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Responsive and resilient space-based systems are
needed to satisfy changing mission requirements and
react to unforeseen challenges. This paper studies the
ability of a constellation constructed from commercial-
off-the-shelf parts and launched using rideshare to
provide imaging coverage over a small region in the
event of a disaster, such as an outbreak of wildfires. A
genetic algorithm and model-based systems engineer-
ing techniques are used to evaluate rideshare constel-
lations in both the nominal case and the case in which
some satellites have failed. Novel methods for deter-
mining reachability between two orbits and for deter-
mining revisit metrics for degraded constellations are
presented.

L. Introduction

The use of small satellites in both industry and academia
is increasing as a result of both the miniaturization of
satellite components and the availability of commercial
off-the-shelf (COTS) components. As the number of
nanosatellites (1-10kg satellites) and other small satel-
lites continues to increase, new tools and methodologies
are needed to accommodate the unique challenges and
capabilities of these systems. The benefits of nanosatel-
lites include the availability of a standard form factor
(the CubeSat), low cost, COTS components, and short
build times. The disadvantages of nanosatellites include
reduced capability, shorter lifetimes, higher failure rates,
and a lack of cost-effective launch opportunities.

The disadvantages outlined above can be mitigated
through intelligent design that keeps the limits of nanosatel-
lites in mind. For example, the capabilities of a large
satellite can be replicated by launching several nanosatel-
lites with different payloads, a process known as disaggre-
gation. Short satellite lifetimes require replenishing the
constellation as time passes if the mission lifetime exceeds
the satellite lifetime. The low cost of each nanosatellite
can make such a method more cost effective than a single
satellite with a long lifetime, in some cases. Furthermore,
nanosatellites are appropriate for missions of short dura-
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tion or for providing a temporary solution while a more
permanent system is designed and manufactured. The
final two issues, high failure rates and launch limitations,
are the focus of this paper.

II. Background

Spacecraft can fail for a variety of reasons, including
launch failures, radiation, thermal stresses, and electron-
ics failures?. The small form factor, low-cost satellites
known as CubeSats are particularly susceptible to failure
due to their use of COTS parts, low budgets, and high risk
tolerance. A 2017 study found that academic CubeSat mis-
sions failed 55% of the time, while commercial CubeSat
endeavors failed 23% of the time". Despite their failure
rate, CubeSat constellations can enable critical space mis-
sions by providing rapid response due to their short build
times. Additionally, their small size allows them to be
launched as secondary payloads when their mission has
some flexibility in the required orbital configuration.

Howeyver, the effect of the failure of one or more
satellites on the ability of the constellation to perform its
mission must be assessed. Previous work has measured
constellation resilience based on the predicted failure rate
and the predicted number of satellites on orbit=. Stenger
performed network analysis for a degraded Iridium con-
stellation, selecting the worst-case removals in batches
of 12 by finding the satellites that appeared most often
in the packet paths and removing them®. However, this
method is not mathematically rigorous for nonuniform
constellations because the problem of satellite access can-
not be solved recursively. It is therefore beneficial to
develop a rigorous methodology for determining the satel-
lites whose removal is most damaging to the constellation
performance.

Another issue in the deployment of nanosatellite con-
stellations is getting all of the assets into orbit. In tra-
ditional spacecraft constellations, the launch costs are a
relatively small portion of the overall budget—one exam-
ple scenario predicts a 14% launch cost”. In the case of
nanosatellites, however, the cost of the spacecraft itself
is much smaller, a couple million dollars at most. Some
nanosatellites are as cheap as a couple hundred thousand



dollars®. Because launch vehicles cost tens to hundreds of
millions of dollars, the use of dedicated launches for low
cost missions is infeasible unless hundreds of satellites
are going to the same plane”. However, small satellites
can be launched as secondary payloads via rideshare pro-
grams for about $30,000 per kilogram®. Additionally,
academic groups may qualify for free launch services
through the Educational Launch of Nanosatellite (ELaNa)
missions!?. The downside of constellations built using
rideshare alone, sometimes called ad hoc constellations, is
that the irregular distribution of satellites results in large
gaps in coverage compared to a symmetric constellation
like a Walker constellation. Previous studies have quanti-
fied these differences, but have shown that performance
can be improved through optimization of the rideshare
selection. One such study used a Monte Carlo analysis to
characterize the range of performance for ad hoc constel-
lations providing global coverage''l. Another study used a
multi-objective genetic algorithm to determine an optimal
rideshare manifest for providing global coverage'®. That
paper also discussed resiliency of ad hoc constellations,
though only for a specific solution produced by the genetic
algorithm and not as an optimization criterion.

