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Abstract 

Regime shifts, or large changes in state 

or feedbacks in response to relatively small 

driver changes, occur in a wide variety of 

systems from the human body to the global 

climate. Theory suggests that prior to regime 

shifts, changes in statistics such as variance and 

autocorrelation should reflect changes in 

resilience. In ecology, temporal statistical early 

warning indicators have been studied in diverse 

ecosystems and regime shifts, including algal 

blooms. Prior work suggests there may also be 

changes in spatial statistics before blooms. For 

this project, I have used a spatial algal bloom 

model to tested how multiple spatial and 

temporal statistics change through two algal 

bloom regime shifts. I found that the best 

performing statistic and data type (spatial or 

temporal) was specific to regime shift and 

depended on driver variable rate of change. 

These findings will be tested in summer 2019 

during a whole-lake fertilization experiment 

using in-situ measurements as well as a novel 

evaluation of using drone remote sensing to 

provide the data needed for spatial early 

warning indicators of algal blooms. With 

proper validation, emerging technologies like 

drones and CubeSats offer exciting prospects 

for applying spatial EWI methods more widely. 

 

Introduction 

Many systems undergo large, 

seemingly rapid, and unexpected changes, for 

example the onset of seizers in the brain, 

collapses of financial institutions, and climate 

cycles1. Collectively, these types of changes 

are regime shifts – large changes in the 

structure, function, and/or feedbacks of a 

system in response to relatively small changes 

in drivers. Regime shifts have been widely 

studied in diverse ecosystems, including coral 

reefs, fisheries, drylands, and inland lakes2. 

From a management or societal perspective, 

the changes associated with regime shifts are 

often undesirable, making understanding and 

predicting them a worthwhile goal. 

In many ecosystems, regime shifts are 

also tied to resilience – the ability of a system 

to recover from perturbation. Dynamical 

system theory suggests that statistical 

properties of relevant ecosystem state variables 

should change in specific ways as resilience 

decreases and a system approaches a regime 

shift. These statistics are often referred to as early 

warning indicators, or EWI. The two most 

common EWI are changes in variance and 

autocorrelation as a regime shift is 

approached1. These changes can be used to 

predict when a system is heading towards a 

regime shift without exact knowledge of 

ecosystem driver variables or the thresholds at 

which regime shifts occur.  

Algal blooms can be viewed as a 

regime shift from clear-water to algae 

dominated states3. Algae are critical 

components of aquatic ecosystems, and in 

many systems blooms are a normal part of the 

seasonal cycle. However, in many lakes, 

reservoirs, and coastal systems, bloom 

frequency and severity are increasing4 and can 

be indicative of resilience loss. While a number 

of factors either promote or suppress blooms 

(e.g. temperature, wind, grazing pressure5), the 

ultimate cause of blooms is most frequently an 

excess of nutrients.  

Aquatic ecosystems provide many 

important ecosystem services: water for human 

consumption, agriculture, and industry; harvest 

of fish and other food products; power; and 

recreation and other cultural services. The 
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value of these services is large both in terms of 

directly quantifiable dollar values and indirect 

benefits6. Blooms have large effects on water 

quality. A study of freshwaters in the US 

estimated annual costs associated with 

eutrophication of $2.2 billion, largely from the 

impacts of algal blooms7. Predicting where and 

when blooms are likely to occur would be 

helpful, as it might allow for actions that avoid 

or minimize negative impacts. For example, 

advanced warning of blooms in drinking water 

reservoirs might allow managers to reduce 

nutrient inputs to prevent a bloom, or at least 

take a water supply offline while it is treated 

with algicides. EWI offer a potential way to 

provide this warning using resilience loss 

associated with regime shifts. 

EWI are expected and have been 

studied in both temporal and spatial data8. 

Temporal EWI are mostly frequently 

determined using rolling window statistics, 

where the EWI statistic (e.g. variance or 

autocorrelation) are repeatedly calculated on 

shifting subsets of time series9. When a 

controlling driver is moving towards a regime 

shift, that change is reflected in the EWI 

calculated on each sub time series. For spatial 

EWI, measurements of state variable(s) are 

taken at several different locations within the 

ecosystem at approximately the same time. 

