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Abstract 

Reducing aircraft noise is a major objective in 
the field of computational aeroacoustics. When 
designing next generation quiet aircraft, it is 
important to be able to accurately and efficiently 
predict the acoustic scattering by an aircraft body 
from a given noise source. Acoustic liners are an 
effective tool for achieving aircraft noise reduction 
and are characterized by a frequency-dependent 
impedance (or admittance, defined as the inverse 
of impedance) value. Converted into the time-
domain using Fourier transforms, an impedance 
boundary condition can be used to simulate the 
acoustic wave scattering by geometric bodies 
treated with acoustic liners. Two different acoustic 
liner models will be discussed in which the liner 
impedance is specified at a given frequency. Both 
impedance and admittance boundary conditions 
will be derived for each model and coupled with a 
time-domain boundary integral equation to model 
acoustic scattering by a flat plate consisting of both 
un-lined and lined surfaces. The scattering solution 
will be obtained iteratively using both spatial and 
temporal basis functions and the stability will be 
demonstrated through eigenvalue analysis. 
 

Introduction 
Reducing aircraft noise is a major objective in 

the field of computational aeroacoustics. When 
designing next generation quiet aircraft, it is 
important to be able to accurately and efficiently 
predict the acoustic scattering by an aircraft body 
from a given noise source [1] [2] [3] [4]. Acoustic 
scattering problems can be modeled using 
boundary element methods (BEMs) by 
reformulating the linear convective wave equation 
as a boundary integral equation (BIE), both in the 
frequency-domain and the time-domain; BEMs 
reduce the spatial dimension by one allowing for the 
integration over a surface instead of a volume [5] 
[6] [7] [8] [9] [10]. 

Frequency-domain solvers are the most 
commonly used and researched within literature; 
they have a reduced computational cost [11] and 
allow for modeling time-harmonic fields at a single 

frequency [10] [11] [12]. Moreover, frequency-
domain solvers eliminate the growth of Kelvin-
Helmholtz instabilities caused by the velocity shear 
of two interacting fluids, and allow for an impedance 
boundary condition to be imposed more naturally 
[12]. 

Despite the benefits of frequency-domain 
solvers, there are several distinct advantages to 
using time-domain solvers [1] [13]. For example, 
time-domain solvers allow for the simulation and 
study of broadband sources and time-dependent 
transient signals whereas studying broadband 
sources in the frequency-domain carry a high 
computational cost. Time-domain solvers also allow 
for the scattering solution at all frequencies to be 
obtained within a single computation and avoid 
needing to invert a large dense linear system as is 
required in the frequency-domain. Moreover, a 
time-domain solution is more naturally coupled with 
a nonlinear computational fluids dynamics 
simulation of noise sources. 

Time-domain BIEs (TD-BIEs) unfortunately 
have an intrinsic numerical instability due to 
resonant frequencies, which result from non-trivial 
solutions in the interior domain. TD-BIE solvers also 
carry a high computational cost. In recent years, 
numerical techniques for modeling acoustic wave 
scattering using TD-BIEs have been under 
development [1] [2] [3] [4]. It has been shown that 
stability can be realized through implementing a 
Burton-Miller type reformulation of the TD-BIE and 
computational cost can be reduced using fast-
algorithms and high performance computing. 

In the present study, a time-domain BEM (TD-
BEM) is used to solve a Burton-Miller type TD-BIE 
reformulated from the convective wave equation. 
The scattering solution is obtained using temporal 
and spatial basis functions and a March-On-in-Time 
scheme in which a sparse matrix is solved 
iteratively. Scattering problems are considered for 
geometric bodies consisting of both rigid and soft 
surfaces – surfaces in which an acoustic liner is 
applied. Typically composed of an array of 
Helmholtz resonators, acoustic liners are used for 
dissipating the incident acoustic wave and are 
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incredibly effective at absorbing sound in a 
specified frequency band [13] [14] [15]. 

Acoustic liners are characterized by a 
frequency-dependent impedance value, herein 
denoted by 𝑍(𝜔). Impedance is a complex-valued 

quantity such that Re(𝑍) is given to be the acoustic 
resistance and Im(𝑍) is given to be the acoustic 
reactance [13] [14] [15]. Transformed into the time-
domain using Fourier transforms, an impedance 
boundary condition may be coupled with a TD-BIE 
to model acoustic wave scattering by soft surfaces. 
Alternatively, an admittance boundary condition 
may also be used. Admittance, herein denoted by 
𝑌(𝜔), is defined to be the inverse of impedance: 

𝑌(𝜔) = 1/𝑍(𝜔). 
The present study will assess the numerical 

stability of the TD-BIE when modeling acoustic 
wave scattering by a flat plate consisting of soft 
surfaces, as a continuation from earlier work [16]. 
Both an impedance and admittance boundary 
condition will be studied. Moreover, two models will 
be considered when simulating the acoustic liner: 
an Extended Helmholtz Resonator Model [14] and 
a Three-Parameter Impedance Model [17]. In each 
model, the acoustic liner impedance is specified at 
a single frequency 𝜔0. 

 
Derivation of the Time-Domain BIE 

We aim to accurately and efficiently predict the 
scattering of a sound field by an object from a given 
noise source in the presence of a constant mean 
flow as shown in Figure 1. Acoustic waves are 
assumed to be disturbances of small amplitudes. 
With constant mean flow, the acoustic disturbances 
are governed by the linear convective wave 
equation [18], written as follows: 

 

(
𝜕

𝜕𝑡
+ 𝑼 ⋅ 𝜵)

2

𝑝(𝒓, 𝑡) − 𝑐2𝜵2𝑝(𝒓, 𝑡) = 𝑞(𝒓, 𝑡) 

 
with homogeneous initial conditions:  

 

𝑝(𝒓, 0) =
𝜕𝑝

𝜕𝑡
(𝒓, 0) = 0, 𝑡 = 0 

 
where 𝑝(𝒓, 𝑡) is the acoustic pressure, 𝑞(𝒓, 𝑡) is the 

known acoustic source, and 𝑐 is the speed of 
sound. Equations (1) and (2) are to be 
supplemented with suitable boundary conditions on 
the scattering surface. These conditions will be 
discussed in the subsequent section. 