III. Methodology
The Disaggregated Integral Systems Concept Opti-

mization Technology (DISCO-Tech) methodology was
used to formulate and solve a rideshare reconfiguration
constellation optimization problem. The DISCO-Tech
algorithm is modular, with each module performing a dif-
ferent task of the optimization. Key modules are described
below and in previous works 314,

A. Optimization

DISCO-Tech uses a modified version of the epsilon
nondominated sorting genetic algorithm II (eNSGA-II)
to solve multiobjective optimization problems>. It com-
bines the epsilon dominance feature of eNSGA-II with
the archive feature of the BORG genetic algorithm but
maintains the use of generations to facilitate ease in paral-
lelization'!®. Tt differs from BORG and eNSGA-II in that
it uses a variable length crossover operation, as described
in a previous paper.

B. Reachability

Previous papers on constellation reconfiguration have
restricted analysis to specific sets of maneuvers. One study
restricted reconfiguration to in-plane maneuvers, then used
a genetic algorithm to solve for the two-burn transfers
yielding the best coverage in the final configuration'>.
Other studies restrict the initial and final constellations to
known sets of orbits, presolving for the fuel needed to go

between each combination of orbits then solving the as-
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signment problem to find the optimal set of transfers /12,

A general framework was desired to determine the
reachability of one orbit from another when neither the
orbits are known a priori nor are the initial and final orbits
confined to the same plane. Although methods exist for
generating the reachable set?"">3 they rely on numeri-
cal simulation and are too computationally expensive to
call for each solution during the optimization, since the
reachable set will change as the initial orbit changes.

Instead, an estimation of the fuel used is generated us-
ing a linearized version of Gauss’s Variational Equations
(GVE). Previous research linearized GVE about the final
orbit and used the resulting equations with model predic-
tive control (MPC) to calculate the required controls to
maneuver from one orbit to another?*. This linearization
serves as the basis for our approach, though the MPC
process was deemed unnecessarily costly. We need only
the total fuel expenditure, not the entire control history.
Furthermore, we improve upon the linearization through
the use of the modified equinoctial orbital elements, by
treating the true longitude as an independent parameter,
and by improved analysis of the validity of the lineariza-
tion. It is assumed that the final value of the true longitude
is irrelevant, as it can be set afterward by temporarily
raising or lowering the orbit using a comparatively small
amount of fuel or by holding the satellite at an interme-
diate stage in its orbit until the desired phasing has been
reached. Itis also assumed that the maximum acceleration
of the spacecraft does not change over time despite the
change in the spacecraft’s mass.

GVE are of the form

é = f(x) + B(x)u (D

dt
where x is the vector of orbital elements and u = [u,-, ug, up, |*
are the control accelerations in the local vertical local
horizontal (LVLH) frame. This formulation uses the
set of modified equinoctial orbital elements (MEOE),
a set of nonsingular elements defined by Walker, Ire-
land, and Owens%). The MEOE are denoted by x =
[p, .8 h k, LT, where the true longitude L is the only
rapidly changing variable. p is the semiparameter of the
orbit. The remaining four elements lack obvious phys-
ical meaning but are defined as f = ecos(w + Q), g =
esin(w + Q), h = tan(%)cos(Q), and k = tan(%) sin(Q),
where e is the eccentricity, i is the inclination, w is the
argument of periapsis (AOP), and Q is the right ascension
of the ascending node (RAAN). f(x) € R® shows the
growth of the elements in the absence of control, and
B(x) € R®3 is the input effect matrix. These matrices can
be constructed from the orbital element rate equations=>.

With the exception of true longitude, the orbital
elements are constant in the absence of perturbations
like oblateness effects. Form a reduced set of elements



z = [p, f.g, hk]T. Since the first five elements of f(x)
are zero for the two body problem, the growth of these
elements can be written as
dz —

— = B(z,L)u 2
5 = B@l) 2
where B(z, L) is the first five rows of B(x). Note that
the equation is affine in u but nonlinear in z due to the
dependence of B on z.