Near regime shift thresholds, low resilience 

allows shocks to persist and spread spatially, 

creating patches and increasing spatial variance 

and autocorrelation. 

In aquatic ecosystems there have been 

fewer studies of spatial EWI relative to 

temporal EWI. Many early studies on EWI 

focused on temporal EWI using ecosystem 

models10. These theoretical results were tested 

using laboratory studies, historical data, and 

whole-ecosystem experiments8. At the 

ecosystem scale, spatial EWI have been most 

well studied in terrestrial ecosystems using 

models of arid vegetation11. These models 

generated hypotheses that have been tested 

using field experiments and observational 

remote sensing data12,13. In aquatic ecosystems, 

horizontal spatial heterogeneity is commonly 

acknowledged but infrequently quantified14 

due to the time and cost of collecting multiple 

measurements.  

The fluid nature of aquatic ecosystem 

may provide some justification that 

measurements at one or a few locations can be 

representative of an entire ecosystem like a 

lake, especially if collected over sufficiently 

long time periods15. However, other studies 

have documented strong “patchiness” in 

variables ranging from physical to chemical to 

biological14. The success of temporal EWI in 

aquatic systems noted above suggests either 

that patchiness is not important in those 

systems, or that the frequency of data collection 

or time scales over which data are averaged 

limit the impact of spatial processes on 

temporal EWI. 

Aquatic spatial EWI studies have 

mostly been empirical, with initial studies 

focused on organisms like nekton that largely 

control their spatial distribution. A few studies 

have looked at spatial EWI in fish catch data in 

small lakes16 and continental shelves17, finding 

that spatial variance increased prior to regime 

shifts. Recent experimental studies of marine 

benthic algae communities have found that 

spatial EWI change predictably near thresholds 

of algal canopy removal18. 

Three previous studies have focused on 

spatial EWI related to algal blooms. The first 

used a simple eutrophication model, finding 

that spatial variance increased when nutrient 

inputs were increased towards a regime shift19. 

While this study provided the first evidence 

that algal blooms may be preceded by changes 

in spatial EWI, both the physical and biological 

components of the model do not include 

important processes present in real aquatic 

systems. A second study looked at how spatial 

EWI changed during an experimentally 

induced algal bloom, finding large differences 

in spatial EWI before, during, and after the 

bloom20. This study provided the first empirical 



Buelo 
 

3 

evidence that spatial EWI change with algal 

bloom state. However, it was limited by the 

relatively coarse temporal resolution of 

sampling and unknown specifics of the regime 

shift (e.g. precise bloom timing and regime 

shift threshold values). 

To address some of the limitations of 

prior studies on spatial EWI in algal blooms, as 

part of my previous VSGC fellowship I 

implemented a published spatial algal bloom 

model21 with more realistic physical and 

biological components. I looked at how spatial 

EWI are expected to change across bloom 

states and near regime shifts. My work, 

published last year, found that spatial EWI 

were distinct for each bloom state and changed 

near regime shifts using steady-state 

simulations22. It suggested that spatial EWI 

could be used to classify and compare different 

aquatic ecosystems for their bloom state and 

determine relative distance from regimes shifts. 

However, because simulations were done at 

steady-state (i.e. nutrient input rate was 

constant for each simulation), we were not able 

to conclude that changes in spatial EWI would 

occur before a bloom when nutrient loading is 

changing in time. This is an important 

distinction from a management perspective, 

where changes in EWI indicating a regime shift 

could be used to prevent or prepare for an algal 

bloom.  

While there have been experiments 

looking at changes in both spatial20 and 

temporal EWI prior to blooms23,24, to date there 

has not been an empirical, direct comparison of 

these two methods. This summer (2019), our 

research group will conduct such a comparison 

in a whole-lake fertilization experiment. To 

prepare for this ecosystem-scale field 

experiment, I have built on my previous VSGC 

fellowship work to generate hypotheses on 

which EWI indicator(s) will work best. I have 

done this by adapting the spatial algal bloom 

model22 for use with time-varying nutrient 

loading. Additionally, I have prepared to test 

the ability of drone-base remote sensing to 

collect the spatial data on algal blooms needed 

for spatial EWI methods.  

