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Abstract

The ability to distinguish between transmissions
from wireless communications networks using dif-
ferent medium access protocols can facilitate the
incorporation of a cognitive radio into an existing
network, promote air-to-air and ground-to-air com-
munications for on-demand mobility and commer-
cial aircraft, or can improve efforts to disrupt enemy
communications effectively. The way in which users
access the electromagnetic spectrum provides one
of the most prominent distinctions between reser-
vation based and contention based medium access
control protocols. We exploit the regular timing of
transmissions from networks utilizing a reservation
based time-division multiple access (TDMA) proto-
col to differentiate between transmissions governed
by TDMA and by contention based carrier sense
multiple access (CSMA) protocols. Our approach
leverages modular arithmetic to identify periodic-
ity in transmission timings, and an unsupervised
k-means algorithm to generate distinct TDMA and
CSMA clusters. A variety of supervised machine
learning algorithms are then explored to build a pro-
tocol classifier. We next develop an automated clus-
tering algorithm to run on a set of center frequencies
extracted from a noisy network trace to determine
whether the network has a multi-channel or single-
channel architecture. Such information can be used
to determine whether the network is employing a
frequency division multiple access protocol to access
the electromagnetic spectrum.

1. Introduction

Increased use of the electromagnetic spectrum in
recent years has led to the development of new
technologies with the ability to assess spectrum us-
age and to adjust transmission parameters intelli-
gently to take advantage of unused frequency bands.
Such technology can be incorporated into air-to-air
and air-to-ground aeronautical communication sys-
tems for efficient transmission of sensor data both
in NASA’s On-Demand Air Mobility and Urban Air
Mobility aircraft and in conventional aircraft.' =2 For
adaptive nodes to utilize vacant spectrum channels
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efficiently without causing unintended interference
to other users, it is beneficial to determine how
other networks are accessing a particular channel.
The method by which nodes of a communications
network share frequency channels is referred to as
the medium access control (MAC) protocol. Knowl-
edge of a network’s MAC protocol can facilitate the
incorporation of a cognitive radio into an existing
network, or can improve efforts to disrupt enemy
communications. Such knowledge can be attained
by employing machine learning techniques to ana-
lyze transmissions of the network under consider-
ation. In this paper, we present a two-stage ma-
chine learning approach to reservation based MAC
protocol recognition. First, an unsupervised k-
means clustering algorithm is employed to parti-
tion the dataset into reservation-based protocol and
contention-based protocol clusters. These groupings
then become labels for the data, and a variety of su-
pervised machine learning algorithms are explored to
generate a MAC protocol classifier. The next part of
our work focuses on developing an automated clus-
tering algorithm which can be run on a set of cen-
ter frequencies extracted from a noisy network trace
in order to obtain an estimate of the set of center
frequencies actually utilized by the network. Such
information can then be used to determine whether
or not the network is occupying multiple channels of
the electromagnetic spectrum.

2. Related Work

The majority of the literature concerning medium
access control protocols for wireless communication
networks centers around the development and de-
sign of efficient time-slotted, random access, and hy-
brid protocols. Lai et al.* design medium access
protocols for cognitive users to opportunistically ac-
cess the spectrum in the absence of primary users.
Yahya and Ben-Othman® discuss MAC protocols for
wireless sensor networks, including their design and
the various advantages and disadvantages associated
with each. Este et al.® investigate the implemen-
tation of the support vector machines algorithm to
identify traffic emanating from specific applications,
while Soysal and Schmidt” perform internet traffic



classification using flow traces. There exist numer-
ous surveys providing detailed discussion of MAC
protocol design for both wireless sensor networks
and cognitive radio networks.® '3 A number of au-
thors have investigated the use of machine learning
for improved MAC protocols, for primary user de-
tection, and in cognitive radio networks.'* ' The
publications of Hu et al.?%?! and Yang et al.??
present supervised machine learning approaches to
MAC identification. In their works, the authors use
received power and channel state features combined
with a support vector machines model to distinguish
between protocols.