It is advantageous to treat the true longitude L as an
independent parameter. The growth of L over time is

dL M 2 P tan(0.57) sin(v + w)
Z—\/;(1+ecos(v)) +\/; T+ ecos(r) up
(3)

When the thrust is sufficiently small, its impact on the true
longitude can be neglected. It has been shown that this
assumption holds for low-thrust nanosatellite propulsion
systems and for high-thrust nanosatellites with thrusts of
up to 1.25N in nearly circular, low-Earth orbits!. The
rate of change of L is then dL/dt = \/,u_pqz/(pz). The
values of L can be approximated either by holding the
MEOE fixed at either the initial or final values or by
linearly interpolating between the initial and final values
and calculating the growth of L at each time step. Using
this process, true longitude can be treated as a function
of time alone and can be precalculated, allowing it to be

treated as an independent parameter in the linear program.

Linearization of Eq. (2)) about some stationary orbit
Z, gives

% _ (B 1)+ 28
dt oz

Az)u + HOT (@]
7=Zg

where Az = z — z,. 9B/dz in the second term is a tensor
of rank three. Neglect the higher order terms.

The second term results in a nonlinear equation, since
the term contains a product of Az and u. Because this
formulation is only an approximation of the total fuel
used, we drop this term to maintain the linearity of the
system. This simplification is valid if the magnitude of
the derivatives of B are small compared to the values of
B itself. We shall examine the ranges over which this
assumption is valid.

Both B and dB/dz vary with L, so it is necessary
to examine the relative behavior of the two terms over
an entire orbit. Furthermore, due to the differences in
magnitude of the rates of change of the various orbital
elements, it is prudent to examine each one separately. To
determine the allowable extent of the nonlinearity due to a
variation in one of the MEOE, set a bound on the ratio of
the magnitudes of the nonlinear and linear terms causing
a change in element i due to the difference in element j
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from the stationary orbit,

|02\ (0i1 /922 + (Dbin /022 + (D302

Rij = / 2 2 2
bi] + bl.2 + bi3
@)

where b;; is the element of B in the i-th row and the j-th
column. By setting an upper limit on the value of R;;, we
can develop bounds on each of the orbital elements. Some
elements of B, such as by1, go to zero at certain values of
L. As a result, the ratio near these points is poorly defined.
Furthermore, a large R;; value occurring when b; (the
i-th row of B) is small still results in a small magnitude
change in b;. In order to avoid these singularities, the
denominator used in Eq. (9 is not the instantaneous value
for a given L but the average value calculated by averaging
|Ib;|| over L. Call this average value ||b;||4,¢. The bounds
on Az; can then be written as

billa
|AZj| < min ( min (Rmaxm)) (6)
i€[1,5] \ Lef0,27] di; (DIl

where j;; = [0bi1/0z; Obin/dz; dbiz/dz;].

Using the process described above, bounds on the
linearization are generated for an orbit with nominal
values of a = 7000km, e = 0.1,i = /4, Q = /6, and
w = 7/12. In order to determine the impact of the initial
value of each orbital element on the bounds, the initial
orbital elements are varied one at a time while holding
the others fixed. a is varied from 6678km to 16378km,
e is varied from O to 0.8, i is varied from O to 180°, Q is
varied from 0 to 360°, and w is varied from 0 to 360°. Fig.
shows the results for the most interesting relationships.
The upper bound is shown in blue, the nominal value in
yellow, and the lower bound in red.

The main determining factor in the semimajor axis
bounds is the semimajor axis, with larger semimajor axes
having larger bounds. For a low Earth orbit, a limit of
|Aa| = 500km ensures the bounds on the linearization are
satisfied. Similarly, eccentricity is the main determining
factor on the eccentricity bounds with larger eccentricities
having smaller bounds, though RAAN, AOP, and high
inclination influence the eccentricity bounds as well. For
an orbit with low eccentricity, bounds of about 0.1 are ac-
ceptable. The inclination bounds decrease with increasing
inclination and eccentricity. However, the bounds are so
large and the fuel required to enact a change in inclination
so great that it is unlikely that a satellite would maneuver
more than a couple of degrees in inclination, rendering
the linearization valid for all practical cases barring a ret-
rograde orbit with inclination greater than 120°. Likewise,
the bounds on RAAN and AOP are large and unlikely to
be exceeded, so these plots are not included.