 

Methods 

Spatial algal bloom model 

Model description - The algal bloom 

model uses a two dimensional spatial grid 

(180 x 180 cells) and has two state variables, 

nutrients (n) and phytoplankton (p), whose 

dynamics are defined by a pair of differential 

equations: 
 

𝜕𝑝 = [𝑑∇2𝑝 − (∇ ∙ 𝑣𝑝) + 
𝑛

1+𝑛
𝑝 − 𝑓𝑝

𝑝

1+𝑝
] 𝜕𝑡 + 𝑝𝜎𝑑𝑊       (1) 

𝜕𝑛 = [𝑑∇2𝑛 − (∇ ∙ 𝑣𝑛) + 𝑖𝑛 − 𝑎
𝑛

1+𝑛
𝑝 − 𝑚𝑛𝑛] 𝜕𝑡              (2) 

 

The first terms in the square brackets of 

equations 1 and 2 represent diffusion. The 

second terms represent advection. For 

nutrients (1), the final three terms represent 

nutrient inputs, nutrient loss to phytoplankton 

uptake, and nutrient loss to sinking, 

respectively. The nutrient input rate in is the 

main control variable in this study, and its 

value determines the dynamic state of the 

model. For phytoplankton (2), the third term 

in the brackets is growth from nutrient uptake 

and the last represents losses to zooplankton 

grazing. The final term in (2) outside the 

square brackets is random noise, which is 

added to each grid cell individually to 

represent random fluctuations and processes 

not included in the model. 

 There are three dynamic states 

occurring at different values of in. At low in 

the model is in a stable equilibrium state, with 

temporally constant and spatially uniform 

(neglecting small noise) concentrations of 

phytoplankton. As in increases, the stable 

concentration increases for both nutrients and 

phytoplankton. Near in = 0.5, the system 

undergoes a regime shift (Hopf bifurcation) 

from the low phytoplankton stable state to a 

stable limit cycle. In this “cycling bloom 

state”, concentrations of nutrients and 

phytoplankton oscillate in time, and interact 

with the advective field to create spatial 

patchiness. The amplitude and baseline of the 
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phytoplankton oscillations grow until in ≈ 0.9, 

after which the amplitude decreases but the 

baseline continues to increase. At high in the 

system returns to a stable equilibrium state 

after going through another regime shift at in ≈ 

1.25, with constant and uniform high values of 

phytoplankton in this constant bloom stable 

state. 

 Simulation framework - To test how 

EWI changed prior to regime shifts, the model 

was simulated with time-varying nutrient 

input rates. Each simulation was started 0.2 in 

units below the regime shift threshold and in 

increased linearly with each time step to 0.1 in 

units above the threshold. The change in in 

was set such that the regime shift threshold (in 

= 0.5 for the low-input transition and in = 1.25 

for the high-input transition) was crossed at 

2/3 of the total simulation time. In order to 

assess the impact of rate of change on EWI 

results, simulations were run for both a slow 

case (20,000 time units) and fast case (2,000 

time units). As each simulation was started 

and stopped at the same levels of in, this 10x 

change in total time created 10x faster rate of 

change in in. Model simulation was carried out 

using the Euler-Maruyama method with a time 

step of 0.05. All simulations and calculations 

were carried out in R. 

 EWI calculations – Temporal and 

spatial EWI were calculated for each 

simulation. Temporal EWI were calculated 

from 0.1-time unit resolution data from the 

single grid cell at the center of the grid. This 

represents data that would be collected from a 

stationary automated sensor collecting 

continuous data at the center of a lake (see 

Discussion). A rolling window size of 100 time 

units was used for all temporal EWI. The 

temporal EWI statistics included rolling-

window standard deviation and lag-1 

autocorrelation (temporal AC).  

Spatial EWI were calculated from 1-

time unit resolution data on all 180x180 grid 

phytoplankton values for each spatial snapshot. 

Analogous statistics where used for spatial 

EWI for comparison to temporal EWI. Spatial 

EWI statistics included standard deviation as 

well as Moran’s I (spatial AC). Moran’s I is the 

spatial equivalent of lag-1 temporal 

autocorrelation; it’s the correlation of each grid 

cell with its 4 neighboring cells for all 180 x 

180 cells. 