It is well known that the linear convective wave 
equation (1) and initial conditions (2), along with 
suitable boundary conditions, can be reformulated 
into an integral equation. As demonstrated in [16] 
and [19], the wave propagation problem can be 

reformulated into a TD-BIE by introducing a free-

space adjoint Green’s function �̃� with homogenous 

initial conditions �̃�(𝒓, 𝑡; 𝒓′, 𝑡′)  = 𝜕�̃�(𝒓, 𝑡; 𝒓′, 𝑡′)/𝜕𝑡 =
0 for 𝑡 > 𝑡′. This reformulation yields the Kirchhoff 
integral representation of the acoustic field in the 
presence of a uniform mean flow 𝑼: 

 

𝑝(𝒓′, 𝑡′) = ∫ ∫�̃�
𝑉

𝑞(𝒓, 𝑡)𝑑𝒓𝑑𝑡
𝑡′+

0−

+ 𝑐2∫ ∫(�̃�
𝜕𝑝

𝜕�̅�
− 𝑝

𝜕�̃�

𝜕�̅�
)

𝑆

𝑑𝒓𝒔𝑑𝑡 
𝑡′+

0−

− 𝑐∫ ∫ (�̃�
𝜕𝑝

𝜕𝑡
− 𝑝

𝜕�̃�

𝜕𝑡
)

𝑆

𝑀𝑛𝑑𝒓𝒔𝑑𝑡 
𝑡′+

0−

 

 
where 𝑀 = |𝑴| is the magnitude of the Mach 

number 𝑴 = 𝑼/𝑐, 𝒓′ is an arbitrary point on the 
scattering body surface, 𝜕/𝜕�̅� = (𝒏 − 𝑀𝑛𝑴) ⋅ 𝛁, 

and 𝑀𝑛 = 𝑴 ⋅ 𝒏 such that 𝑛 is the inward normal 

vector on the scattering body 𝑆.  
By letting 𝜕/𝜕�̃� = 𝜕/𝜕�̅� − (𝑀𝑛/𝑐)𝜕/𝜕𝑡, the TD-

BIE results by expressing Eq. (3) in terms of 
retarded time values 𝑡𝑅

′  and taking the limit as 𝒓′ →
𝒓𝒔
′  assuming 𝒓𝒔

′  is a smooth boundary collocation 
point. The resulting TD-BIE relates the solution 𝑝 at 

point 𝒓𝒔
′  and time 𝑡′ to the direct contribution from 

external sources 𝑞(𝒓, 𝑡𝑅
′ ) to the surface point 𝒓𝒔

′  and 
a contribution from both the source surface and 
scattering surface involving the retarded time 
values of 𝑝 and their normal derivatives. A detailed 
derivation of the resulting TD-BIE is given in [16]. 

 
Derivation of the Liner Boundary Condition 
For sound scattering problems, the solution 

𝑝(𝒓𝒔
′  , 𝑡) on 𝑆 is determined when the boundary 

condition for 𝑝 on 𝑆 is given. In this work, we 
assume that the scattering surface 𝑆 consists of 

both rigid surfaces – denoted herein by 𝑆0 – and soft 

surfaces – denoted herein by 𝑆𝑙, i.e., 𝑆 = 𝑆0 ∪ 𝑆𝑙. On 
rigid surfaces, we impose the Zero Energy Flux 
boundary condition [19]:  

 
𝜕𝑝

𝜕�̃�
(𝒓𝒔, 𝑡) = 0, 𝒓𝒔 ∈ 𝑆0  

 

 

Figure 1: Schematic diagram illustrating the relationship 
between the mean flow, the surface of the scattering body, and 
the surface of the acoustic source. 
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On soft surfaces, 𝜕𝑝/𝜕�̃� is a non-zero term herein 
denoted by 𝑃𝑛, i.e.,  

 
𝜕𝑝

𝜕�̃�
(𝒓𝒔, 𝑡) = {

𝑃𝑛(𝒓𝒔, 𝑡) 𝒓𝒔 ∈ 𝑆𝑙
0 𝒓𝒔 ∈ 𝑆0

  

 
For simplicity, we assume 𝑀𝑛 = 0 on soft surfaces; 
i.e., we assume that the mean flow is always 
tangent to the surface whereever the liner is 
installed. Under this assumption, 𝜕𝑝/𝜕�̃� is equal to 

𝜕𝑝/𝜕𝑛. 
To derive a suitable boundary condition 𝑃𝑛, we 

consider a geometric body with soft surfaces and 
assume a model with no mean flow; i.e. Mach 
number 𝑀 = 0. The acoustic pressure 𝑝(𝒓𝒔, 𝜔) is 
given in the frequency-domain by:  

 
𝑝(𝒓𝒔, 𝜔) = 𝑍(𝜔)𝑣(𝒓𝒔, 𝜔),  

 
where 𝑣(𝒓𝒔, 𝜔) = 𝒗 ⋅ 𝒏, 𝒗 is the acoustic velocity 
vector, 𝒏 is the inward normal vector on the 

scattering body 𝑆, and 𝑍(𝜔) is the surface 

impedance. Moreover, 𝑣 can be represented by [9]:  
 

