that depending on
the material a different class’ reconstruction is
selected. We show a visualization of the refer-
ence BRDF and the reconstructions per cluster
under a natural lighting condition (i.e., Euca-
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lyptus Grove) and a directional light. We also
list the log-likelihood of the observation given
the BRDF below each cluster,
and mark the final selected solution (i.e., min-
imum). For reference, we also show the lin-
ear least squares solution: argmin,, |[Yw — y||?.
As expected this yields the lowest reconstruc-
tion error (since it explicitly optimizes for this).
However, the linear least squares solution does
not always yield a plausible result when visual-
ized under a different lighting condition. This
is not only clearly visible under the directional
light source, but also under other natural light-
ing conditions other than the original observed
lighting (e.g., the black spot in the center of the
visualizations under the Eucalyptus Grove light
probe for Steel and Red Metallic Paint).

4.7 Discussion

While our selection criterion does in the major-
ity of cases select the best reconstruction from
the different material classes, we found that in
a very few cases cases it does not select the best
reconstruction, and a better reconstruction can
be observed in a different material class. We
currently used a A balancing factor of 0.5 for
all our reconstructions. This A is a compro-
mise to produce the best result over all materi-
als. Despite the material class and scene depen-
dent scale factor (Equation 21)), we observe that
this lambda terms tends to affect the “diffuse”
and “plastics / phenolics” stronger, and the
“metals” and “specular plastics / paints” less.
These latter two material classes exhibit not
only a lower number of materials (for which we
compensate), but we can also observe in
that they are also spread out further. Con-
sequently, the density of these material classes
is significantly lower. We have demonstrated
our method on spherical shapes. For other con-
vex shapes that cover the full range of normal
directions, we can remap the pixels based on
their underlying normal to a sphere and apply
the same reconstruction algorithm. Alterna-
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tively, we can also render Y on the same shape
as the observations and directly solve the linear
least squares.

5 Conclusion

In this paper we presented a novel method for
estimating the parameters of a fully linear data-
driven BRDF model from just a single photo-
graph of a object with known shape under un-
controlled, but known, natural lighting. Our
estimation method does not require any non-
linear optimization, and only requires solving
4 linear least squares problems. Our method
requires modest precomputations: a Gaussian
mixture model clustering for the basis BRDFs,
and for each natural lighting conditions, render-
ings of each basis material. We demonstrated
the accuracy and robustness of our method on
the MERL BRDF database.

For future work we would like to explore bet-
ter selection criteria and a per-material class A;
density correction factor.
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Figure 2: Data-driven BRDF reconstructions from a single photograph of a spherical object cap-
tured under the Eucalyptus Grove and the Galileo’s Tomb light probe. We visualize the reference

and reconstructed BRDFs under the Uffizi Gallery light probe and a directional light.
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Ground Linear Least
Truth Squares

Dark Blue Paint

Observation Log-likelihood:

Violet Acrylic

Observation Log-likelihood:
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Figure 3: Reconstructions for each material class for 4 selected materials under the Uffizi Gallery

light probe, and revisualized with the Eucalyptus Grove light probe and directional lighting.
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