
UNDERSTANDING THE POLAR ATMOSPHERIC DYNAMICS OF  
JUPITER AND SATURN 

 
Justin Garland, Hampton University 

Kunio Sayanagi, Hampton University  
 

 
Abstract 

 
Our project examines the mechanisms     

that form and maintain the cloud bands on        
Jupiter and Saturn by quantifying the      
differences between the two planets.     
Specifically, the spatial scales of cloud patterns       
as a function of latitude, which should reflect        
the scale of atmospheric turbulence on each of        
the planets, can be measured with a variety of         
methods. We examine this quantity using the       
Fast Fourier Transform (FFT) of the      
autocorrelation field, the Lomb-Scargle    
periodogram, and manual/automated feature    
identification. For Jupiter, we analyze data      
captured by JunoCam aboard the Juno      
spacecraft; for Saturn, we use the images from        
the Cassini Imaging Science Subsystem (ISS).      
Measurements of Jupiter’s polar atmospheric     
turbulence are possible for the first time,       
enabled by images with unprecedented spatial      
resolution captured by JunoCam. We test the       
prediction that small vortices become more      
prevalent toward the poles and prevent cloud       
bands from forming at those latitudes on       
Jupiter, while Saturn’s vortex scales do not       
become small enough to disrupt its banded       
structure. Objectives of our research include      
quantifying the differences between the two      
planets in order to test predictions of transition        
to polar turbulence on Jupiter and      
non-transition on Saturn and informing gas      
giant atmospheric dynamics models.  
 
 
 
 
 

 
Introduction 

 
While the visible appearance of Jupiter      

and Saturn are both dominated by cloud bands,        
their morphologies critically diverge toward the      
poles. Saturn’s banded morphology continues     
up to the poles, culminating with      
well-organized polar vortices. In contrast,     
Jupiter’s cloud bands only extend to around       
65° latitudes with the poles exhibiting a largely        
chaotic arrangement of vortices. Jupiter’s cloud      
morphology becomes turbulent toward the     
poles and neither pole harbors an organized       
polar vortex. This disparity is hypothesized to       
be caused by differences in the relationship       
between the scale of atmospheric turbulence      
and the planetary radius 9,10,18,19 . In particular,      
these hypotheses predict that small vortices      
become more prevalent toward the poles.      
Cloud patterns on Jupiter and Saturn should       
exhibit the predicted latitude-dependent scales     
of turbulence. Previously, for Jupiter, the spatial       
power spectrum of the cloud reflectivity maps       
has been computed to analyze the scale of        
clouds between ±60° latitudes 5 . Jupiter’s poles      
were never imaged in visible light before       
Juno’s arrival, and thus the polar latitudes were        
not included in previous analyses. Jupiter’s      
polar cloud spatial scales thus remain      
unexamined, a primary goal of this work.       
Saturn’s polar cloud morphology has been      
documented using high resolution images     
captured during Cassini’s high inclination     
Grand Finale orbits 20 ; however, its spatial      
scales also remain to be measured.  

We will first discuss each of our three        
methods (FFT, Lomb-Scargle, and    
manual/automated identification). Then, we    
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will detail the JunoCam and Cassini datasets       
these methods are applied to. Finally, our initial        
results and next steps are detailed. 
 

Methods 
 

FFT Autocorrelation 
 

Our first method involves a     
two-dimensional Fast Fourier Transform (FFT)     
of the autocorrelation field. An autocorrelation      
field is generated by computing the correlation       
of an image containing cloud features with a        
copy of itself as it is shifted horizontally by a          
“lag” amount of pixels. The correlation value       
without any shift would be 1.0, indicating no        
difference in the correlated images, and the       
correlation decreases in most images as the       
horizontal shift grows. The fall-off distance in       
the autocorrelation field can characterize the      
spatial scales contained in the image. Pixel lags        
corresponding to dominate scales of features      
will have higher correlation values in the       
resulting plot. This process in the form of an         
equation is summarized as: 
 

(1) (k) (n ) a(n)Caa =  ∑
N/2

n = −N/2
a + k  

 
where C aa (k) is the autocorrelation field at a lag         
k, N is the width of the input image in pixels,           
and ā is a copy of the original image a(n+k)          
that is unshifted. Taking the square of the FFT         
of the resultant autocorrelation field gives a       
power spectrum, which peaks at lags that       
contain the dominant scales of features in the        
image. By computing the power spectrum for       
small portions of Jupiter and Saturn’s surfaces,       
we can measure the change in the spectral        
characteristics in latitude. The advantage of the       
FFT method is that it is sensitive to east-west,         
north-south anisotropy, which is predicted to be       
important in determining jet- vs.     
vortex-dominated flow regimes on Jupiter 26 . 
 