𝑣(𝒓𝒔, 𝜔) =
1

𝑖𝜔𝜌0
𝑃𝑛(𝒓𝒔, 𝜔)  

 
where 𝑃𝑛(𝒓𝒔, 𝜔) is the normal derivative of acoustic 

pressure defined by Eq. (5), 𝜌0 is the average fluid 

density, and 𝑖 is the imaginary unit (𝑖2 = −1). 
Substituting (7) into (6) yields the following 
frequency-domain impedance boundary condition:  

 

𝑖𝜔𝑝(𝒓𝒔, 𝜔) =
1

𝜌0
𝑍(𝜔)𝑃𝑛(𝒓𝒔, 𝜔)  

 
Using the inverse Fourier transform convolution 
property and causality condition which states 
𝑧(𝑡 − 𝜏) = 0 for all 𝑡 − 𝜏 > 0, i.e., 𝑧(𝑡 − 𝜏) = 0 for all 

𝑡 > 𝜏, (8) can be transformed into the time-domain 
yielding a time-domain impedance boundary 
condition:  

 

𝜌0
𝜕𝑝

𝜕𝑡
(𝒓𝒔, 𝑡) =

1

2𝜋
∫ 𝑧(𝑡 − 𝜏)𝑃𝑛(𝒓𝒔, 𝜏)𝑑𝜏
𝑡

−∞

 

 
Similarly, a time-domain admittance boundary 
condition is given by:  

 

𝑃𝑛(𝒓𝒔, 𝑡) =
𝜌0
2𝜋
∫

𝜕𝑦

𝜕𝑡
(𝑡 − 𝜏)𝑝(𝒓𝒔, 𝜏)𝑑𝜏

𝑡

−∞

 

 
Equations (9) and (10) establish two suitable 
boundary conditions for the TD-BIE necessary for 

modeling acoustic wave scattering by an object 
consisting of soft surfaces. 
 

Derivation of the March-On-in-Time Scheme 
The TD-BIE for solid wall boundary conditions 

has been known to have an intrinsic numerical 
instability due to resonant frequencies resulting 
from non-trivial solutions in the interior domain. 
Using a Burton-Miller type reformulation of the TD-
BIE, resonant frequencies can be eliminated and 
stability achieved [1] [2] [3] [4]. The reformulation 
results from first taking the derivative of the TD-BIE 
in the form of �̃� multiplied by the time-derivative plus 

�̃�𝑐 multiplied by the normal derivative, where �̃� and 

�̃� define the stability condition, �̃�/�̃� < 0, and second 

taking the limit as 𝒓′ → 𝒓𝒔
′ . A detailed derivation of 

the resulting Burton-Miller type reformulation is 
given in [16]. 

The stable reformulation is discretized by 
dividing 𝑆 into boundary elements using surface 

element basis functions 𝜙𝑗(𝒓𝒔) at node 𝑗 and 

temporal basis functions 𝜓𝑘(𝑡) at time 𝑘:  
 

𝑝(𝒓𝒔, 𝑡) = ∑∑𝑢𝑗
𝑘𝜙𝑗(𝒓𝒔)𝜓𝑘(𝑡)

𝑁𝑒

𝑗=1

𝑁𝑡

𝑘=0

 

 

𝑃𝑛(𝒓𝒔, 𝑡) = ∑∑𝑣𝑗
𝑘𝜙𝑗(𝒓𝒔)𝜓𝑘(𝑡)

𝑁𝑒

𝑗=1

𝑁𝑡

𝑘=0

 

 

where 𝑣𝑗
𝑘 ≡ 0 by default on any element 𝐸𝑗 on rigid 

surfaces 𝑆0. In Eqs. (11) and (12), 𝑁𝑒 denotes the 

total number of surface nodes and 𝑁𝑡 denotes the 
number of time-steps. 

Let the spatial and temporal basis be defined 
as follows:  

 

𝜙𝑗(𝒓𝒔) = {
1 𝒓𝒔 on 𝐸𝑗 that contains node 𝑟𝑗
0 other

 

 

𝜓𝑘(𝑡) = Ψ(
𝑡 − 𝑡𝑘
Δ𝑡

)  such that:  

 

 Ψ(𝜏) =

{
 
 

 
 1 + 11τ/6 + τ

2 + 𝜏3/6 −1 < 𝜏 ≤ 0

1 + τ/2 − τ2 − 𝜏3/2 0 < 𝜏 ≤ 1

1 − τ/2 − τ2 + 𝜏3/2 1 < 𝜏 ≤ 2

1 − 11τ/6 + τ2 − 𝜏3/6 2 < 𝜏 ≤ 3

 

 
and Ψ(𝜏) = 0 for all other values of 𝜏. By evaluating 
the discretized Burton-Miller type reformulation at 
collocation points 𝑟𝑠 = 𝑟𝑖 and time-step 𝑡′ = 𝑡𝑛, we 
obtain the following system of equations:  
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(16) 

(17) 

(18) 

(20) 

(21) 

(19) 

𝑩𝟎𝒖
𝒏 + 𝑪𝟎𝒗

𝒏 = 𝒒𝒏 − 𝑩𝟏𝒖
𝒏−𝟏 − 𝑪𝟏𝒗

𝒏−𝟏 

𝑩𝟎𝒖
𝒏 + 𝑪𝟎𝒗

𝒏 = 𝒒𝒏 − 𝑩𝟐𝒖
𝒏−𝟐 − 𝑪𝟐𝒗

𝒏−𝟐 −⋯ 

𝑩𝟎𝒖
𝒏 + 𝑪𝟎𝒗

𝒏 = 𝒒𝒏 − 𝑩𝑱𝒖
𝒏−𝑱 − 𝑪𝑱𝒗

𝒏−𝑱  

 

where 𝒖𝒌 and 𝒗𝒌 denote the vector that contains all 

unknowns {𝑢𝑗
𝑘, 𝑗 = 1, … , 𝑁𝑒} and {𝑣𝑗

𝑘 , 𝑗 = 1, … , 𝑁𝑒}, 

respectively, at time level 𝑡𝑘. The non-zero entries 
for 𝐵 and 𝑪 are given in [16]. 