Estimating the number of inherent clusters in a
dataset is an integral part of the clustering pro-
cess.?®2* A variety of methods for cluster evaluation
have been proposed in the literature, some of which
rely on visual techniques like the elbow method?° 26
and silhouette plots,2® and some of which utilize
metrics such as the gap statistic.2> Many researchers
have focused on determining the optimal number of
clusters from a prespecified range of cluster values,
and almost exclusively consider multi-dimensional
datasets. Pelleg and Moore?” propose a k-means
based clustering algorithm that uses Bayesian In-
formation Criteria to estimate the ideal number of
clusters from a predefined range of potential clus-
ters. Kryszczuk and Hurley?® estimate the number
of clusters in a dataset using various cluster validity
indices. Dudoit and Fridlyand?® use resampling and
prediction accuracy to estimate the number of clus-
ters in a dataset for improved tumor classification.
Others have proposed algorithms that use iterative
methods to estimate the number of clusters. Yao
and Choi®’ developed a clustering algorithm suited
to grouping web-pages of similar contents that mea-
sures average inter-cluster similarity against a con-
stant value. Rosenberger and Chehdi®! proposed an
automatic clustering algorithm for image segmenta-
tion based on k-means which evaluates the number
of clusters at each partition using the average dis-
persion measure. The algorithm we have developed
uses k-means clustering and an intra-cluster variance
based metric to automatically determine the inher-
ent number of clusters in a one-dimensional dataset
of transmission center frequencies.

3. Medium access control protocols

The way in which nodes of a network access the elec-
tromagnetic spectrum is referred to as the MAC pro-
tocol. Our MAC protocol recognition algorithm first
focuses on distinguishing between reservation based
time division multiple access (TDMA) and con-
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tention based carrier-sense multiple access (CSMA)
protocols, then determines whether the network is
occupying multiple frequency channels, indicative of
a frequency division multiple access (FDMA) pro-
tocol. Figures 1 and 2 show examples of networks
governed by these protocols.

3.1. Time-division multiple access

Time-division multiple access is a MAC protocol
that allows multiple users to transmit on a single
channel without collisions. This is accomplished
through segmenting time into a series of repeating
frames that are further divided into individual time
slots. Each time slot is assigned to a network user so
that only one user may transmit at any given time.
Time slots may be re-assigned to accommodate new
users entering the network. Applications include ra-
dio, cellular, and satellite systems.

3.2. Carrier-sense multiple access

Carrier-sense multiple access is a MAC protocol in
which users access the spectrum randomly and op-
portunistically. To avoid collisions, users transmit
only when the channel seems vacant. If another
transmission is in progress, the user waits until the
ongoing transmission is complete before using the
channel. Since CSMA is contention based and there-
fore is not constructed of rigid time slots, users can
transmit packets of varying sizes whenever the chan-
nel is available. Applications include Wi-Fi and ra-
dio systems.
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Figure 1: Tllustration of TDMA and CSMA MAC

protocols. Frequency channel f; uses TDMA. It is
divided into time slots of length ¢, and each trans-
mission (represented by a solid grey box) fits within
the boundaries of its defined time slot. Frequency
channel fs uses CSMA, where transmissions are of
varying lengths and occur at irregular intervals.



3.3. Frequency division multiple access

Frequency division multiple access is characterized
by its use of numerous transmission and recep-
tion channels.??> Each node in the network trans-
mits packets on a designated channel while receiving
packets from other nodes on each of the other chan-
nels. FDMA networks can be implemented in con-
junction with other medium access methods to cre-
ate hybrid network protocols. TDMA-FDMA net-
works maintain time-slotted transmission schedules
in which each time slot is associated with a differ-
ent center frequency. CSMA-FDMA networks allow
nodes to access the spectrum randomly while sup-
porting a wide variety of packet lengths. However,
CSMA-FDMA differs from traditional CSMA proto-
cols in that CSMA-FDMA networks have individual
transmission channels for every node in the network.
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Figure 2: Illustration of a network using FDMA.
The network is composed of seven nodes each trans-
mitting on a separate channel. Nodes monitor each
of the channels to receive packets from the rest of
the network.