  

Results 

 Model simulations generated the 

expected spatial patterns in each system state 

(Figure 1). For the low-input regime shift that 

started in the non-bloom stable state, 

phytoplankton concentrations were relatively 

uniform, neglecting the added noise, without 

larger scale patches (Figure 1, left and center 

Figure 1. Example grids of phytoplankton from the fast simulation case of model going through the 

low-input regime shift from the low algae stable state to the cycling bloom state. The regime shift 

occurs at time = 1,333, so time = 1 (left) is in the low algae stable state far from the regime shift, time 

= 1200 (center) is also in the low algae stable state but close to the regime shift, and time = 1900 is 

in the cycling state. Color indicates concentration of phytoplankton (red = higher, blue = lower); note 

independent scaling for each panel.   
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panels). Closer to the regime shift the range of 

values observed within a given grid snapshot 

increased by approximately an order of 

magnitude. After the regime shift to the cycling 

state, large-scale patches formed and the range 

increased even further (Figure 1, right panel). 

Corresponding changes were seen in the 

second regime shift, from the patchy, cycling 

bloom state to the high-algae stable state. 

 For the slow simulation case (total 

simulation 20,000 time units), each regime 

shift was preceded by clear changes in at least 

one EWI (Figure 2). For the low-input regime 

shift, changes in spatial EWI were clearest. 

Spatial SD increased steadily from the start of 

the simulation (Figure 2E), while spatial AC 

decreased at first but then increased fairly 

steadily prior to the regime shift (Figure 2G). 

In comparison, temporal SD also increased 

through the regime shift but with significant 

fluctuations over shorter time scales (Figure 

2A). Temporal AC was highly variable and 

showed no consistent change prior to the 

regime shift (Figure 2C). 

 Temporal SD provided the clearest 

signal prior to the high-input regime shift for 

the slow simulation case, with a steady 

decrease and relatively little variability (Figure 

2B). Spatial SD also decreased prior to the 

regime shift but was highly variable until time 

10,000 (Figure 2F). For autocorrelation, spatial 

AC decreased prior to the regime shift (Figure 

2H), while temporal AC showed no change 

(Figure 2D). 

Figure 2. EWI results for the slow simulation case. The top row (panels A – D) show rolling-window 

temporal EWI while the bottom row (panels E – H) show spatial EWI computed from entire grid 

snapshots. Panels A, C, E, and G are for the low-input regime shift (low-algae stable state to cycling 

bloom state) and panels B, D, F, and H are for the high-input regime shift (cycling bloom state to 

high-algae stable state). Red vertical lines indicate time of the regime shift. 
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 For the fast simulation case (total 

simulation time of 2,000 time units), EWI 

results were largely the same for the low-input 

transition as for the fast simulation. Spatial SD 

(Figure 3E) and spatial AC (Figure 3G) had the 

clearest and most consistent trends prior to the 

regime shift, while temporal SD generally 

increased but with lots of variability (Figure 

3A) and there was no discernable change in 

temporal AC (Figure 3C). 

 The temporal EWI were also similar for 

the high-input regime shift of the fast 

simulation case. Temporal SD declined 

steadily through the transition (Figure 3B) and 

there was no clear change in temporal AC 

(Figure 3D). Spatial EWI were not the same for 

the fast simulation compared to the slow 

simulation case. Spatial SD declined and was 

highly variable through the transition (Figure 

3F), but did not become constrained at low 

values prior to the regime shift as in the slow 

simulation case (Figure 2F). Spatial AC did not 

fall appreciably until after the regime shift 

(Figure 3H), in contrast with the slow 

simulation case (Figure 2H). 

 

Discussion 

Results from this study show that 

changes in resilience in aquatic ecosystems 

prior to algal blooms may be preceded by 

changes in EWI statistics. This study provided 

the first direct comparison of multiple temporal 

and spatial EWI using a spatial algal bloom 

model that incorporates realistic physical and 

biological processes. Our findings suggest that 

the best performing EWI is likely to be regime 

shift specific and dependent on the rate at 

which the regime shift is approached. 

The better performance of the spatial 

EWI relative to temporal EWI at the low-input 

regime shift is likely due to interactions 

between small-scale variability and advection. 