Overall, the linearization will hold when the semimajor
axis error is kept below 500km, the eccentricity error
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Fig. 1 Element limits for valid linearization under
changing initial element values.

kept below 0.1 for low eccentricities and below 0.05 for
eccentricities near 0.5, the eccentricity kept below 0.5, the
inclination kept below 120°, changes in AOP kept below
50°, and changes in RAAN and inclination kept below
10° for prograde orbits and 5° for retrograde orbits.

Now that it has been shown that the nonlinear term in
Eq. @) can be neglected in the cases described above, we
can use the linear equation

— = B(z:, L)u (7
to approximate the change in the orbital elements over
time.

Applying the variation of constants formula to the
above equation gives

2(t) = 7 + / [ B(zs, L(v))u(v)dy (8)
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If we discretize the system by setting ¢ = kAf, using it
to calculate Ly = L(kAt), and treating B and u as being
fixed at each time step, the equation becomes

k
Ziyl = 2o + At Z Bju; )]
j=0

With this equation, the problem of reachability can now
be formulated as a linear program (LP). To enforce the
upper and lower bounds on u, create separate variables u™*
and u~, both in [0,u,,4x], such that u = u* —u~. The LP
formulation can be written as

. ¥ _
Minimize Z Z u; +ugy
ki
with decision variables :

uh € [0,umax] ¥ k € [0..
Uy €[0,umax] ¥V k € [0..

kel, i€ {r,0,h}
ke, i € {r,0,h}

such that :
kg
Zfd—{f < 1z +AfZlelj < Zfd+§f
=0

where (; is the allowable error in the final state, and the
desired final state is zr4. Due to the fact that the control is
held constant during each step, reaching an exact state may
be impossible, requiring the inclusion of error bounds.
Once the optimal solution is known, the orbital elements
at each step k can be calculated using Eq. (9). The total
fuel required can be approximated as the value of the
objective function times At.

Two simple scenarios are used to test the problem
formulation. First, the problem of raising a circular orbit
from 1000km in altitude to 1500km in altitude using a
maximum acceleration of 0.01m/s? is considered. The
optimal low thrust orbit raise for a circular orbit is a
continuous thrust in the velocity vector direction and

consumes a total delta-v of Av = N,u/ao - \/,u/af|26.

The time needed to complete the maneuver is ty — #o =

(,u/umax)|a 112 _ 472 For the given problem, the
required Av according to the equation is 237.1m/s. Solving
the MILP using a commercial MILP solver produces
an estimated velocity requirement for the orbit raise is
235.4m/s, a deviation from the analytical solution of less
than 1%.

The second scenario requires an inclination change of
two degrees within ten orbits. The orbit is circular and has
an altitude of 1000km. The Av required for an impulsive
transfer is Av = 2vsin Az‘ If multiple small impulsive
manuevers are performed rather than a single large ma—
neuver, the required velocity change is Av = 2nv sin 5+ 2 ,
where 7 is the number of maneuvers. Assuming the ma-
neuver is conducted using a max acceleration of 0.01m/s>



over the course of forty orbits (eighty maneuvers), the
required Av = 256.6m/s. Since only about three m/s is
required per maneuver, it is sufficient to assume the Av
required for an instantaneous small inclination change is
approximately equal to that required for an inclination
change maneuver spread over a couple of minutes using
low thrust. The result from the equation should be com-
parable to that provided by the linear program. Indeed,
the linear program predicts a Av of 253.9m/s, yielding an
error of 1%. These simple examples, when combined with
the mathematical validation provided above, bound the
accuracy of the linearization approach in predicting the
Av required for a low Earth orbit transfer. The predicted
Av can then be used to determine the reachability of one
orbit from another.

C. Dynamics
The scenario is divided into periods during which

no maneuvers occur. During such a period, the orbital
elements of the satellites over time are found using the
mean anomaly, since M — My = nt, where n is the mean
motion. The mean anomaly is then used with Kepler’s
equation, M = E — esin(E), to obtain the eccentric
anomaly E. Since Kepler’s equation is transcendental in
E, bicubic interpolation is used to solve for E. E can then
be used to obtain v. The change in the other classical
orbital elements over time is calculated using the secular
growth caused by J, and J4%7. All maneuvers are assumed
to be instantaneous. The scenario is propagated until a
maneuver time is reached. The change in orbital elements
or in velocity is then added to the current state. Propagation
then continues until the next maneuver is reached.