4. Machine learning

We have developed a MAC protocol recognition al-
gorithm that integrates both unsupervised and su-
pervised machine learning techniques. Since the
data used for our algorithm development were un-
labelled, we began by employing an unsupervised
clustering method to partition the preprocessed data
into two groups: reservation based and random ac-
cess protocols. These clusters became class labels,
and a classifier was trained to identify new inputs
as TDMA or CSMA governed transmissions. Next,
a k-means clustering algorithm was run on the set
of center frequencies recorded for all transmissions
to determine the number of channels utilized by the
network. The following sections provide brief de-
scriptions of the machine learning methods used in
various iterations of the MAC recognition algorithm.
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4.1. Unsupervised learning

4.1.1. k-Means clustering

The k-means clustering algorithm partitions an un-
labelled dataset X = x1,2s,...,x, into k clusters,
such that the variance within each cluster is at a
minimum. The process of determining an optimal
partition of the data begins by randomly assigning
data points to one of k groupings. The mean, or cen-
troid, of each cluster is calculated and then used to
compute the variance of the cluster. A data point x;
initially belonging to cluster c; is re-assigned to clus-
ter ¢ if d(z;, ¢;) > d(x;, ¢x), where d is the distance
between two points according to the user-specified
distance metric. The new cluster centroids and vari-
ance are then calculated. Clusters are altered in this
way until each new cluster centroid differs from the
previous one only very slightly. At this point, the
intra-cluster sum-of-squares
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has been minimized. Here, the data are segmented
into k clusters, each with centroid p € C.

4.2. Supervised learning

4.2.1. Support Vector Machines

Support vector machines (SVMs) are supervised ma-
chine learning models commonly used for classifying
high-dimensional data. The SVM classification algo-
rithm seeks to establish a maximum margin decision
hyperplane between linearly separable classes. For
datasets that are not linearly separable, the hyper-
plane can be found by using a kernel function to
project the data into a higher dimension where the
classes become linearly separable. The optimal hy-
perplane maximizes the minimum distance between
the hyperplane and the points in the training dataset
x; € R™ by solving the quadratic problem

1
r};}gillw\lg (2)

subject to
yilwTz; +b) > 1, Vi e N (3)

where w € R™ and b € R are primal variables. The
three most commonly used kernel functions are the
linear kernel (4), polynomial kernel (5), and radial



basis function kernel (6).
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4.2.2. Naive Bayes

Naive Bayes classifiers are supervised machine learn-
ing algorithms that can provide probabilistic out-
puts rather than hard decisions of class membership.
Bayes classifiers consider each input feature indepen-
dently, rather than relating combinations of features
to a certain class. The algorithm is based on Bayes
Theorem, which states that

plalop(e) -

pclz) = ()

to compute the posterior probability of class ¢ given
predictor x, or p(c|x). The prior probability of a
class is denoted p(c), the prior probability of a pre-
dictor is p(z), and the probability of predictor x
given class ¢ is written p(z|c).

Since all features are independent of the class, for
some set of features X = x1,z9,...x, and class c,

n

p(x1, 2, ..., Tylc) :Hp(xi\c). (8)

i=1

Then, for two classes C7 and Cs, the Naive Bayes
classifier is defined as

_ p(Ch) 1 p(zi|C)
where ()
Pl
EeC, <:>p(02)21 (10)

4.2.3. k-Nearest Neighbors

The k-nearest neighbors (kNN) classifier assigns a
class label to an input by examining class mem-
bership of the neighboring data points in the n-
dimensional feature space. A variety of distance
metrics can be used to evaluate the distance between
the input and neighboring data points. This simple
algorithm requires no explicit training step, and only
the number of neighbors to consider and the desired
distance metric need be specified by the user.
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5. Data sets

The datasets used to develop, evaluate, and refine
the algorithm were generated by software defined
radio (SDR) testbeds and EMANE network simu-
lation software.?® These datasets included TDMA,
CSMA, FDMA, TDMA-FDMA, and CSMA-FDMA
networks transmitting over the 2.0-2.1 GHz and 2.4
- 5.0 GHz frequency bands. Traces of packet trans-
missions were collected for each network. Included in
the fifteen recorded trace features are transmit time
in microseconds, packet length in bytes, source and
target node identification, and center frequency in
GHz. Therefore, a collection of n transmissions for
some network N is recorded in trace Ty as follows:

transTime; packetLeny--- centFreq, ---
Ty = :
transTime, packetLen, --- centFregq, ---

6. TDMA /CSMA classification

Each trace contains a record of the transmit time
of every packet sent in the network, so the trans-
mit time feature for trace T can be written as
T = ty,ts,...,t, for a trace containing n transmis-
sion events. This feature was used to calculate the
differences between consecutive transmissions
to 3] tdy
Ta= ||| | =] :
tn tn—1 tdn—l

which became the basis of the feature vector gener-
ation stage for the TDMA/CSMA classifier.