Recall that 𝑣𝑗
𝑘 ≡ 0 by default on any element 𝐸𝑗 

on rigid surfaces 𝑆0. Assuming rigid body scattering 

only, 𝒗𝒌 is equivalently equal to zero thereby 
reducing (16) to:  

 

𝑩𝟎𝒖
𝒏 = 𝒒𝒏 − 𝑩𝟏𝒖

𝒏−𝟏 −⋯−𝑩𝑱𝒖
𝒏−𝑱, 

 

the solution of which is easily obtained through an 
iterative process. 

In the present study, we aim to demonstrate 
that stability can be achieved for scattering bodies 
with both rigid and soft surfaces. A second system 
of equations is therefore need to obtain solutions for 

both 𝒖𝒌 and 𝒗𝒌 and is derived by considering the 
discretization of either (9) or (10) at collocation point 
𝒓𝒔 and time-step 𝑡′. The resulting system can then 
be cast into the following matrix form with a finite 
number of 𝐾 time steps:  

 

𝑫𝟎𝒖
𝒏 + 𝑬𝟎𝒗

𝒏 = −𝑫𝟏𝒖
𝒏−𝟏 − 𝑬𝟏𝒗

𝒏−𝟏 

𝑫𝟎𝒖
𝒏 + 𝑬𝟎𝒗

𝒏 = −𝑫𝟐𝒖
𝒏−𝟐 − 𝑬𝟐𝒗

𝒏−𝟐 −⋯ 

𝑫𝟎𝒖
𝒏 + 𝑬𝟎𝒗

𝒏 = −𝑫𝑲𝒖
𝒏−𝑲 − 𝑬𝑲𝒗

𝒏−𝑲  
 
The non-zero entries for 𝑫 and 𝑬 are denoted by 
{𝑫𝒌}𝑖𝑗 and {𝑬𝒌}𝑖𝑗, respectively. The derivations for 

𝑫 and 𝑬 are specific to the type of acoustic liner, 
simulated herein by either the Extended Helmholtz 
Resonator Model or Three-Parameter Impedance 
Model. These derivations will be discussed further 
in later sections. 

Coupling (18) with (16) forms a March-On-in-
Time scheme for the time-domain solution of the 
stable Burton-Miller type TD-BIE reformulation. The 
coupled system can be expressed as:  

 

[
𝑩𝟎 𝑪𝟎
𝑫𝟎 𝑬𝟎

] [
𝒖𝒏

𝒗𝒏
] = [

𝒒𝒏

𝟎
] − [

𝑩𝟏 𝑪𝟏
𝑫𝟏 𝑬𝟏

] [𝒖
𝒏−𝟏

𝒗𝒏−𝟏
] 

[
𝑩𝟎 𝑪𝟎
𝑫𝟎 𝑬𝟎

] [
𝒖𝒏

𝒗𝒏
] = [

𝒒𝒏

𝟎
] − [

𝑩𝟐 𝑪𝟐
𝑫𝟐 𝑬𝟐

] [𝒖
𝒏−𝟐

𝒗𝒏−𝟐
] − ⋯− 

[
𝑩𝟎 𝑪𝟎
𝑫𝟎 𝑬𝟎

] [
𝒖𝒏

𝒗𝒏
] = [

𝒒𝒏

𝟎
] − [

𝑩𝑲 𝑪𝑲
𝑫𝑲 𝑬𝑲

] [𝒖
𝒏−𝑲

𝒗𝒏−𝑲
] − ⋯− 

[
𝑩𝟎 𝑪𝟎
𝑫𝟎 𝑬𝟎

] [
𝒖𝒏

𝒗𝒏
] = [

𝒒𝒏

𝟎
] − [

𝑩𝑱 𝟎

𝟎 𝟎
] [𝒖

𝒏−𝑱

𝒗𝒏−𝑱
] 

 
For locally reacting liners, the liner boundary 

condition is given pointwise. It follows that the 
coefficients in (19) are all diagonal matrices. In fact, 

if the liner impedance is the same on all soft 
boundaries, we have coefficient matrices in the 
form 𝑫𝒌 = 𝑑𝑘𝑰 and 𝑬𝒌 = 𝑒𝑘𝑰 where 𝑘 = 0,1, … ,𝑲, 𝑰 
is the identity matrix, and 𝑑𝑘 , 𝑒𝑘 are the coefficients 
for the time-domain liner boundary condition that is 
the same for all liner elements. 
 

Extended Helmholtz Resonator Model 
We first introduce the Extended Helmholtz 

Resonator Model to derive matrices 𝑫 and 𝑬 in (18). 
In this model, the frequency-domain surface 
impedance is defined to be:  

 

𝑍(𝜔) = 𝐹𝑅 + 𝑖𝜔𝑚 − 𝑖𝐹𝛽 cot (
1

2
𝜔𝜈𝛥𝑡 − 𝑖

1

2
𝜖) 

 
where for an acoustic liner represented by a wall 
consisting of an array of Helmholtz resonators 
(Figure 2): 𝐹𝑅 is the face-sheet resistance, 𝜔𝑚 is 

the face-sheet mass reactance, −cot(⋯ ) is the 
cavity reactance, 𝐹𝛽 is a parameter used for varying 

the cavity reactance, Δ𝑡 is the time-step, 𝜖 is the 

damping in the cavity’s fluid, and 𝜈Δ𝑡 = 2𝐿/𝑐 is a 
multiple of the time-step and proportional to two 
times the cavity length 𝐿 divided by the speed of 

sound 𝑐.  
 