D. Coverage
Because the calculation of satellite revisit metrics is

nonlinear and computationally expensive, we compute the
rise and set times for the nominal constellation, the satellite
constellation from which no assets have been removed.
The method used for calculating the rise and set times is
adapted from the methods developed by Alfano“8. For
each ground station, a matrix is constructed to describe the
access to that station over time. The rows correspond to
the sorted rise and set times, while the columns correspond
to the satellites. The matrix is binary such that a one in
the (i, j) place indicates that the j-th satellite can access
the ground station from the i-th time until the (i + 1)-th
time. There is a corresponding vector of times, T, to
match the rows of the matrix. Form an access array A
by concatenating the accesses for each station and a time
matrix 7. Ty is the i-th rise or set time for the k-th station.
Ajjx is one if the j-th satellite can access the k-th ground
station between T and T{;11)r. Also calculate the length
of each time step, ATjx = T;+1)x — Tix. The access array
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and time matrix can be used to calculate revisit metrics
and in the resilience calculations outlined in the following
section.

E. Resilience

This section discusses a method for formulating the
problem of finding the combination of losses of assets most
damaging to the constellation performance as a mixed
integer linear program (MILP). The exact formulation
will depend on the metric used in the optimization, but
here we treat only the problem of finding the combination
of removals that maximizes the longest gap in coverage
seen by any of the ground stations (maximum revisit
time over all points). Call the number of satellites in the
nominal constellation n, the number of removals n,., and
the number of ground stations 7.

Define the decision variable x; € {0,1}Vj = 1,2,...,n,,
a binary satellite inclusion variable that is one if the j-th
satellite is active and zero otherwise. To produce the
correct number of removals, we define the constraint

U

ij =ng —n, (10)

J=1

It is then necessary to determine how many satellites
are available to each station at any given time. The access
sum, Ajr, gives the number of satellites available to ground
station k at its i-th time step,

ns

Ak = ) Ay (11)
j=1

We can then calculate whether a sufficient number of
assets are available for access at each period. Define
n. as the number of assets required to be in view of the
ground station simultaneously for successful access. The
calculation of this access requires the introduction of a
new binary variable, Y;x € {0, 1}. Yjt is one if the required
number of assets are accessible by station k at time i and
zero otherwise. In order to force Y, to take the appropriate
value, we introduce the following constraints. Note that
the second is a big-M constraint. Set M = ng — n. + 1.

A.
Y < 5 Vie [l — 1]k €[l.ng]
(12)
MYy > Ay —ne+1 Vie[l.n — 1]k €[l..ng]
(13)

Eq. (I2) ensures that Yy is zero if insufficient satellites
are available. Eq. (I3) ensures that Y is one if at least
n. satellites are available.

The maximum revisit time of a ground station is the
longest period for which that station is without coverage.



The maximum of the maximum revisit times is the largest
gap in coverage for any station in the scenario. The
formulation begins with the definition of an accumulator
variable a;;x € Rs¢. The accumulator variable counts the
amount of time at each step since the end of the previous
pass. During a pass and immediately after the pass ends,
the accumulator should be zero. The constraints below are
big-M constraints. To distinguish from the big-M value
used in Eq. (I2), the big-M value in these constraints will
be referred to as M>. The most conservative value for M5 is
the length of the scenario plus a small constant. However,
using smaller values to aid convergence is encouraged
if it is guaranteed that no gap will ever exceed the value
chosen for M>.