6.1. Feature vector generation

In number theory, modular arithmetic is defined by
a modulus N > 1 and all integers r € [0, N — 1]
such that any integer taken modulo N is congruent
to some r € [0, N — 1]. The congruence class of an
integer k modulo N can be determined by writing k
as

E=mxN +r, (11)

where m,r € Z and 0 < r < N. Then,
r = k(mod N), (12)
and so k is in the same congruence class as 7.

The goal of this work is to exploit the regular tim-
ing of TDMA transmissions to facilitate differentia-



tion between TDMA and CSMA protocols. Ideally,
the differences between transmission times of TDMA
emissions should be integer multiples of the prede-
termined time slot length, 7. Thus for any TDMA
transmission time difference td; and modulus T,

td; mod T = 0. (13)

In reality, a variety of factors prevent TDMA trans-
mission time differences from being exact multiples
of the time slot duration. To account for noise, the
modulo value of a transmit time difference td; and
the time slot length 7 is normalized with respect to
7 so that near-integer multiples of 7 are treated as
integer values. So, for

td;, mod T =, (14)

the normalized transmit time difference modulo
value, Tporm, 1S calculated as

Tnorm = {:—7" . (15)

Therefore, for any td, ryorm € [0,0.5]. If the major-
ity of normalized values of transmit time differences
modulo 7 are approximately zero, this indicates that
transmissions frequently occurred at regular inter-
vals, and so are likely TDMA. If the normalized val-
ues of transmit time differences modulo 7 are dis-
persed fairly evenly throughout the interval [0,0.5],
this then indicates that transmissions occurred at
random intervals, characteristic of CSMA protocols.

The feature vector generated for each trace contains
two elements: the mean of the normalized transmit
time difference modulo values, and the variance of
the normalized transmit time difference modulo val-
ues. Thus the feature vector for trace T; containing
n transmission events is [u;, 07], where the mean of
the normalized transmit time difference modulo val-
ues is calculated as

Mi:n—l

1 n—1
Z rnorm,j (16)
j=1

and the variance of the normalized transmit time

difference modulo values is calculated as

n—1
1
0-12 = n—1 Z(Tnorm,j - /’(‘1)2 (17)
j=1
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6.2. Time slot length estimation

In general, due to the slotted structure of a TDMA
network, some portion of the transmissions will in-
evitably occur in consecutive time slots regardless
of the amount of traffic. The percentage of trans-
missions that occur in consecutive time slots will be
high for congested networks, where vacant time slots
are rare, but will be low for uncongested networks
where few consecutive time slots are used in each
frame. For CSMA traces, the choice of a potential
time slot duration to use as the modulus has little
effect on the outcome of the modular arithmetic-
heavy feature generation, since the randomness of
transmission times ensures that modulo values are
fairly equally spread throughout the interval [0, 0.5].

Initially, the time slot length for a specific trace was
estimated as the minimum transmission time differ-
ence. However, this did not consistently result in an
accurate estimation of the time slot length since in
some TDMA traces, the minimum transmission time
difference was much less than the time slot length
due to noise. Therefore, the time slot duration used
as the modulus in the feature vector generation was
estimated individually for each trace by averaging
a small percentage of the shortest transmission time
durations. A range of values between 5% and 10% of
the shortest transmission time durations were tested,
with 6% repeatedly producing the best approxima-
tion of the time slot length for the entire spectrum
of network traffic levels. Using such a small per-
centage of the shortest transmission time durations
to estimate the time slot length worked equally well
for both highly congested networks and uncongested
networks, where oftentimes less than 20% of trans-
missions occurred in consecutive time slots. In most
cases, the estimated time slot length was within 2%
of the actual time slot duration for TDMA traces.