Lomb-Scargle Periodogram 
 

The Lomb-Scargle (LS) periodogram    
method 10 has previously been applied for      
images of Jupiter 6 . The LS method performs a        
spectral transform similar to the FFT, except       
that the source data sampling can be incomplete        
and irregular, which is an advantage in our        
project as JunoCam data rarely provides full       
longitudinal data at any single latitude. It also        
allows comparison of spectra with different      
intensity levels allowing better comparisons     
between instruments. Using the LS method, we       
measure the scale of clouds in the east-west        
directions as a function of latitude in a similar         
manner to the previous method, allowing these       
two calculations to support the others’ result.       
We have only initially examined a treatment of        
JunoCam and Cassini data using the LS       
method. 

 
Feature Identification: Manual 
 

We extend previous work 15,23 on     
manually identifying cloud features and their      
spatial scales by searching for features in       
JunoCam and Cassini images. By plotting these       
features to examine their occurrence and size       
by latitude, we provide another check of the        
previous two methods. This is done by simply        
visually inspecting each JunoCam and Cassini      
image and circling and sorting various cloud       
features by size and type. This provides a        
measure, though biased by human judgement,      
of feature scale in each image that may be         
compared to the results of the FFT and LS         
methods. 
 
Feature Identification: Automated 
 

Manual identification can itself be     
automated via machine learning techniques.     
Convolutional neural networks (CNNs) are a      
class of deep-learning neural networks     
commonly used to identify features in images.       
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They consist of an input layer of data which is          
passed through several “convolutional” layers.     
These perform cross-correlation operations on     
the data based on automatically generated      
filters learnable from training datasets. These      
filters do not require human guided definitions,       
allowing CNNs to better resolve features in the        
raw data without loss of information. They       
output maps of extent and number of identified        
features found in the image. Many open source        
CNN codes exist, and the technique has been        
successfully used in planetary science. Other      
flavors of neural network have been used to        
identify impact craters in images 1,21,23 and in       
2016 Cohen et al. showed preliminary results       
of a CNN outpreforming previous methods      
used on the same dataset 4 . CNNs have also        
been used to identify volcanic rootless cones       
and transverse aeolian ridges in Mars      
Reconnaissance Orbiter datasets 11 . More    
relevant to atmospheric science, Pankratius et      
al. utilized a CNN to identify gravity waves on         
Earth from lee cloud wave patterns in Moderate        
Resolution Imaging Spectroradiometer data,    
achieving a 96 percent identification rate 12 . We       
are working to develop an open-source pipeline       
utilizing the PyTorch 16 framework to     
automatically identify cloud features using a      
CNN with my manual identifications as      
training sets. PyTorch was selected due to its        
flexibility and computational speed in initial      
experimentation. This code will allow new      
JunoCam flybys to be analyzed promptly after       
release and may be extended to the full library         
of Cassini ISS data. 
 

Datasets 
 
JunoCam 
 

JunoCam is a 58 degree field of view 
camera aboard the Juno spacecraft with 4 
filters: red (600-800 nm), green (500-600 nm), 
blue (420-520 nm), and a methane band 
(880-900 nm). Filters were chosen to meet 

signal to noise requirements imaging the poles 
and to allow reconstruction of true-color 
images as a public outreach tool 6 . Juno’s close 
passes to Jupiter give the camera a resolution of 
3 kilometers per pixel around the equator 
during “perijove” and a resolution of 50 km per 
pixel over the poles 6 . This represents an order 
of magnitude improvement over Cassini images 
of Jupiter 6,14 . RGB and methane images are 
taken as strips during successive 30 second 
rotations of the spacecraft. JunoCam images 
become publicly available on the Planetary 
Data System (PDS) 7   a few months after they 
are downlinked to Earth. We process images 
using the Integrated Software for Imagers and 
Spectrometers (ISIS3) software developed by 
the U.S. Geological Survey 24 , which can 
calibrate and map-project images of planetary 
bodies captured by various missions. ISIS3 
Cassini ISS modules have been actively used at 
Hampton University for various analyses of 
Saturn 2 . The JunoCam module was publicly 
released earlier this year, which we have 
successfully used to process all presently 
released JunoCam images. My pipeline 
accounts for some of the difficulties presented 
by JunoCam’s design. Each image consists 
framelets, taken during each spacecraft rotation, 
which must be first mapped to preserve 
pointing data then mosaiced together into a 
final image. The result of this mapping and 
mosaicing procedure is shown in Figure 1.   