The constraints needed to force a;i to take the appro-
priate value are slightly different for the first time step
than for the rest of the scenario. ay; has the constraints

(14)
15)
These constraints ensure that a;x will be equal to the
length of the first time step if there is no access when the

scenario begins. The constraints for the rest of the time
period are

ayg = ATy — MaYig V k € [1..ng]
ayx < ATy + MhY1kV ke [lng]

aik 2 ag-y + ATy — MaY Vi € [2.n, — 1],k € [1..ng]
(16)

ajk < ag-nk + AT + MY Yi€ [2.n, — 1],k € [1..ng]
)

Likewise, these constraints ensure that a;; will be equal
to the previous accumulator value plus the time step if
there is no access at the current time. Finally, a;;x must be
zero if there is access at the current time, so

ajx < Mr(1-Yy)Vie[l.n, — 1]k €[l.ng] (18)

The length of the largest gap is equal to the largest
value of a;;. To find this value, introduce a variable
amax € R>o. Because the goal is to maximize amax, there
must be an upper bound on ap,x to prevent it growing
unbounded. Therefore, it is required that ayx is less than
or equal to exactly one of the values of a. To this end,
introduce additional binary variables §;; € R~ D*ng,
This formulation will drive amax to the largest value of a
and can be enforced with the constraints

amax < ai + (1 = 6 )M Vi€ [l..n, — 1],k € [1..ng]

19)

(20)

—_

i=1 k=1

The linear programming problem is

Minimize — amax
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with decision variables :
X; € {0,1} Vje[l..ng]
Yik €{0,1} Vie[l.n] ke[l.ng]

aik €Ryo Vie[l.n,— 1]k €[l.ng]
amax € Ryxg
6ik € {071}

subject to the

Vie[l.n — 1],k €[1..ng]
constraints in Eqgs.

I'V. Scenario description

One benefit of both nanosatellites and rideshare launches
is the ability to use them on short notice. This feature is
especially beneficial in the event of an emergency, when
there is insufficient time to build and deploy a traditional
satellite constellation. To simulate such a scenario, con-
sider the case of fire detection over California. The goal
is to deploy a constellation of nanosatellites constructed
of COTS parts using rideshare opportunities in a timely
manner. The nanosatellites are identical and have the
following subsystems: MPS-130 2U propulsion module
by Aerojet Rocketdyne (thrust of 1.25N, specific impulse
of 235s, and fuel mass of 1.4kg) [t Helios deployable
helical antennaﬂ; ISIS VHF downlink/UHF uplink full
duplex transceiver . BAox high energy density battery ar-
ray B, Crystalspace P1U Vasik EPS B. CubeSat Solar panel
DHV—CS-IOEI; Cube ADCS 3-Axis with medium wheels E];
Chameleon multispectral imager (ground sample distance
of 9.6m at 500km) ]

With the exception of the propulsion system and the
imager, the components listed above serve only to estimate
the cost and mass required for the satellite and do not
represent a finalized design. The propulsion system dic-
tates the maneuvers that can be performed by the satellite,
while the imager dictates the image resolution, limiting
the maximum altitude of the satellites.

A set of rideshare options was simulated by taking
the two line elements (TLEs) of satellites launched over a
thirty day period. This sampling is meant to be an example
set of launches and is not indicative of the launches that
would be available for an actual mission. The results will
vary based on the particular set of launches available. The
orbital elements corresponding to the TLEs are shown
in Table[I] where each row represents a different launch
with the angles are in degrees and the semimajor axis in
kilometers.

* http://www.rocket.com/files/aerojet/documents/

CubeSat/MPS-130%20data%20sheet%20crop.pdf

T Specifications acquired from https://www.cubesatshop,
com/

* http://41.185.8.177/~cubespac/ClientDownloads/
CubeADCS_3Axis_Specsheet_V1.1.pdf


http://www.rocket.com/files/aerojet/documents/CubeSat/MPS-130%20data%20sheet%20crop.pdf
http://www.rocket.com/files/aerojet/documents/CubeSat/MPS-130%20data%20sheet%20crop.pdf
https://www.cubesatshop.com/
https://www.cubesatshop.com/
http://41.185.8.177/~cubespac/ClientDownloads/CubeADCS_3Axis_Specsheet_V1.1.pdf
http://41.185.8.177/~cubespac/ClientDownloads/CubeADCS_3Axis_Specsheet_V1.1.pdf