Random variations from stochasticity create 

small patches of higher or lower phytoplankton 

Figure 3. EWI results for the fast simulation case. Red vertical lines indicate time of the regime 

shift. 
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concentrations in the low-algae stable state, 

which get moved around the grid by advection. 

These patches moving through the single 

location in the center of the grid create 

temporal variability. Spatial EWI, in contrast, 

use all the grid phytoplankton concentrations in 

each calculation, so this small-scale variability 

is included and does not change. For the high-

input regime shift, spatial SD and spatial AC 

did not perform as well as temporal SD. The 

mechanism behind this difference is not as 

clear, but is likely related to increased patch 

size and cycle amplitude in this state. 

The model used in this study (like all 

models) is a simplification of reality and cannot 

capture all important processes. For example, 

in real aquatic ecosystems, phytoplankton will 

be made up of several or many species that 

interact with each other and other ecosystem 

components, vs. a single phytoplankton state 

variable. Additionally, advection is likely to be 

time-varying and related to e.g. wind speed and 

direction, vs. temporally constant. While these 

processes could be incorporated in a more 

complex model, simple models that include 

relevant processes and recreate observed 

dynamics are useful to establish expectations 

for later empirical studies. This approach, 

modeling studies followed by empirical tests, 

has proven fruitful for studies of temporal EWI 

in aquatic ecosystems (e.g.10,25). 

Our research group will test the 

findings of this work this summer, directly 

comparing spatial EWI and temporal EWI in an 

experimentally induced regime shift for the 

first time. The experiment is occurring at the 

University of Notre Dame Environmental 

Research Center (UNDERC) in the Upper 

Peninsula of Michigan. We will collect 

intensive time series and spatial data while 

fertilizing Peter Lake daily with inorganic 

nitrogen and phosphorus to cause an algal 

bloom. Continuous time series of temperature, 

conductivity, pH, dissolved oxygen (DO), 

chlorophyll, and blue-green algae (BGA) will 

be recorded every 5 minutes using automated 

sensors attached to a buoy at the center of the 

lake. These data will be used for rolling-

window temporal EWI analyses. The first 

source of spatial data will be the FLAMe 

system (Fast Limnology Automated 

Measurements; flame.wisc.edu), which was 

developed by our collaborators at the 

University of Wisconsin-Madison14. This 

system is made up of several sensors contained 

within a portable box along with a GPS, a water 

pump, and water intake and exhaust apparatus 

mounted to a boat. When underway, water is 

pumped through the sensor box, and high 

frequency (1 Hz) measurements on water 

parameters and GPS location are taken. These 

in-situ water quality and GPS measurements 

are converted to maps for visualization and 

used for calculation of spatial EWI.  

This study will allow, for the first time, 

direct comparison at relatively high frequency 

of whether spatial or temporal EWI provide a 

more reliable warning prior to a real-world 

bloom. This analysis will be done qualitatively 

by plotting temporal and spatial EWI to 

compare how early each indicator changes 

prior to the bloom, the magnitude of that 

change, and consistency of the change (is there 

a clear signal of resilience change relative to 

background variability?). The indicators will 

also be compared quantitatively using rolling 

window Spearman rank correlation to test the 

strength of trends in EWI. 

Finally, the detailed spatial data 

collected by the FLAMe system will also 

enable a novel test of remote sensing (RS) to 

measure algal blooms in both time and space. 

Remote sensing, most commonly satellite RS, 

is an alternative to wet chemistry and in-situ 

mapping that can collect large amounts of 

bloom data. Satellite RS, though, has tradeoffs 

between revisit frequency and spatial 

resolution. Drone-based RS is a relatively new 

research technique that has the potential to 

provide both high resolution (cm) and 

frequency (up to minutes or hours). However, 

most drone RS studies of algal blooms have 

http://www.flame.wisc.edu/
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been limited to one or a few ecosystems and 

sampling events, leaving questions about the 

method’s broad applicability26.  

We will conduct experiments and 

collect data to address three novel objectives: 

can drone RS capture changes in bloom 

conditions 1) in individual lakes through time, 

2) spatially within a lake, and 3) across 

different lakes? I will compare drone-derived 

chlorophyll concentrations to wet chemistry 

and in-situ fluorometric measurements. Data 

will be collected several times per week in 

Peter Lake concurrent with FLAMe mapping 

and in a survey of 30 lakes spanning ranges of 

eutrophication and dissolved carbon 

concentrations. Success would provide one of 

the most comprehensive demonstrations to date 

of the utility of drone RS for measuring algal 

blooms.  