 
 

In (20), 𝐹𝑅 ,𝑚, 𝐿, 𝑐, 𝜖 ≥ 0. The model is both 

passive and casual [14]. For Im(𝜔) < 𝜖/(𝜈Δ𝑡), (20) 
becomes:  
 

𝑍(𝜔) = 𝐹𝑅 + 𝑖𝜔𝑚 + 𝐹𝛽 + 2𝐹𝛽 ∑𝑒−𝑖𝜔𝑁𝜈Δ𝑡−𝜖𝑁
∞

𝑁=1

 

 
which, by taking the inverse Fourier transform, 
leads to a time-domain representation of surface 
impedance. In this model, the coefficients 𝐹𝑅 and 𝐹𝛽 

 

Figure 2: Acoustic liner diagram consisting of an array of 
Helmholtz Resonators. 
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 (24) 

(31) 

(27) 

(22) 

(23) 

(28) 

(25) 

(26) 

 (29) 

(30) 

are specified at a given frequeny 𝜔 = 𝜔0 > 0. 
Moreover, letting the surface admittance be 
represented in the form 𝑍(𝜔) = 𝐴 + 𝐵𝑖, we choose 

𝜖 to be 𝜖 = 0.9 arcsinh(−(𝐴/𝐵) sin(𝜔0𝜈Δ𝑡)) ≥ 0 
following [14]. Substituting (21) into (9), we obtain 
an impedance boundary condition for soft surfaces. 
Casting into matrix form, the non-zero entries for 𝑫 

and 𝑬 are, respectively:  
 

{𝑫𝒌}𝑖𝑗 = 𝛿𝑖𝑗𝜌0𝜓𝑛−𝑘
′ (𝑡𝑛) 

 

{𝑬𝒌}𝑖𝑗 = 𝛿𝑖𝑗 [(𝐹𝑅 + 𝐹𝛽)𝜓𝑛−𝑘(𝑡𝑛) + 𝑚𝜓𝑛−𝑘
′ (𝑡𝑛)

+ 2𝐹𝛽 ∑𝑒−𝜖𝑁𝜓𝑛−𝑘(𝑡𝑛 − 𝑁𝜈Δ𝑡)

∞

𝑁=1

] 

 
where 𝛿𝑖𝑗 is a Kronecker delta function and a prime 

denotes a derivative with respect to time. 
Due to the limited temporal stencil width shown 

in Eqs. (13) through (15), the matrices 𝑫 and 𝑬 are 
sparse and represent interactions within the same 
element or nearby nodes at the same time level 𝑡𝑛. 
Moreover, the matrices are diagonally dominant 
and of the form 𝑫𝒌 = 𝑑𝑘𝑰 and 𝑬𝒌 = 𝑒𝑘𝑰 where 𝑘 =
0,1, … ,𝑲 and 𝑰 is the identity matrix. In particular, 

the coefficients 𝑑𝑘 and 𝑒𝑘 simplify to:  
 

𝑑𝑘 = 𝜌0

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 = (𝐹𝑅 + 𝐹𝛽) {
1
0

𝑘 = 0
𝑘 ≠ 0

} + 𝑚

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 = +2𝐹𝛽 ∑ 𝑒−𝜖𝑁 {
1
0

𝑘 − 𝑁𝜈 = 0
𝑘 − 𝑁𝜈 ≠ 0

}∞
𝑁=1  

 
Similarly, we may assume the frequency-

domain surface admittance model to be: 
 

𝑌(𝜔) = 𝐹𝑅̅̅ ̅ + 𝑖𝜔𝑚 + 𝐹𝛽̅̅ ̅ + 2𝐹𝛽̅̅ ̅∑ 𝑒−𝑖𝜔𝑁𝜈Δ𝑡−𝜖𝑁
∞

𝑁=1

 

  
Letting the surface admittance be represented in 

the form for 𝑌(𝜔) = 𝐴 + 𝐵𝑖, taking the inverse 
Fourier transform, and substituting into (10) yields 
an admittance boundary condition for soft surfaces, 
the details of which are outlined in [16]. Casting into 

matrix form, the non-zero entries for 𝑫 and 𝑬 have 
coefficients 𝑑𝑘 and 𝑒𝑘 which simplify to:  
 

𝑑𝑘 = 𝜌0(𝐹𝑅̅̅ ̅ + 𝐹𝛽̅̅ ̅)

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 == −𝜌0𝑚

{
 
 

 
 
2
−5
4
−1
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 = +2𝜌0𝐹𝛽 ∑𝑒−𝜖𝑁

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 ∞

𝑁=1

 

 

𝑒𝑘 = {
1
0

𝑘 = 0
𝑘 ≠ 0

} 

 
Three-Parameter Impedance Model 

We now introduce the Three-Parameter 

Impedance Model to derive matrices 𝑫 and 𝑬 in 
(18). In this model, the frequency-domain surface 
impedance is defined to be:  

 

𝑍(𝜔) = 𝑅0 + ℎ0(−𝑖𝜔) +
𝐴0
−𝑖𝜔

 

 
where 𝑅0, ℎ0, 𝐴0 > 0 are constants that fit a given 

impedance value 𝑍(𝜔) = 𝑍𝑅 + 𝑍𝐼𝑖 at 𝜔 = 𝜔0 > 0. 
For example, if 𝑍𝐼 < 0 then 𝑅0 = 𝑍𝑅 , 𝐴0 = 0.1, and 