Table 1 Rideshare orbital elements

Launch a e i w Q
1 6823 0.0018 929 1183 2535
2 6823 0.0018 929 118.6 2535
3 6823  0.0017 929 1242 2535
4 6823 0.0018 929 1246 2535
5 6966 0.0014 979 1532 1583
6 6966 0.0014 979 151.1 1583
7 28241 0.0117 55.0 1763 1569
8 28243 0.0116 55.0 1764 156.9
9 7090 0.0091 98.6 3374 340.2
10 15700 0.5808 55.0 1725 153.7
11 15531 0.5723 269 1959 2404
12 7161 0.0011 98.6 1653 339.7
13 6673 0.0021 51.6 3403 2379
14 6837 0.0019 919 59.6 251.1
15 6975 0.0032 97.7 1750 158.0
16 6784 0.0008 51.6 359 237.1
17 42133 0.0010 00 964 959
18 28820 0.0089 549 4.6 156.8

The optimization selects a set of launches, assigns
satellites to each selected launch, and sets a reconfiguration
for each launch by setting the change in orbital elements.
The satellites’ orbital elements will be the orbital elements
of the launch plus the change in orbital elements. The
satellites will be evenly distributed in true anomaly around
the orbit. The transfer is considered feasible if the final
orbit can be reached from the initial orbit, as described in
the previous section, within ten orbits using the available
fuel and thrust. A segment of the genome produced by
the genetic algorithm would have the form x; = [launch
assignment, number of satellites, Aa, Ae, Ai, Aw, AQ,
Av]. The genome is permitted to have between one
and twenty segments. It is possible that multiple planes
of satellites may be deployed from a single launch by
assigning multiple orbital element changes to one launch.
In a simulation of a real-life scenario, it would be beneficial
to introduce a constraint ensuring that the mass capacity
for rideshare of a vehicle is not exceeded. The total
number of satellites launched is not to exceed fifty.

Because the goal of the scenario is to maximize cov-
erage over the state of California, a set of points evenly
spaced with 100 miles between them was generated within
the state. A minimum elevation limit for access of five de-
grees was imposed. A maximum ground sample distance
(GSD) of 25m is also required for access. The satellites
are assumed to be able to slew sufficiently to cover the area
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of interest, so no constraint is imposed on the off-boresight
angle of the satellite. Some of the launch opportunities,
such as launch 17, are incompatible with the mission re-
quirements due to their high altitude, which would result
in a GSD that violated the access requirements. These
launches are still included in the optimization to test the
algorithm’s ability to avoid infeasible solutions.

The quality of access provided by a given solution is
evaluated using two metrics: the average time average gap
(TAG) of the ground points and the maximum revisit time
over all points. The TAG of a ground point is defined as

>89PS(Gap Duration)?
Coverage Interval

G= 1)
TAG provides the average time until next coverage for
a given ground point when starting from an arbitrary
time in the scenario. The maximum revisit time over
all points calculates the longest time that each point is
without coverage, then takes the largest of these values.
The total number of satellites is minimized in order to
survey the entire solution space and to determine the
coverage possible at varying asset levels.

Due to the relatively high failure rate of nanosatellites,
it is necessary to consider the possibility that some of
the satellites may fail prematurely. The impact of this
possibility is measured by determining the worst-case
maximum revisit time over all points when twenty percent
of the satellites are removed from the scenario. The linear
programming approach discussed in the previous section
is applied in order to get this worst-case objective value.
The optimization problem therefore has four objectives:
minimize average TAG, minimize maximum revisit time
over all points, minimize degraded maximum revisit time
over all points, and minimize number of satellites.

A scenario time of ninety days is used when calculat-
ing the nominal objectives. The degraded analysis uses
a ten day scenario time to limit the size of the linear
programming problem. The simulation is run until ten
successive generations produce no improvement in the
archive. A new population is then generated using the
archive and randomly generated members''®. An initial
population of 200 candidates is used, with the population
being scaled each run to be four times the archive size.
This process is repeated for ten runs. For comparison
purposes, optimization is performed on a Walker delta
constellation with up to fifty satellites and up to twenty
planes. The Walker formulation does not undergo re-
configuration. It seeks to minimize the total number of
planes in addition to the objectives stated for the rideshare
scenario.
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V. Results

The rideshare simulation produced a Pareto frontier
with 31 results. The Pareto frontier is shown in Fig. [2]
The TAG of the Pareto-optimal solutions ranges from 52
minutes for the larger constellations to 11.2 hours for a
single satellite. The maximum revisit time over all points
takes values between 3.8 and 12.4 hours. The degraded
maximum revisit time over all points takes values between
5.0 and 11.6 hours, discounting the single-satellite case.
Note the diminishing returns gained by adding satellites
beyond the tenth. Indeed, the objective values change very
slightly between 20 and 35 satellites. Fig. [3] shows the
number of launches used by each solution. The theoretical
FireSat-II example requires a revisit time of eight hours
to identify nascent forest fires”. The imaging capability
provided by the rideshare constellations is sufficient for
detection on such a timeline. The rideshare constellation
performance is inferior to proposed constellation designs
such as the FUEGO program, which achieves 25 minute
revisit times using dedicated launches??.