Looking ahead, the findings of this 

work are promising in light of emerging 

technologies. Inexpensive and easy-to-use of 

drones and constellations of small satellites 

(CubeSats) have the potential to provide both 

high frequency and resolution data with wide 

coverage. Such data would be useful in both 

applied contexts (e.g. detecting and treating 

blooms before they grow and spread) as well as 

for basic research (e.g. enabling studies on 

spatial resilience indicators). 

 

Acknowledgements 

 We thank the Virginia Space Grant 

Consortium for funding this project, allowing 

us to purchase the drone that will be necessary 

to conduct the field research. We also thank SR 

Carpenter for ideas and feedback on the 

modeling study.  

 

References 

1. Scheffer, M, SR Carpenter, TM Lenton, J 

Bascompte, W Brock, V Dakos, J van den 

Koppel, IA van de Leemput, SA Levin, 

EH van Nes, M Pascual, J Vandermeer. 

2012. Anticipating critical transition. 

Science. 338: 344-348.  

2. Scheffer, M, SR Carpenter, JA Foley, C 

Folke, B Walker. 2001. Catastrophic shifts 

in ecosystems. Nature. 413: 591-596. 

3. Carpenter, SR, D., Ludwig, W.A. Brock. 

1999. Management of eutrophication for 

lakes subject to potentially irreversible 

change. Ecol Appl 9:751–771 

4. Heisler, J., P. Glibert, J. Burkholder, D. 

Anderson, W. Cochlan, W. Dennison, C. 

Gobler, Q. Dortch, C. Heil, E. Humphries, 

A. Lewitus, R. Magnien, H. Marshall, K. 

Sellner, D. Stockwell, D. Stoecker, M. 

suddleson. 2008. Eutrophication and 

harmful algal blooms: a scientific 

consensus. Harmful Algae. 8:3–13. 

5. Paerl, H. W., R. S. Fulton, P. H. 

Moisander, and J. Dyble. 2001. Harmful 

freshwater algal blooms, with an emphasis 

on cyanobacteria. Sci. World. 1:76–113. 

6. Postal, S., and S. Carpenter. 1997. 

Freshwater ecosystem services; in 

Nature’s Services: Societal Dependence 

on Natural Ecosystems. Island Press. 

7. Dodds, W.K., W.W. Bouska, J.L. 

Eitzmann, T.J. Pilger, K.L. Pitts, A.J. 

Riley, J.T. Schloesser, D.J. Thornbrugh. 

2009. Eutrophication of U.S. freshwaters: 

analysis of potential economic damages. 

Environmental Science and Technology. 

43(1): 12-19. 

8. Scheffer, M., S.R. Carpenter, V. Dakos, 

and E.H. van Ness. 2015. Generic 

indicators of ecological resilience: 

inferring the chance of a critical transition. 

Annu. Rev. Ecol. Evol. Syst. 46: 145–167. 

9. Dakos, V., S.R. Carpenter, W.A. Brock, 

A.M. Ellison, V. Guttal, A.R. Ives, S. 

Kéfi, V. Livina, D.A. Seekell, E.H. van 

Nes, M. Scheffer. 2012. Methods for 

detecting early warnings of critical 

transitions in time series illustrated using 

simulated ecological data. PLOS ONE. 

7(7): e41010. https://doi.org/10.1371/ 

journal.pone.0041010 

10. Carpenter, S.R. and W.A. Brock. 2006. 

Rising variance: a leading indicator of 



Buelo 
 

9 

ecological transition. Ecology Letters. 9: 

311-318. 

11. Dakos, V., S. Kefi, M. Rietkerk, E. H. van 

Nes, and M. Scheffer. 2011. Slowing 

down in spatially patterned ecosystems at 

the brink of collapse. Am. Nat. 177(6): 

E153–E166. 