ℎ0 = (𝐴0/𝜔0 − 𝑍𝐼)/𝜔0, and if 𝑍𝐼 > 0 then 𝑅0 =
𝑍𝑅, ℎ0 = 0.1, and 𝐴0 = (𝑍𝐼 + ℎ0𝜔0)𝜔0. Taking the 
inverse Fourier transform and substituting into (9) 
yields an impedance boundary condition for soft 
surfaces. Casting into matrix form, the non-zero 
entries for 𝑫 and 𝑬 are, respectively:  

 
{𝑫𝒌}𝑖𝑗 = 𝛿𝑖𝑗𝜌0𝜓𝑛−𝑘

′′ (𝑡𝑛) 

 
{𝑬𝒌}𝑖𝑗 = 𝛿𝑖𝑗[𝑅0𝜓′𝑛−𝑘(𝑡𝑛) + ℎ0𝜓𝑛−𝑘

′′ (𝑡𝑛)

+ 𝐴0𝜓𝑛−𝑘(𝑡𝑛)] 
 
where 𝛿𝑖𝑗 is a Kronecker delta function and a prime 

denotes a derivative with respect to time. 
As with the Extended Helmholtz Resonator 

Model, the matrices 𝑫 and 𝑬 are sparse and 
represent interactions within the same element or 
nearby nodes at the same time level 𝑡𝑛. Moreover, 
the matrices are diagonally dominant and of the 
form 𝑫𝒌 = 𝑑𝑘𝑰 and 𝑬𝒌 = 𝑒𝑘𝑰 where 𝑘 = 0,1, … ,𝑲 



Rodio  6 

(33) 

(34) 

(36) 

(35) 

(32) 

(37) 

(38) 

(39) 

and 𝑰 is the identity matrix. In particular, the 
coefficients 𝑑𝑘 and 𝑒𝑘 simplify to:  

 

𝑑𝑘 = 𝜌0

{
 
 

 
 
2
−5
4
−1
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

 

𝑒𝑘 = 𝑅0

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

+ ℎ0

{
 
 

 
 
2
−5
4
−1
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 = +2𝐴0 {
1
0

𝑘 = 0
𝑘 ≠ 0

} 

 
Similarly, we may assume the frequency-

domain surface admittance model to be: 
 

𝑌(𝜔) = 𝑅0̅̅ ̅ + ℎ0̅̅ ̅(−𝑖𝜔) +
𝐴0
−𝑖𝜔

 

  
Letting the surface admittance be represented in 
the form for 𝑌(𝜔) = 𝑌𝑅 + 𝑌𝐼𝑖, taking the inverse 
Fourier transform, and substituting into (10) yields 
an admittance boundary condition for soft surfaces. 
Casting into matrix form, the non-zero entries for 𝑫 

and 𝑬 have coefficients 𝑑𝑘 and 𝑒𝑘 which simplify to:  
 

𝑑𝑘 = 𝜌0𝑅0

{
 
 

 
 
11/6
−3
3/2
−1/3
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

+ 𝜌0h0̅̅ ̅

{
 
 

 
 
2
−5
4
−1
0

𝑘 = 0
𝑘 = 1
𝑘 = 2
𝑘 = 3
other}

 
 

 
 

 

𝑒𝑘 = +𝜌0𝐴0 {
1
0

𝑘 = 0
𝑘 ≠ 0

} 

 

𝑒𝑘 = {
1
0

𝑘 = 0
𝑘 ≠ 0

} 

 
Eigenvalue Analysis 

As previously mentioned, direct numerical 
simulation of the TD-BIE without Burton-Miller 
reformulation is prone to numerical instabilities. It is 
therefore necessary to study the TD-BIE with 
Burton-Miller reformulation to ensure stability of the 
coupled system (19) with liner boundary conditions 
(9) and (10). To study the stability, we conduct a 
numerical eigenvalue study of the discretized 
system of equations [20]. Let us denote Eq. (19) by:  

 

𝑨𝟎𝒘
𝒏 = 𝒒𝟎

𝒏 − 𝑨𝟏𝒘
𝒏−𝟏 −⋯− 𝑨𝑱𝒘

𝒏−𝑱 

 

such that: 
 

𝑨𝑲 = [
𝑩𝑲 𝑪𝑲
𝑫𝑲 𝑬𝑲

]  for 𝑘 = 0,… , 𝐾  

𝑨𝑲 = [
𝑩𝑲 𝟎
𝟎 𝟎

]  for 𝑘 = 𝐾 + 1,… , 𝐽 

𝒘𝒏 = [
𝒖𝒏

𝒗𝒏
]and 𝒒𝟎

𝒏 = [
𝒒𝒏

𝟎
] 

 
We look for solutions of the form 𝒘𝒏 = 𝝀𝒏𝒆𝟎 to 

the corresponding homogeneous system given by 
(37). By substituting 𝒘𝒏 = 𝝀𝒏𝒆𝟎 into (37), we obtain 
a polynomial eigenvalue problem 

 

[𝑨𝟎𝝀
𝑱 + 𝑨𝟏𝝀

𝑱−𝟏 +⋯+ 𝑨𝑱−𝟏𝝀
𝑱 + 𝑨𝑱]𝒆𝟎 = 0 

 
which can be cast into a generalized eigenvalue 
problem. The numerical scheme is stable if |𝜆| ≤ 1 
for all eigenvalues. Eigenvalues of the generalized 
eigenvalue problem can be found via a sparse 
solver available in MATLAB or Python, or by a 
matrix power iteration method as detailed in [16]. 

For the stability study, we consider the 
scattering of an acoustic point source by a flat plate 
with dimension [−0.5,0.5] × [−0.5,0.5] × [−0.1,0.1]. 
The surface of the flat plate is discretized using 
20 × 20 × 4 (1120 surface elements) as illustrated 
in Figure 3. An acoustic point source is located at 
(𝑥, 𝑦, 𝑧) = (0,0,1). 