 
Cassini 
 

We focus on Cassini ISS views in the        
CB2 (750 nm), MT2 (727 nm), and MT3 (889         
nm) narrow-band filters of Saturn to compare       
the morphology of clouds between the two       
planets 15 . Additionally, we have mapped     
images from Cassini’s encounter with Jupiter in       
the same filters to serve as a check on results          
from JunoCam at lower latitudes. These filters       
overlap some of JunoCam’s, allowing     
comparisons at the same atmospheric levels 
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Figure 1: Examples of raw (upper) and final (lower) 

JunoCam images from data processed with ISIS3. The 
raw image shows three framelet strips which must be 

separately map projected before mosaicing into a final 
image This image is a polar-projected, red-filter view 

from perijove 4 data. 
 
between the two datasets. They are also       
frequently used and provide a large dataset       
both for analysis and training CNNs. Images       
have been selected that both have sufficient       
spatial resolution to be analyzed and that cover        
a large range of latitudes, focused on the poles.         
The project utilizes publicly available data on       
the PDS. Interestingly for Jupiter, by analyzing       
the same regions of the planet in the different         
spatial resolutions provided by Cassini and      
JunoCam we may be able to probe the scales at          
which turbulent flow is dissipated on the       
planet. This adds further value to examining       
Cassini data of Jupiter. 
 

 

Initial Results 
 

We have completed two main tasks in 
our first year of work: mapping and mosaicing 
JunoCam images and computing the power 
spectrum of individual images. We have 
developed a code to compute the FFT of the 
autocorrelation field for JunoCam images. An 
initial autocorrelation field may be seen in 
Figures 2, and 3. From our rough power 
spectra, it is clear that additional corrections to 
the public outreached JunoCam data are 
nessicary. Namely, brightness variations in the 
images needs to be corrected and the 
navigation of the images must be improved 
before a dataset-wide search for feature scales 
can be commenced using either our already 
implemented FFT and LS methods.  

We have also begun manual 
identification of features in the JunoCam 
dataset. With the assistance of recent 
undergraduate members of our research group, 
this task should be completed for currently 
available JunoCam data in the coming months.  

Finally, we have began testing a CNN 
treatment of this manual identification set using 
a PyTorch-based pipeline. This, too, relies on 
correct spacecraft navigation to correctly 
identify scales of cloud features by latitude. 
This issue of navigation and data handling is 
the current focus of our efforts. 
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Figure 2: One-dimensional autocorrelation field 

(upper) and power spectrum (lower) from a mid-latitude 
JunoCam image. Each line represents an averaged 100 

pixel latitude band, showing how the fall-off of the 
autocorrelation varies with latitude. The power 

spectrum is the normalized, squared FFT of the upper 
plot. This retrieval is primarily sensitive to brightness 
variations in the image and projected shape rather than 

the characteristic feature scale of clouds. 
 

Future Work 
 

The spacecraft pointing data available 
on the PDS used by ISIS3 to determine what  

 

 
Figure 3: Two-dimensional power spectrum (upper) and 

its one-dimensional expression (lower) from a 
mid-latitude JunoCam image. The 1D power spectrum 
is found by summing rings about the center of the 2D 

spectrum; the blue ring in the upper plot corresponds to 
the blue point in the lower plot. 

 
latitude each pixel in an image falls at is often 
far from accurate, by up to 30 degrees latitude 
in some extreme cases. We have begun 
experimentation using the OMINAS software 
to correct these errors via limb-fitting and 
comparisons to known features visible in the 
images 26 . OMINAS, like ISIS3, implements 

Garland 5 
 



both a JunoCam and Cassini camera model. 
This has led to a relatively straightforward 
process of applying the limb-fitting and named 
feature methods of correcting spacecraft 
pointing to our data. We will use OMINAS to 
update the SPICE (Spacraft, Planet, Instrument, 
“C-matrix”, Events) kernel attached to each 
mapped image with corrected latitude and 
longitude information. This corrected kernel 
may then be sent back to our existing ISIS3 
pipeline. This processing step is the immediate 
step we will take towards our proposed 
measurements. 

Our other measurements (FFT, LS, 
automated identification) heavily depend on 
this correction; however, these measurement 
methods are all operational to various extents. 
The most complete work is with our FFT and 
LS pipelines, which will be applied to the full 
JunoCam and Cassini datasets once OMINAS 
is applied to the data. We will then focus our 
efforts on completing our PyTorch CNN code. 
By comparing these complimentary results, we 
will have a robust view of the primary feature 
scales on Jupiter and Saturn as a function of 
latitude. Comparing results for the two planets 
will achieve our goal of quantifying the 
transition of banded structures to turbulence at 
Jupiter’s poles and Saturn’s lack of such a 
transition. 
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