6.3. Machine learning for classification

After generating feature vectors for each of the
roughly 160 TDMA and 160 CSMA traces, the un-
labelled dataset was fed into a k-means clustering
algorithm that partitioned the dataset into two dis-
tinct clusters. One cluster, centered near the origin,
was composed of traces with low means and low vari-
ances. The second cluster was composed mainly of
traces with a mean value of about 0.25 and a vari-
ance of about 0.0200.

The cluster indices generated by the k-means clus-
tering algorithm were used to label the full dataset,
which was then split into training and test sets.



Since the k-means clusters accurately divided the
data into TDMA and CSMA clusters with the ex-
ception of only three data points, these cluster in-
dices were well-suited to being used as supervised
data labels. Plots of the k-means groupings and
the actual groupings are provided in figures 3 and 4.
Various training/test splits were imposed to assess
the performance of each type of model. The accu-
racy of each classifier was calculated as the difference
between the total cases and the misclassified cases
divided by the total number of cases. Each classi-
fier performed well for the varying training/test data
splits, with all accuracies exceeding 90%.
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Figure 3: Plot of the two clusters obtained as a re-
sult of running the k-means clustering algorithm on
a dataset composed of 325 data points. The centroid
of the cluster near the origin is located at (0.0692,
0.0087), and that of the cluster in the top right of
the plot is located at (0.2542, 0.0204).

6.4. Classifier accuracy

The classifiers were trained and evaluated on three
different training/test splits: 70/30, 50/50, and
30/70. For all training/test splits, each of the five
classifiers accurately predicted the class membership
of the majority of the test data, with only a few mis-
classified cases. Results are contained in Table 1.

7. FDMA recognition

In order to determine the number of channels, the
second component of the algorithm runs a k-means
clustering algorithm on the set of center frequencies
recorded for all transmissions of the network. In
theory, the optimal number of clusters to generate
should be equivalent to the number of channels oc-
cupied by a network. The center frequency data is
initially partitioned into two clusters, and in each
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Figure 4: Plot of true TDMA and CSMA group-
ings. TDMA traces are represented by squares, and
CSMA traces are represented by circles. A com-
parison between the ground truth clusters and the
k-means clusters (Fig. 3) shows only three misclas-
sified data points, outlined by dashed boxes.

subsequent implementation of k-means the number
of clusters increases by one until the number of chan-
nels can be determined confidently. This optimal
number of clusters is found by identifying the mini-
mum number of clusters that explains the majority
of variance within the dataset.

In every iteration of the k-means algorithm, the vari-
ance of each cluster ¢; with i € [1, k], denoted o2, is
calculated as

1
2 . .
0 = m 1 ;:1 ‘xJ :U‘l| (18)

where m is the number of datapoints x in cluster
i, and p is the the mean of cluster i. These vari-
ances are summed to give the total value of the intra-
cluster variances for a set of clusters (19).

k
O-tzot,k = Zo—f (19)
i=1

This sum is normalized through division by the vari-
ance of the entire set of center frequencies 02;, and is
then subtracted from one so that the resulting value
vary corresponds to the amount of the total variance
within the data that can be explained by segmenting
the data into k clusters, represented by (20).

2
o
toQt,k (20)
Ol

vary =1 —



Train/test split Classifier % Accuracy | Misclassified | Train data | Test data

kNN 97.98 2
Naive Bayes 97.98 2

70/30 SVM (linear kernel) 94.95 5 227 99
SVM (polynomial kernel) 98.99 1
SVM (rbf kernel) 98.99 1
kNN 98.77 2
Naive Bayes 98.77 2

50/50 SVM (linear kernel) 98.16 3 163 163
SVM (polynomial kernel) 99.39 1
SVM (rbf kernel) 98.16 3
kNN 98.68 3
Naive Bayes 97.81 5

30/70 SVM (linear kernel) 92.54 17 99 297
SVM (polynomial kernel) 99.56 1
SVM (rbf kernel) 97.81 5

Table 1: Accuracies of each of the classifiers for various training/test data splits.

The vary, values for each k are recorded in a k-by-2
matrix. The first two columns of Table 2 provide an
example of such a matrix.

k vary Tk

1 0 —
2 0.5084 2.9196
3 0.6826 1.9096
4 0.7737 2.2212
5 0.8148 0.6962
6 0.8738 2.5006
7 0.8974 0.9519
8 0.9221 0.9690
9 0.9477 1.0771
10 0.9714 0.9503
11 0.9964 | 168.2766

Table 2: An example of the amount of variance
within data that can be explained by k clusters for
an 11-node TDMA-FDMA network is contained in
column 2. Column 3 contains the slope ratios com-
puted for the same network.