The liner boundary condition is modeled using 
numerical data in [14]. In [14], eighteen Extended 
Helmholtz Resonator Model models are proposed 
for varying combinations of 𝑍(𝜔) = 𝐴 + 𝐵𝑖 and 𝜈 at 

frequency 𝜔0 = 100. This numerical data is listed in 
Table 1. Moreover, two-time steps are considered, 
namely Δ𝑡 = 1/24  and Δ𝑡 = 𝜋/1000.  

For the Extended Helmholtz Resonator Model, 

only positive values for 𝜖 were considered due to 

the restriction that 𝜖 ≥ 0. Choosing 𝜖 to be equal to 
0.9 arcsinh(−(𝐴/𝐵) sin(𝜔0𝜈Δ𝑡)) for both the 

 

Figure 3: Schematic diagram illustrating the 20 × 20 × 4  
discretization for the flat plate with dimension [−0.5,0.5] ×
[−0.5,0.5] × [−0.1,0.1] used for modeling the acoustic 
scattering of a point source located at (𝑥, 𝑦, 𝑧) = (0,0,1). 
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impedance and admittance boundary condition 
using data in Table 1 limits the study to cases for 
𝜈 = 5 when Im(𝑍) < 0 and 𝜈 = 19,15 when Im(𝑍) >
0 for Δ𝑡 = 1/24 (i.e., Cases 2, 5, 8, 10, 11, 13, 14, 
16, and 17); all cases for 𝜈 and 𝑍(𝜔) yield positive 

values for 𝜖 when Δ𝑡 = 𝜋/1000 and are therefore 
considered for analysis (i.e., Cases 1 through 18 
inclusive). Moreover, in each Extended Helmholtz 
Resonator Model analysis, it is assumed that 𝜔0 =
100, 𝜌0 = 1, and 𝑚 = 0 [14]. 

For the Three-Parameter Impedance Model 
analysis, the impedance and admittance boundary 
conditions were also modeled using numerical data 
in [14]. Unlike with the Extended Helmholtz 

Resonator Model, the parameters 𝑅0, ℎ0, 𝐴0 for 

impedance are independent of both Δ𝑡 and 𝜈. Thus, 
the impedance parameters are equivalent for Δ𝑡 =
1/24 and Δ𝑡 = 𝜋/1000 as well as for 𝜈 = 1,5,9 and 

𝜈 = 19,15,11. We therefore consider only six cases 
for 𝑍(𝜔) herein referred to as Cases 1, 4, 7, 10, 13, 
and 16 when modeling the impedance boundary 
condition. Similarly, we consider only Cases 1, 4, 7, 
10, 13, and 16 when modeling the admittance 
boundary condition. Note that although the 
parameters are independent of time-step, the 
scattering solution differs between Δ𝑡 = 1/24 and 

Δ𝑡 = 𝜋/1000. Hence both scattering solutions will 
be assessed for their stability in the Three-
Parameter Impedance Model analysis. 

For the stability assessment, we consider two 
possible scenarios for applying an acoustic liner to 
the scattering body, the first being that the 

scattering body is lined on all external surfaces and 
the second being that the scattering body is lined 
only on the top-most surface nearest the acoustic 
point source. We also consider a scattering body 
with no acoustic liner such that the scattering 
solution is governed by Eq. (17). An illustration of 
the fully-lined (soft) body is illustrated in Figure 4. 
An illustration of the partially-lined (mixed) body is 
illustrated in Figure 5. An illustration of an un-lined 
(rigid) body is illustrated in Figure 3, for reference.  

All impedance boundary condition (rigid, soft, 
mixed) results are listed in Table 2. All admittance 
boundary condition (rigid, soft, mixed) results are 
listed in Table 3. For both the Extended Helmholtz 
Resonator Model and Three-Parameter Impedance 
Model all eigenvalues are no greater than unity and 
stability is observed for both the impedance and 
admittance boundary conditions considering all 
liner applications: un-lined (rigid), fully-lined (soft), 
and partially-lined (mixed). These results were 
expected due to the Burton-Miller type 
reformulation of the TD-BEM. 

 
Concluding Remarks 

A formulation of the acoustic wave scattering of 
geometric bodies treated with acoustic liners has 
been proposed. The current work considers using 
either an impedance or an admittance boundary 
condition. Each type boundary condition was 
derived and coupled with a  TD-BIE stabilized with 
a Burton-Miller reformulation. This reformulation 
eliminates resonant frequencies in the interior 
domain. An iterative scheme is presented for the 
solution of the coupled system in the time-domain 

Table 1: Numerical data for the eighteen different liner models 
proposed in [14]. 

Case 𝒁(𝝎) 𝝂 

1 1 − 3𝑖 1 

2 1 − 3𝑖 5 

3 1 − 3𝑖 9 

4 1 − 2𝑖 1 

5 1 − 2𝑖 5 

6 1 − 2𝑖 9 

7 1 − 𝑖 1 

8 1 − 𝑖 5 

9 1 − 𝑖 9 

10 1 + 𝑖 19 

11 1 + 𝑖 15 

12 1 + 𝑖 11 

13 1 + 2𝑖 19 

14 1 + 2𝑖 15 

15 1 + 2𝑖 11 

16 1 + 3𝑖 19 

17 1 + 3𝑖 15 

18 1 + 3𝑖 11 

 

Figure 4: Schematic diagram illustrating a fully-lined body. 

Figure 5: Schematic diagram illustrating a partially-lined body. 