12. Ratajczak, Z., P. D’Odorico, J. B. Nippert, 

S. L. Collins, N. A. Brunsell, and S. Ravi. 

2017. Changes in spatial variance during a 

grassland to shrubland state transition. J. 

Ecol. 105: 750–760. 

13. Eby, S., A. Agrawal, S. Majumder, A. P. 

Dobson, and V. Guttal. 2017. Alternative 

stable states and spatial indicators of 

critical slowing down along a spatial 

gradient in a savanna ecosystem. Glob. 

Ecol. Biogeogr. 26: 638–649. 

14. Crawford, J. T., L. C. Loken, N. J. Casson, 

C. Smith, A. G. Stone, and L. A. Winslow. 

2015. High-speed limnology: using 

advanced sensors to investigate variability 

in Biogeochemistry and Hydrology. 

Environ. Sci. Technol. 49: 442–450. 

15. Van de Bogert, M.C., D.L. Bade, S.R. 

Carpenter, J.J. Cole, M.L. Pace, P.C. 

Hanson, and O.C. Langman. 2012. Spatial 

heterogeneity strongly affects estimates of 

ecosystem metabolism in two north 

temperate lakes. Limnology and 

Oceanography. 57: 1689-1700. 

16. Cline, T.J., D. A. Seekell, S. R. Carpenter, 

M. L. Pace, J. R. Hodgson, J. F. Kitchell, 

and B. C. Weidel. 2014. Early warnings of 

regime shifts: evaluation of spatial 

indicators from a whole-ecosystem 

experiment. Ecosphere 5: 102. 

http://dx.doi.org/10.1890/ES13-00398.1 

17. Litzow, M. A., J. D. Urban, and B. J. 

Laurel. 2008. Increased spatial variance 

accompanies reorganization of two 

continental shelf ecosystems. Ecol. Appl. 

18(6): 1331–1337. 

18. Rindi, L., M.D. Bello, L. Benedetti-

Cecchi. 2018. Experimental evidence of 

spatial signatures of approaching regime 

shifts in macroalgal canopies. Ecology. 

99(8): 1709-1715. 

19. Donangelo, R., H. Fort, V. Dakos, M. 

Sheffer, and E. H. Van Ness. 2010. Early 

warnings for catastrophic shifts in 

ecosystems: comparison between spatial 

and temporal indicators. Int. J. Bifurc. 

Chaos 20(2): 315–321. 

20.  Butitta, V.L., S.R. Carpenter, L.C. Loken, 

M.L. Pace, E.H. Stanley. 2017. Spatial 

early warning signals in a lake 

manipulation. Ecosphere. 8(10): e01941. 

21. Serizawa, H., T. Amemiya, and K. Itoh. 

2008. Patchiness in a minimal nutrient-

phytoplankton model. J. Biosci. 33(3): 

391–403. 

22. Buelo, C.D., S.R. Carpenter, M.L. Pace. 

2018. A modeling analysis of spatial 

statistical indicators of thresholds for algal 

blooms. Limnology and Oceanography 

Letters. 3: 384-392. 

23. Pace, M. L., R. D. Batt, C. D. Buelo, S. R. 

Carpenter, J. J. Cole, J. T. Kurtzweil, and 

G. M. Wilkinson. 2017. Reversal of a 

cyanobacterial bloom in response to early 

warnings. Proc. Natl. Acad. Sci. 114(2): 

352–357. 

24. Wilkinson, G. M., S. R. Carpenter, J. J. 

Cole, M. L. Pace, R. D. Batt, C. D. Buelo, 

and J.T. Kurtzweil. 2018. Early warning 

signals precede cyanobacterial blooms in 

multiple whole-lake experiments. Ecol. 

Monogr. 88(2): 188–203. 

25. Carpenter, S.R., J.J. Cole, M.L. Pace, R. 

Batt, W.A. Brock, T. Cline, J. Coloso, J.R. 

Hodgson, J.F. Kitchell, D.A. Seekell, L. 

Smith, B. Weidel. 2011. Early warnings of 

regime shifts: a whole-ecosystem 

experiment. Science, 332(6033): 1079–

1082. 

26. Kislik, C., I. Dronova, M. Kelly. 2018. 

UAVs in support of algal bloom research: 

a review of current applications and future 

opportunities. Drones. 2(4): 35. 