Plotting the results produces a curve from which the
optimal number of clusters can be identified by lo-
cating the point at which the slopes of successive
segments begin to approximate zero. Figure 5 shows
an example of such a plot.

The points on the plot are of the form (k,vary),
where k corresponds to the number of clusters and
vary is calculated using (20). The slopes of the line
segments are labelled according to the endpoints of
the line, so that the slope of the segment connect-
ing points (k — 1,vary—1) and (k,vary) is denoted

Rooney

Ly_1 . For each i € [2,k], the slope ratio shown
in (21) is computed. Table 2 provides an example
of slope ratios calculated for a plot of the (k,vary)
values computed for an 11-node TDMA-FDMA net-
work.

Li_1;

21
Li i1 1)

T =
The largest slope ratio, ryes = maz(r;), @ € [2,k],
nearly always corresponds to the point where subse-
quent segments have a slope of approximately zero.
When 7,,,, exceeds a user-defined threshold, the al-
gorithm stops increasing the number of clusters on
which to run the k-means algorithm, and the opti-
mal number of channels is identified as the number
of clusters corresponding to the maximum slope ra-
t10 Tyar- Since the maximum slope ratio is usually
significantly greater than each of the other slope ra-
tios, the choice of the threshold is flexible. If the
maximum ratio remains below the threshold after a
set number of iterations of the k-means algorithm,
the optimal number of clusters is assumed to be one.

After having determined the number of channels the
network is likely using to transmit information, the
k-means algorithm is run a final time on the col-
lection of center frequency data with the k-value set
equal to the estimated number of channels. This last
iteration of the k-means algorithm is used to create
a new list of center frequencies for the network trace
by replacing the cluster index of each transmission
event with the associated cluster centroid. The new
set of center frequencies can be used to learn which
nodes are communicating on each center frequency.
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Figure 5: Example of a plot of the total variance
within the data that can be explained by segmenting
the data into k clusters. The optimal number of clus-
ters is chosen by identifying the point on the curve
at which slopes of succeeding segments are approx-
imately zero. The curve above was generated using
the trace from an 11-node TDMA-FDMA network.

8. Results and discussion

The modular arithmetic method used to generate
machine learning features from network traffic was
developed under the assumption that only packet
transmission times could be reliably detected. Since
no additional features are required as inputs to the
algorithm, this method provides a way to recognize
the MAC protocol of a network blindly. All classi-
fiers trained on the feature vectors created using the
modular arithmetic method described in Section 6.1
achieved an accuracy of over 90%. Only data points
midway between the cluster concentrations in the
feature space were misclassified.

Although each of the classifiers accurately predicted
the correct class of nearly every test data point, two
of the three classification algorithms, SVM and kNN,
produce a hard decision on class membership rather
than calculating the probability that a data point
belongs to a certain class. Therefore, an advantage
of the Naive Bayes classifier is the option of a proba-
bilistic output, which provides some idea of the cer-
tainty with which a class is assigned to each input.

Table 3 contains details of the few cases misclassi-
fied by the Naive Bayes model for each training/test
data split. For the Naive Bayes model trained on
30% of the full dataset, since the misclassified cases
were nearer the concentration of CSMA training
data than the concentration of TDMA training data,
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it was unsurprising that they were all incorrectly
classified as CSMA traces. The Nalve Bayes clas-
sifier trained on 50% of the entire dataset misclas-
sified only two of the test data points. All train-
ing data points surrounding the two incorrectly la-
belled points were TDMA, so these misclassifications
are not surprising. The data points misclassified by
the Naive Bayes model trained on 70% of the com-
plete dataset fell on the border between the TDMA
and CSMA classes in the feature space, shown in
Fig. 6. Since the data points are midway between
the clusters and the CSMA class probability is only
marginally higher than the TDMA class probability
for each, these misclassifications are reasonable.
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Figure 6: Plot of training data and two cases mis-
classified by the Naive Bayes model trained on 70%
of the entire dataset. Misclassified points are repre-
sented by squares.