Rodio  8 

which uses spatial and temporal basis functions 
and allows for acoustic scattering problems to be 
modeled with geometries consisting of both rigid 
and soft surfaces. Three different liner applications 
were considered: un-lined, fully-lined, and partially-

lined. Moreover, two models were considered when 
simulating the acoustic liner: an Extended 
Helmholtz Resonator Model [14] and a Three-
Parameter Impedance Model [17]. In each model, 
the acoustic liner impedance is specified at a single 

Table 3: Maximum eigenvalue calculated for each liner model 
(Helmholtz, Three-Parameter) and time-step (1/24, 𝑝𝑖/1000) 
assuming an admittance boundary condition. 

Extended Helmholtz Resonator Model  
Admittance Boundary Condition 

𝚫𝒕 Case Rigid Soft Mixed 

𝟏

𝟐𝟒
 

 

2 1.000000 0.999884 1.000000 

5 1.000000 0.999933 1.000000 

8 1.000000 0.999991 1.000000 

10 1.000000 1.000000 1.000000 

11 1.000000 1.000000 1.000000 

13 1.000000 1.000000 1.000000 

14 1.000000 1.000000 1.000000 

16 1.000000 1.000000 1.000000 

17 1.000000 1.000000 1.000000 

𝚫𝒕 Case Rigid Soft Mixed 

𝝅

𝟏𝟎𝟎𝟎
 

 

1 1.000000 1.000000 1.000000 

2 1.000000 1.000000 1.000000 

3 1.000000 0.943965 1.000000 

4 1.000000 1.000000 1.000000 

5 1.000000 1.000000 1.000000 

6 1.000000 0.938683 1.000000 

7 1.000000 1.000000 1.000000 

8 1.000000 1.000000 1.000000 

9 1.000000 0.999999 1.000000 

10 1.000000 1.000000 1.000000 

11 1.000000 1.000000 1.000000 

12 1.000000 0.999998 1.000000 

13 1.000000 1.000000 1.000000 

14 1.000000 1.000000 1.000000 

15 1.000000 0.999993 1.000000 

16 1.000000 1.000000 1.000000 

17 1.000000 1.000000 1.000000 

18 1.000000 0.999999 1.000000 

Three-Parameter Impedance Model  
Admittance Boundary Condition 

𝚫𝒕 Case Rigid Soft Mixed 

𝟏

𝟐𝟒
 

1 1.000000 0.998003 1.000000 

4 1.000000 0.998003 1.000000 

7 1.000000 0.998002 1.000000 

10 1.000000 0.999928 1.000000 

13 1.000000 0.999928 1.000000 

16 1.000000 0.999928 1.000000 

𝚫𝒕 Case Rigid Soft Mixed 

𝝅

𝟏𝟎𝟎𝟎
 

1 1.000000 0.199984 1.000000 

4 1.000000 0.223336 1.000000 

7 1.000000 0.200312 1.000000 

10 1.000000 0.999995 1.000000 

13 1.000000 0.999995 1.000000 

16 1.000000 0.999995 1.000000 

 

 

Table 2: Maximum eigenvalue calculated for each liner model 
(Helmholtz, Three-Parameter) and time-step (1/24, 𝜋/1000) 
assuming an impedance boundary condition. 

Extended Helmholtz Resonator Model  
Impedance Boundary Condition 

𝚫𝒕 Case Rigid Soft Mixed 

𝟏

𝟐𝟒
 

 

2 1.000000 1.000000 1.000000 

5 1.000000 1.000000 1.000000 

8 1.000000 1.000000 1.000000 

10 1.000000 0.986059 0.680876 

11 1.000000 1.000000 1.000000 

13 1.000000 0.99106 0.712118 

14 1.000000 0.875391 0.761538 

16 1.000000 0.988567 0.701207 

17 1.000000 0.878414 0.779593 

𝚫𝒕 Case Rigid Soft Mixed 

𝝅

𝟏𝟎𝟎𝟎
 

 

1 1.000000 1.000000 1.000000 

2 1.000000 1.000000 1.000000 

3 1.000000 1.000000 1.000000 

4 1.000000 1.000000 1.000000 

5 1.000000 1.000000 1.000000 

6 1.000000 1.000000 1.000000 

7 1.000000 1.000000 1.000000 

8 1.000000 1.000000 1.000000 

9 1.000000 1.000000 1.000000 

10 1.000000 1.000000 1.000000 

11 1.000000 1.000000 1.000000 

12 1.000000 1.000000 1.000000 

13 1.000000 1.000000 1.000000 

14 1.000000 1.000000 1.000000 

15 1.000000 1.000000 1.000000 

16 1.000000 1.000000 1.000000 

17 1.000000 1.000000 1.000000 

18 1.000000 1.000000 1.000000 

Three-Parameter Impedance Model  
Impedance Boundary Condition 

𝚫𝒕 Case Rigid Soft Mixed 

𝟏

𝟐𝟒
 

1 1.000000 1.000000 1.000000 

4 1.000000 1.000000 1.000000 

7 1.000000 1.000000 1.000000 

10 1.000000 1.000000 1.000000 

13 1.000000 1.000000 1.000000 

16 1.000000 1.000000 1.000000 

𝚫𝒕 Case Rigid Soft Mixed 

𝝅

𝟏𝟎𝟎𝟎
 

1 1.000000 1.000000 1.000000 

4 1.000000 1.000000 1.000000 

7 1.000000 1.000000 1.000000 

10 1.000000 1.000000 1.000000 

13 1.000000 1.000000 1.000000 

16 1.000000 1.000000 1.000000 
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frequency. Eigenvalue analysis was presented for 
the scattering solution by a flat plate discretized 
with 1120 surface elements. The eigenvalue 
analysis demonstrated stable solutions for both the 
impedance and admittance boundary conditions 
considering all liner applications: un-lined (rigid), 
fully-lined (soft), and partially-lined (mixed). Future 
work will include studying a broadband acoustic 
liner model to allow for the investigation of multiple 
frequencies simultaneously.  
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