An example rideshare constellation using 30 satellites
is shown in Fig. @ The constellation consists of two
sets of near-polar orbits spaced about ninety degrees
apart in RAAN, plus a pair of orbits near 50 degrees in
inclination. During the ninety day simulation time, the
polar orbits maintain similar relative positions, but the
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relative position of the 50 degree orbit with respect to the
polar orbits varies.

The stagnation of the values with increasing numbers
of satellites highlights the critical flaw in rideshare con-
stellations. Because the initial launch values are fixed in
such a way that may not be beneficial to the rideshare
mission, the resulting constellation can have large gaps
in coverage when the rideshare orbits do not overlap in a
fortuitous manner. The ability to maneuver the satellites
helps to mitigate the problem, but the high Av cost to
enact a change in orbital plane impedes the constellation’s
ability to achieve the uniform formation often used in
constellation design.

There are two ways to increase the performance of the
rideshare constellation. The first is to have a greater num-
ber of rideshare opportunities available. This simulation
used only one month’s worth of launches. By permitting
the satellites to be launched over a longer time period,
more rideshares become available, increasing available
orbit diversity. However, spreading the launch of the
constellation over a longer period of time decreases the
overall life of the constellation, since the time from when
to constellation is fully population to when the first satellite
reaches the end of its life is decreased. The other method
for increasing constellation performance and spacing be-
tween orbits is to increase the maneuvering capability of
the satellites. Manuevering can be improved by either
increasing the amount of fuel onboard the satellites or by
using a low-thrust, high I, electric propulsion system.
The latter case increases the overall Av, but requires more
time to get the constellation to its final configuration.

Compare the performance of the rideshare constel-
lations to the Walker constellations optimized using the
genetic algorithm. The Pareto frontier for the Walker case
is shown in Fig. [5} Clearly, the Walker constellations offer
superior performance over the rideshare constellations.
A Walker constellation of four satellites has compara-
ble performance to a rideshare constellation of 15-20
satellites. Furthermore, satellites can be added to the
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Walker constellation to improve coverage until continuous
coverage is reached, whereas the rideshare constellation
has unfillable gaps due to the relative placement of the
rideshare orbits. However, the cost of launching four satel-
lites on dedicated rides is likely greater than the cost of the
additional satellites needed for the rideshare constellation.
The cost for the components listed in the previous section
is $283K for everything except the propulsion system,
which is still in development and does not have a pub-
lished price. If the total cost is approximately $400K with
the propulsion system, the satellite cost would be $6M
for the rideshare constellation and $1.6M for the Walker
constellation. Neither price includes the cost of testing or
software development. The Walker constellation would
require two to four launches to LEO, a cost of $36.8M-
73.6M using Pegasus XL rockets”. Conversely, with a
$30K per kilogram rideshare launch cost and a spacecraft
weighing about 10kg, the rideshare launch cost is only
$4.5M. Therefore, if the performance limitations of the
rideshare constellation are acceptable, a constellation can
be developed for about a quarter of the cost of a traditional
Walker constellation. Fires in the state of California cause
billions of dollars in damage each year, so the low cost of
a fire detection constellation has the potential to pay for
itself many times over.

VI. Conclusions

This paper outlines new methodologies for reachability
and resilience analyses for constellations of nanosatellites.
These methods leverage linear programming techniques
and offer savings in computation time over other methods.
It also analyzes the ability of a constellation built using only
rideshare opportunities to provide coverage over California
to perform fire detection. An average time average gap of
less than one hour is achievable, as is a maximum revisit
time over all points of less than four hours. The rideshare
performance is compared to the performance of a Walker
constellation. Although the Walker constellation can
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achieve arbitrary levels of coverage through the addition
of further satellites, rideshare constellations are capable
of meeting the capabilities of small Walker constellations
at greatly reduced cost.
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