The FDMA recognition component of the algorithm
was generated and refined using data from a vari-
ety of different protocol scenarios, including TDMA,
CSMA, FDMA, TDMA-FDMA, and CSMA-FDMA
networks. All networks utilized between one and
eleven channels, with each channel supporting either
a single node or the entirety of the network’s nodes.
The algorithm accurately estimated the center fre-
quencies of nearly all channels for each FDMA-based
network in the dataset, with differences from actual
center frequencies less than several hundred kHz.

Since the main component of the frequency cluster-
ing algorithm uses an unsupervised machine learning
technique, no training data were required to gen-
erate the algorithm. Therefore, all datasets were
used to evaluate the accuracy of the channel es-
timation. The frequency clustering algorithm was
tested on 60 sets of network traces, 30 of which were



Train/test Split | P(TDMA) | P(CSMA) | Pred. class | Actual class | Mean feature | Var feature
0.1098 0.8911 CSMA TDMA 0.1603 0.0200
0.2377 0.7623 CSMA TDMA 0.1518 0.0214
30/70 0.4749 0.5241 CSMA TDMA 0.1466 0.0205
0.1102 0.8898 CSMA TDMA 0.1494 0.0221
0.3246 0.6754 CSMA TDMA 0.1494 0.0212
50/50 0.6895 0.3105 TDMA CSMA 0.1623 0.0219
0.7161 0.2839 TDMA CSMA 0.1664 0.0191
70/30 0.4145 0.5855 CSMA TDMA 0.1573 0.0221
0.3935 0.6065 CSMA TDMA 0.1603 0.0200

Table 3: Class membership probabilities, actual and predicted class, and feature values for all data points
misclassified by the Naive Bayes classifier for all training/test data splits.

from multi-channel FDMA networks and 30 of which
were collected from single channel non-FDMA net-
works. Across all network traces, the algorithm was
tasked with identifying a total of 170 center frequen-
cies from noisy traces. This evaluation was repeated
numerous times for differing levels of added noise.
The reasonable range of noise to introduce to the
center frequencies of the simulated data was deter-
mined through a Monte Carlo simulation, which in-
dicated that detection error generally does not ex-
ceed 0.002% for a 1 MHz signal. To test for accuracy,
the algorithm was run on the entire set of traces ten
times, each time introducing a different amount of
error into the set of center frequencies. The amount
of noise ranged between 0-0.1% of the channel band-
width, which corresponded to between -5 and 5 kHz.
The accuracy was calculated as the fraction of the
170 center frequencies that were correctly identified.
A plot of the accuracy for all amounts of detection
error is shown in Fig. 7. The algorithm consistently
identified over 95% of the center frequencies.
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Figure 7: Plot illustrating the accuracy of the fre-
quency clustering algorithm for varying amounts of
detection error introduced into the set of center fre-
quencies.

Rooney

9. Conclusions

This work presents a MAC protocol recognition al-
gorithm to differentiate between transmissions gov-
erned by various protocols. Such knowledge can be
used by sensors in both vertical takeoff and landing
and conventional aircraft to adapt transmission pa-
rameters to optimize use of the available spectrum.
We used a modular arithmetic-based method to ex-
tract features from the transmission times of pack-
ets and developed a two-stage machine learning ap-
proach to TDMA /CSMA recognition that first uses
a k-means clustering algorithm to partition the data
into two clusters. Then, we used these groupings
to label the data and explored a variety of super-
vised machine learning algorithms to generate a set
of classifiers, all of which achieved an accuracy of
over 90%. The channel clustering component of the
algorithm was developed for the purpose of recogniz-
ing whether a network is employing an FDMA based
protocol. It uses an unsupervised k-means clustering
algorithm on one dimensional noisy center frequency
data to estimate the actual center frequencies which
a network is using to transmit packets, and uses
that list of frequencies to determine the number of
nodes transmitting on each channel. The accuracy
of the algorithm consistently exceeded 95% for dif-
fering levels of detection error, and was successful
in distinguishing between FDMA and non-FDMA
based networks. Future work will include extending
the MAC recognition algorithm to accommodate a
broader range of protocols and finding a more effi-
cient way to recognize non-FDMA networks.
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